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ABSTRACT

A new simplified renormalization group procedure which was developed
to treat logarithmic problems in solid state physics is applied to thg critical
phenomena in 4-e¢ dimensions. It combines the physics of the Kadanoff scaling
idea as developed by Wilson to calculate critical indices in the t-expansion
and the simple mathematical structure of the Lie equations of the Gell-Mann-Low
multiplicative renormalization. In order to show the connection of the new
method to the conventional Gell-Mann-Low renormalization a large class of the
normalization conditions are considered including typical examples. The new
procedure is found to be equivalent with the Gell-Mann-Low method with a
specially chosen normalization condition. The new procedure has its advantage
in its considerably simpler applicability and, furthermore, it is closer to
the underlying physics. 1he critical indices v, n, vy and a the anomalous di-
mensions dg, 2, and as well, as correction to scaling have bheen determined
at least up to second order in £ and the expressions obtained agree with the
result of other calculations. In four dimensions logarithmic corrections are
obtained to the specific heat.

AHHOTALHA

NpHMEeHAeTCA YHPOuleHHHR MeTOR TPYNH PEeHOPMHPOBOK X HCCNENOBAHHNM KPHTH-
YeCKUX ABJIEHHA P 4-¢ pasMepHOCTH. [peVIONEeHHHA MeTONR MOXeT OHTh MPHMEHeH K H3y-
YeHHO. JIOrapHOMHYECKHX MpoOGJSIeM P TEOPHH TRepmHX Ten. Haw MeTon ymauHo oO6GremHHAer
PHIHYE Ky KaPTHHY IHNOTe3n NonoGra Kamasoda » dopme Pa3IBHTOR BHIIBCOHOM miAd on-
peneneHHs KPHTHYECIHX HMHOSKCOB HA OCHOPBE €~ Pa3JIONEeHHA H NPOCTY) MaTEeMaTHYeCKYln
CIPYXTYPY YpaBHeHMR JiM MeTONa MyJbTHIUTHKATHBHOA PEeHOPMHPOBKH Tesnsi~Mana-Jloy. Ina
HIYYEHHWA BI2UMOCBAIN OULNYHOI'O Merona lenn-Masa-Jloy B NPemIOXEHHOIO KIBOro MeTopa
HCCleny eTCH OGUWHPHHR KJ1acC YCJ/O0BPHA HOPMHPOBKH. HOBHR MeTON DPARHOCHNBAEHA MeTOQY
Tenn-Mana-Jioy B TOM cryiae, €Chu B fOCNIEAHEM CnelLHanbLHO noatepeM ycnoIHe HOPMH=
POBKH. [lpeuMymecTBOM HOBOIO MEeTOAA ABAAETCA TO, YTO IHAUHTENBHO JIErYe MOXHO FpH-
MEeHATh MW, XpOMe 3ITOr(, Hau MeTOon O/IMXe K [eanbHOR ¢u3iHyeckof KapTuHe. KpHTHYeCkHe
HHOEKCH V, N, Y H ;a8 Takxe AHOMANbBHHE DA3IMEPHOCTH dw, d¢2 " d,‘,‘p H nonpaBX® X mac-
WTAGHOMY MOBeneHHio onpenesieHd No € He MeHee YeM BO BTOPOM MNOPARKe H HaM pPe3ayab-—
TaTH COBNaManT C PaHblue NOAYYEHHHMH pel3ynbTAaTaMH. B cnyyae 4—X MepHHX CHCTeM
fonydyeHH JlorapHdMHyeckse fONMPaABKH K TeIUVIOeMKOCTM.

KIVONAT

Egy uj, egyszeriisitett renormilasi csoport eljédrést alkalmazunk a kri-
tikus jelenségekre 4-c¢ dimenziéban. Az eljarast szilArdtestfizikai logaritmikus
problémik tArgyaldsidra lehet hasznilni. A m6dszer egyesiti Kadanoff skidlahipo-
tézisének fizikajat, ugy, ahogy azt Wilson tovabbfejlesztette a kritikus in-
dexek meghatdrozasdra az ¢ sorfejtéssel és a Gell-Mann-Low multiplikativ renor-
malés Lie egyenleteinek egyszerli matematikai strukturdjit. Az uj médszer és a
szokisos Gell-Mann-Low renormilas kapcsolaténak vizsgAlat&ra a norm&lési fel-
tételek egy széles osztdlyat tanulminyozzuk. Az uj eljir&s ekvivalens a Gell-
-Mann-Low médszerrel, hu ott a normAlési feltételt speciflisan vAlasztjuk.

Az uj mbédszer eldnye a lényegesen egyszerllbb alkalmazhatbsig, és ezen fellil

a fizikai képhez is k&zelebb &11., Az n, v, Y &8 a kritikus indexeket és a dy,
dp2 é3 dpp anomélis dimenzidkat &s a sk&laviselkedéshez adbdd korrekcibét e-ban
legalabb masodrendig meghaté&roztuk és az eredmények egyeznek misok sz&moléasaival.
Négy dimenziés rendszereknél a fajhShz logaritmikus korrekcibkat kaptunk.



I. Intrnduction

The theory of critical fluctuations in systems
around the phase transition point was the subject of muny
inyestigations in the last several years, A review of the
many early attempts to account for these fluctuations =2nd
to describe the underlying physics can be fcund in Stanley’s
book [11. It became clear that due to the divergence of the
coherence length the short distance behaviour is irrelevant
for the critical behaviour of the system and only the long
range fluctuations play an important role, As a consequence
of this statement Kadanoff [21 suggested that the critical
behaviour of a magnetic system can be studied by grouping
the individual spins on the lattice sites into blocks,

These blocks can then be considered as new entitlies and the
system of blocks behaves similarly as the individual spins
do, In this way the original system is sctled into a new,
similar system with the same free energy, Using this scaling
property Kadanoff could derive relations between the criticel
exponents which describe the singular behaviour of thermo-
dynamic quentities, In this approach it was, however, nct
possible to determine the critical exponents themselves,

A quite new development started in this problem with
Wilson’s [3] renormalization group treatment of critical
phenomena. Formulating Kadanoffs/s scaling idea in reciprocal
space and relying on that the ph§;ically interesting pro-~
perties near the crit ical point are determined by the long

wavelength (small wave vector) fluctuations Wilson noticed

.,
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that the large wave vectors can be eliminated succcssively
by a simultaneous renormalization of the interaction para-
meters, This renormalization transformation is periormed
with the requirement that the free energy be invariant under
it, If the renormalization procedure leads to a fixed point
Hamiltonian and a fixed point coupling constant, the criti-
cal exponents are determined by the eigenvalues of the re-
normalization transformation e~ound the fixed point or by
the fixed point coupling constent,

This method allows to calculate mimerical values
for the critical exponents either in power series of £:=L-d
where d is the dimensionality of the system cr in powers of
Al where n is the numoer of components, This length sca-
ling rencrmalization procedure has already been reviewed by
several authors. We refer here only to the pesper by Wilson
and Kogut [4] where all the essentisl ideas cen be found,

A very similar procedure was introduced independently
by Anderson, Yuval and Hammonnlb] and by Andefoon Eb] in the
treatment of the Kondo problem, Scaling of the system into
an equivalent on: wes achieved through a variation of the
short time cutoff or the energy cutoff ‘band width) . The
coupling constants of the transformed system were determi-
ned from the requirement that the free energy or the scattering
matrix be invuriant, This transformation produced scaling laws
from which sone features of the Kondo problem could be obtained,

Wilscn'’s renornali?ation group treatment and in

general thiz ncaling argument is very different from the

|
|
!
|
|
I
|
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usual multiplicetive renorcalization group. The latter was
discovered by Stickelberg and Peterman [7] ., and applied
successfully by Gell-Mann end Low [8] in quantum electro-
dynamics, Later it was extendad to other renormslizable
field theories, The conventional Gell-Mann-Low renormaliza-
tion is well described in the book by Bogoliubov and Shirkov
[9)] for field theories. It was shown by Di Castro and Jona-
~Lasinio [lo]- [12] that this method can be used to study
critical phenomena, and similarly to Wilson’s theory, the
critical exponents can be calculated in the £ -expansion,
The multiplicative renoramalization caen be formulated as
resulting from the scaling of a reference momentum, but the
simple physical picture of Kadanoff’s sceling is absent.

The scaling reference nomeﬁfun has no simple physical meaning,
Using the Gell-Mann-Low multiplicative renormalization aho
the Kondo problem wae studied by Fowler end Zawadowski [13]
and, as well, by Abrikosov and Migdal [14] . withithe same
result as the above mentioned papers, This indicates that
the Wilson type so-called “modern version of renormalization®
and the conventional multiplicetive renormalization are in
some sense equivalent,

Recently Jona-Lasinio [15] has proposed a general
definition of renormalization transformations, In this
definition "a renormalization group is a set of transforma-
tions acting on the arguments of a ?hernodynanical functional
and leaving this functional invarient in value®., This gene-

ral definition includes both Gell-Mann-Low and Wilson type

L g
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renormalization, showing that the expressior renormali-
zation group is not unique and has many different rea-
lizations, Furthermore as it is shown in the present
work, even in the Gell-Mann-Low method there is an arbi-
trariness connected with the normalization condition,
Even if we stick to multiplicative renormalization there
are two distinct approaches ueing different differential
equations for the Green’s function and vertices, One
version relies on the Lie equation of the group, the
other uses the Callan-Symanzik equation [JG]. Although
the formulation is different, in both cases first the
invariant coupling and its fixed point value have to be
determined and then the critical exponents expressed in
terms of the fixed point coupling can be calculated,
Making use of the Callan-Symanzik equation Brézin et al
[17], [151 have calculated the critical exponents to
order &' and &3, respectively, ,

There are many other methods to calculate cri-
tical exponents, not reclying on renormalization group
argumente, Feynman greph expansion [;9] , skeleton
yraph expansion [26], [21] and parquet diagram summation
[?2],have been successfully applied to calculate various
critical exponents such as o , o Y . ) , V., yl
etc.

In thie paper we present a new method which ie
a combinat ion of Kadano”f’s scaling idea or Wilson’s

method ¢f eliminating degress of freedom on the one hand
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and multiplicative renormalization of Green’s functions
and vertices on the other hand. In solid state or sta-
tistical physical problems we usually have to deal with
systems where there is a natural scale of the momentum,
namely the cut-ofi momentum., This can serve as & natural
scaling parameter whose change will eliminate the degrees
of freedom in womentum space, But in contrast to Wilson’s
approach a multiplicative renormalization group will be
generated by the cut-off scaling,

This fomulation of multiplicative renormalization
via cut-off scaling was proposed by one of the authors
and was applied to the x-ray absorption problem and Kondo
problem [23] and to a one-dimensional Fermi gas model [24] .
It was shown that in logarithmic problems this method
provides us with a convenient procedure to do better than
leading logarithmic approximation. In the theory of cri-
tical phenomena in 4 dimensions the situation is similar,
and this method is expected to work correctly, ﬁear 4 di-
mensions the problem is not simply logarithmic in the sense
that the higher power of logarithm is not always associated
with higher power in the coupling - the basic element is
VE,'\XL‘~‘) instead of X - and it is questionable
whether this simple renormalization procedure can be ex-
tended to calculate the critical exponents in E-expansion
or not, The aim of the present paper is to show that the
critical exponents can be calculated correctly applying

this procedure, Since, as was mentioned, this procedure

-
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is based on the physical picture of Kadanoff’s scaling
idea, but uses the mathematical formelism of the Gell-
-Mann-Low renormalization, this new approach may give a
better insights into the physics underlying the critical
phenomena. It is shown that the new method is a parti-
cular case of the Gell-Mann-Low renormalization with an
adequately chosen normalization condition.

The paper is orgenized as follows, Since the
conventional Gell-Mann-Low multiplicative renormalization
is not as popular as Wilson’s renormalization group spproach,
a short recapitulation of the main steps seems to us ne-
cessary, In Sec, II, the method is presented with emphasis
on the difference between field theoretical end statistical
physical applications and on the requirement that the re-
normalization transformation be a non-trivial transforma-
tion, Our new renormalization procedure is developed in
Sec, II1I, The basic idea is that a chapge in the physical
cut-off can be compensated by an effective coupling in such
a way that the Green’s function and vertex in the original
and transformed system differ only by a multiplicative fac-
tor. It is shown here that this is true in perturbation
theory to that order until the calculations can be done
reasonably, Accepting that this procedure is generally
true, the critical indices N VvV and Y ¢ the anomalous
dimensions ‘L? , 4y, end dy¢ and the exponent

describing the correction to scaling are determined in
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Sec. IV, to order €' or €' . The specific heat ex-
ponent o is not so straightforward to calculate and

this will be pr sented in Sec. V. In four dimensions

the exponents have mean field values. The effect of
fluctuations appears in the form of logarithmic corrections.
Thie will be studied in Sec, V. where a new type of correc-
tion ie obtained for the specific heat, In the last sec-
tions this new method is compared to other ones and the

differences are discussed,

11. Conventiona! Gell-Mann-Low renormalization

2,1 Renormalization transformation

Multiplicative renormelization was invented in
quentum electrodynamics to cope with the problem of di-
vergent contributions from some self-energy or vertex o
diegrams, The method is excellently described in the book
of Bogoliubov and Shirkoy [5] and we refer the reader to
this book for the ba:kground in field theory, This paper
is, however, self-contained and in this section a brief
review of the Gell-Mann-Low method is given, The aﬁproach
using the Callan-Symanzik equation will not be reviewed
since our method to be developed in the next section has
more resemblance to the conventional treatment._We will
put emphasis on those points which will allow us to meke
a direct comparison with our method,
The critical phenomena in d=L-& dimensions cen
be studied as a field theoretical problem where the

Lagrangian or Hamiltonian is of the form of the Ginzburg-



Landau-Wilson tunctional

e (a2 @l 3l 2 [ W]

-
“

/2.1/

with

tpl(x) =2 @l and |7 L('_(’()]L: Z(v &p;(*)J . /2.2/

=4

P

x4
n being the number of components, To is proportional
to the temperature and q. has the dimensionality X_C.
In this paper only the static critical phenomena will be
studied and therefore no time-dependence is considered,
Renormalization of the theory means that instead
of working with this Hamiltonian, subtrection terms are
introduced, which ~ except for the mass renormalization -
can be considered as multiplicative renormalization of
the different terms of the Hamiltonian, According to this
first @ “mass renormalization® is pertormed by an identical
transformation, introducing a quantity " instead of e
in the free Hamiltonian
H = (s [57_}‘ ¢ )+ L] Lk [gt9]" 4 fo “"L(‘)i /2.3/
with Swt = R~KL.

In the perturbational calculation the first two
terms will serve as the unperturbed part of the Hamiltonian
while the third and fourth terms of eq, /2.3/ are consi-
dered as perturbations, The unperturbed Green’s function

in momentum representation is




G e) = - == /2.4/

wt is still undetermined and its value will be fixed

"later on.

In a second step the multiplicative renormalization
will be done in a straight forward manner by inspecting the
diagrams, without the intoduction of the subtraction terms,
The total Green’s function ang the vertex can be calculated
ir perturbation theory, The diagrammatic representation of
the successive contributions is given in Fig. 1, and 2, for
the Green’s function and vertex, respectively, The crosses
in these diagrams represent the 6~}QL insertions into the
Green’s functions,

The Green’s function G and the reduced vertex f‘J"-‘r'/%o
are functions of the momenta qf, the renormalized mass

«* , the coupling constant q. and the strength of the

xeL insertion Jdw’ ., Using & sharp cut-off in momentum
space, & and o depend on the cut-off A ., when the
diagrammst ic ;ontributions are written in a formal way,
these quantities depend on their unperturbed value G*land

and, therefore, we can write the Green’s function and
vertex as G = C(ﬂf. b /\L, 4s . St Fu, C’w')

and F. (q},mL,Aﬂ qu,§u3,ii, qu. Looking at the
corresponding diagrams in Fig., 1, end 2, and considering
the simple procedure how higher and higher order diagrams
are constructed, it is easy to check in any order that

under the transformation




- lo -
ﬁo I Fo Zy /2.5/
©) o -1
" —= G%z, /2.6/
(gml — (g..\ z, ) /2.7/
. = 9. Z:‘ Zy
9 9 2.8/

all the diagrams contributing to the total Green’s function
carry the same multiplicative factor z;' and similarly all
the vertex diagrams have an overall multiplicative factor =z,.
Compensating these factors we get the following invariance

property: )
L L 0 w ]
G( q,1.' KL/ N ) 30’ S , P, . G l '..
’ . -~ b’ -
= 23 G& ‘?l' KL! ,\Ll % ] 8&\17_1, r,° Zs4, G Z-s‘ } ; /209/

g R g T 6

~ ~ o -4
—_Z.,‘ P I\W‘LI KLIA.L' 1) <§""\LZ!" P°Z1) G”Zz [} /2‘10/

% = Clo 21-‘ Z3L
/2.11/

This transformed Green’s fungtion and vertex could have been

obtained from the following Hamiltonian

H= S‘x“ {13[.‘%\{'(,()», %_[_vthll] + ‘27 Z, (x("(d]l F 2y A-;? Q‘(x’} /2.12/

From now on we will work with this Hamiltonian and the
physical system will be recovered by taking z,=Z;=1 only
in a final step. This is the same Hamiltonian as that used

il
|
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by Brezin et al. [}7] to investigate Wilson’s theory of
critical phenomena by the Callah-Symanzik equation,

Until now z, and z; are arbitrary multiplicative
factors which generate a two parameter continuous group,
the renormalization group. They transform the original phy-
sical system into an equivalent one where the Green’s func-
tion and vertex have the same momentum and temperature de-
pendence., This is a very essential feature of the renorma-
lization group and that will enable us to get information
on the momentum end tomperature dependence of theese quanti-
ties,

As a next step in renormalization theory, using
either the Callan-Synanzik equation or Lie equat ions, the
values of the multiplicative factors 2z, and Z; and the
“renormalized mass” " have to be fixed by imposing norma-~
lization conditions on the Green’s funcgidﬁ and vertex.

At thie point the distinction between f}eld theoretical
and statistical mechanical treatment of the problem has
to be made clear, For the field theoretical approach the
transformed Hamiltonian /2,12/ is the basic Hamiltonian
and the normalization is done in such a way that there
are no divergences in the Green’s functions and vertices

. of this transformed system when the cut-off /\ goes to
infinity, It is not fequired that Z, end Z; could be
set equal to unity in a final step, they might even be

equal to zero or infinity,
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In the statistical physical formulation the basic
Hamiltonian is that of eq. /2.1/. It should be kept in wind
that there is a minimal distance here, /the lattice constant/
or put in another way the integration over momenta has a
large cut-éff /A and therefore there is no inherent ultra-
violet divergence in the problem, The auxiliary Hamiltonian
/2.12/ and the introduction of the multiplicative factors

Z, and Z; nre only useful tools to study the behaviour
of the system but in the final step we have to return to
the original system by taking z,=2,=1,

The field theoretical approach is only briefly pre-
sented. here to see the relation to the statistical mechanical .
treatment, In the approach using Callun-Symanzik equations F |
the theory is conveniently renormaslized at zero momentum
(17] or at the symmetry point [18] and the standard field L—~—
theoretical arguments can be used to derive the invariant

coupling and the exponents,

2,2 Multiplicative renormalization with field

theoretical normalization

In the conventional Gell-Mann-Low'theory the multi-
plicative factors areff;xed by requiring the normalization
of the Green’s functi;n and vertex at a momentum q,;"=’A"
and A will serve as a scaling parameter, Following

Di Castro [7] the normalization is required for

G(‘VL"‘L:‘llS“‘Illp ﬁ Z, G"‘z‘;)
. ¢" (4, ") /2.13/

0((,,‘,"'“", 9, Swlzy F,z,, G“'zi')=




~
. -13 -
and for E:(&}\L' KL, 9 (‘f-\lzs, Fol‘, (’wzi') in the form
Al g, &2 Tz, 692 oy /2.14/
and v
0 (0w, g, Wzy r z, G Z;Ja'f‘# =4 /2.15/

and the new "mass” " is fixed from the condition that the

Green's function be singular at WL=~KL , 1.e,

wt

Ut L S E G"" . =
G (o %, 9o, ) Ve, ).'1.. /2.16/

= G ' (g ¥, 9 ' zy, r z,, GHZ?).'&,L:O'

" can be calculated from this equation step by step in any
order of the perturbation theory, Denoting by Z_ (12.KLJ the
self-energy corrections coming from the third term of the
Hamiltonian given by eq., /2,3/ and by Z:'(QL‘KL} the
self-energy corrections which contain also the Sw?q} insertion

on the usual self-energy diagram, the Green’s function is

0. {
Gl = T T A s 1217/

The requirement /2,16/ can be written in the form

=) L 1 T
2. (»m 'KJ + &m o 12.18/

and therefore

L 1 *
Gl s~ o E T T e T Y

The difference of X' and 5" comes just from the ¢ inser-
tions and therefore in a step by step calculation it is easy
to see that in ' on every internal line the same sub-

traction procedure has been performed.

N

-
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Solving the system of equations /2,14/ - /2,16/ for
., 7, and Sutob, - wt . these quantities can be ex-

pressed in terms of X , ¥  and 9

.= Z, ()L, W' (“, /2.20/

2s 2y (V0 g, /2.21/
,\L 'L(L

R O (P RN r}) /2.22/

Using these functional forms 2, 2; end T, can be eli-

minated from the transformed < and (' and the variable

A appears instead of them, Introducing the dimensionless
coupling ‘
—€
w=oq X & /2.23/
the dimensionless functions 4 and F cen be written as
functions of the dimensionless variable q,"/kl and «'/2"
and w ,
AL ) o /2.24/
D PR 9. 5.‘fz1»(>&, «a) . z,(#,#,%), Gz (W, Kl,%}),
. 14 L -
RN T _..f°) T | /2.25/
- ﬁ (a'\"" uf' 9, Su\lz;()l|xl,q), F', z,()’"\kl‘ca), G Z‘; ()l, ul,7l).
These functions are normalized to unity at a‘,’"? 2" and q,f=%L
respectively /esee eqa., /2,14/ and /2,15//.
Changing the normalizetion momentum ) , a scaling
relation can be obtained for these functions, The mathematical
procedure of scaling ie clearly described in Ref, l_7] and

here we will only write down the relations



T { L L= L
\ = ) w L(l oa).
R E B o I Y AL ) /2.28/

The Lie equations or the Callan~Symanzik type equa-
tions that have been used by Di Castro [7] are the differen-
tial forms of these relations, In this form they express a .
trivialityﬂ‘ﬁihely that eqs., /2.9/ - /2,11/ are valid for
any choice of z; and Z;, These equations contain a non-
trivial information for particular problems only, i,e, for
renormalizable theories, In a field theoretical problem,
where there is no momentum cut-off, the perturbationel expres- .
eion of 4 and [' contain singular contributions which
were non-singular for finite cut-off, Calculating the
Green’s function and vertex with finite cut-off /i , the
transformed, renormalized functions have to be chosen in
such a manner that the limit , -»e should lead to finite
results, If the transformed functions & and T do not de-
pend on /A , or the depenaence is smooth, this limit proce-
dure can be performed and the theory is renormalizable, The
particularity of this c('model is that it is renormalizable
in this sense, It is shown in the Appendix on the particular
form of < and r that the transformed functions do not

depend on A , It is also shown there how the critical

exponents can be calculated using the Lie equations,
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The requirement of renormalizability, i.e. the
reqi irement that the transformed 4 and d shouldPhot
depend on A 1is equivalent to a special relstionship bet-
ween lower and higher order perturbational corrections and
this allows us to use a low order percurbational expression
in the Lie equation to generate higher order contributions,

In this renormalization procedure the original two
parameter continuous group with z, and z; is reduced to a
one parameter group with scaling parameter A ., The reduc-
tion of the number of parameters means that only a subset
of the equivalent systems can be generated by different
choices of A\ , This set is, however, fully sufficient for
us to determine the momentum and temperature dependence of
the Green’s function and vertex.

The abovementioned normalization condition is not
very useful if temperature dependent quantities, like sus-~
ceptibility are to be determined., The temperature dependei.ce
is incorporated into «* and therefore eqs, /2,14/ and /2,15/
can be used only if the Green’s function and vertex are
known as a function of both cf and «' simultaneously, These
exprescions are generally not known and this makes a cal-
culation of the exponents Yy, v, « etc, practically
impossible with this normalization condition,

A way out of this difficulty is that im the norma-
lization condition x' is also fixed, One possibility is to

require



A (q', 9, Sut zy, [z, G2y =4 /2.29/

' Tl W !
o (4 g, Sz, ’(‘;oz“ o 23..')1_1__,}' =1 /2.30/
An equally good choice is
dq g, oz, .z, GHZ;‘)%‘Q- cx = /2.31/
= (4" % q, §utzy, F,z.’ G 23 ateo Whrt T L. 2,32/

In this latter formulation the scaling of )\ explicitely
corresponds to scaling the temperature and the formalism
can be worked out in the same way as for any other norma-
lization condition, There may of course be other normaliza-
tion conditions as well, in which e.g, cvl and «* are nor-
malized at the sane value, corresponding to the expected

similar behaviour in W" and v.".

2.3 Multiplicative renormalization with physical

normalization

Turning now to the statistical mechanical treat- -
ment of the problem it becomes clear that the normalization
conditions /2,14/, /2,18/ cannot be maintained., As it was
emphaeized, in this case there is an inherent large momen-
tum cut-off, the problem has no ultraviolet divergences,

The multiplicative renormalization is used only as a use-
ful tool to get the low momentum or low w" behaviour of
various phyafcal\quantitiea. Therefore the physical situ-

ation z,-z,=1 should be recovered in the final step
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of the calculation and therefore the scaling momentum A
has to be introduced in such a way that there should be a

value %r'v . for which the multiplicative factors are equal

to unity, thus

L
_:f‘( ’Af'"'l‘ , Kl' L.\' = i!

/2.33/

and
23(‘)‘:1.‘: ‘V‘L UL) N i

' : . . /2.34/
In general, however, the Green’s function and vertex cannot
be normalized simultaneowsly to unity at the same momentum,
and there exiats no such )“ﬂ‘which would reproduce the physical
situation, A similar normalization problem is present in
quantum electrodynamics for the electron Green’s function
/8ee e, g. Ref, [9]/. ‘ ,

This shows that iﬁatead of normalizing < and F
to unity, &rother normalization has to be chosen, Further-
noré we want to avoid tge'coaplication coming from the de-
pgndence of tﬁe invariant coupling on «* and therefore we

~

propose such a normalization of <\ and (" that both 4" and

»* be fixed to a characteristic value, Since for ' there

is no other characteristic value than zero, we will fix

it at «' =0 . The characteristic value of Y is the cut-off
A . Therefore the proposed normalization of 4 and 0

is such that tho physical value of the scaling parameter ) be

r~

equal to A\ . Denofing by AP‘V and (1‘V the physical value
of A and " calculated from the physical Hamiltonian with

Z,=2,: 1 + the normalization condition can be written as

A(OVI,KLf Al' ca, 5'\1‘21; r,'z‘¢ G™ 2y

-
-—

)q’=>, wio

/2.38%/

- H
= 'K=° '

[

2 YA
drl--g». (‘Vzi . A q'u( ' 'c)})a,'?l\"
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1
where UL (0%, A '“ - ”f;r ‘-'»} is an arbitrary continuous

dimensionleass function with the boundary condition

7 . .
l(( VoA, 'A))'~I\’ -1 /2.37/

The analysis of eqs, /2.35/ - /2,37/ shows that when

XA, indeed - - ;-1 ond V-9 e This means that

4

the physical volue of A is A if this normalization

condition is accepted, The solution of eqs, /2.35/ and /2,36/

-

yields the multiplicative factors <, and 2Z; .

ooz (8 )
v de Ut h /2.38/

1
Zl :‘ /4.‘(’4"1’ U)I

/2.39/

~t

and the new functions < and ' after elimination of

-, ond 7, are the functions of q'/2", w2 and A/

1

8
w

2
L N
d-d (R 5, 5 /2.40/

~ ~ L u" N
i’ (—' ( .}’-r A, “)-

/2.41/

Introducing the bare dimensionless
similarly to eq. /2,23/ by o

-

o g




the normalization condition can be expressed in terma of

the new notation as

(\l ‘\(," /\I' ) -
AU T % %o e
1 [ /2.43/
H L /\l
14 u' N
(( ""’l' ( ;!\1 , ;\-1 , ., L( ( 3, UL}L‘}?”L' wlo )
- ! u" /\I' _
\) ( %—n -.A"' [ ';i t Ll)("r ]l 4 “l O -

/2.44/

1 .
where L((%t.%) obeys the boundary condition

AN .
Wl o=t /2.45/

In what follows we will consider two special dhoicea

of the function W(A/, ), The first choice is

U =1 . | /2.46/

while the second choice is

- s /2.47/

It is important to note that the functional foép of =z,

end z., /see eqs, /2,38/ and /2,39//and consequently the
transformed - and ﬁ’ depend on’ the explicit form of
\((/V/%,t*\ and a large variety of different renormaliza-
tions can be generated, These different renormalizations are
equivalent in the sense that they lead to the same piysical
Green’s function and vertex, they'af;, however, inequivalent
in that sense that a particuler chofce of WA, w] g

not always suitable to describe scaling and to get useful
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information from the scaling relations of 4 and | This

will be discussed later on,
Other choices of the normaiization condition are
nlso possible, in which e, g. W' is not fixed. A general

form of this type of normalization is

1 o
! . L .
r( ( "t' v, A l‘a' Oy f»y. ) { ° “- ' C

il
A‘ !V" '\r_ el

’ "1 ' P ' v u' . /2.48/
- ""“("vylul((}l,\'u."jl,/\|1"\.(()'{\! 'fa,)",'ﬂl

g . ) o ‘, _ (~o--|7'¢ .
"('\-1.\4./\1(5: (\,7._" o Fy, 7 '3)1:)

- /2.49/
ot ; ’ ? 1 u( 1 lA l’C
. ‘vr"-" (’\ ' WK (7\' A ,'a,, N, (},l&(), , % J\){':A;'
where the dimensionless functions !((Y.A7,W»3) and
ll(f.&.“n1)obey the beindary condition
) ! 1
VAN U LY EE |
V. (:A' B 1))'-,\' /2.50/
o 1ot -
O A ) /2.51/

This normalizetion condition, similarly to eqs, /2.14/ and
/2.15/ has the disadvantage that the multiplicative factors
and the new coupling depend explicitely on «! and the cal-
culation of temperature dependent quantities is very tedious,
In what follows we will use the normalizetion conditions gi-

ven in eqs. /2,35/ and /2,36/.
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2.4 Renormalization group and Lie equations

Making use of the new notations the basic trans-

formation given by eqs. /2.9/ -~ /2.11/ can be written as

1 W R AZ
T R N S - /2.52/
2 v ~ L 2 L
e U 5w =20 T0R % 5, /2.5%/
and
.AL -/, -
W= 1A0(7F) Zy < /2.54/

Repeating this transformation with normalization at another
, L
value of the momenta ql='* and denoting the coupling
)
constant with 1' and the dimensionless coupling with w where
i V- &

w = q') , the Green's functions and vertices in the

two cases are very simply related, Using the invariance pro-

perties in eqs, /2,.52/ - /2,54/, the following identities are i
obtained

T P N I A FUE S
AT S < 2 T (S 58 e

RS 7»(-§ ) z;l(%\i‘ o) = «))‘az.( A.t‘u‘)z}i( é\;'u‘] /2.57/

These equations show that the transformation forms a group.
A more usual form can be obtained if the factors =, and =z,

are expressed in terms of 4 and (' by a special choice

of the momenta %f==11. We get




UL A\
t A AL _L(L A (ﬂ_ WA
((“' L;ﬁ, i\\,‘,’ u\) Cl(‘;iT' \‘;T'?.L\’“— A(F, kt,“)j_“,‘ C‘L AR U LY )1/2.58/
~ 1 1 ) ~ l | 1
ST G TR DI VR N i 0. s S Il S
"(1[ i‘i' V7 \«\’ P(‘}T' ?137:“\ ‘ ( 13T, ) |U, (X”" ' e ’/2'59/
~ i t L 1 le < /‘\l
N LI QLA A w) A Lo ’if-.“)
! roa ) At A
SRR FU s SRR e/
' S WA 1 dl (i WM Q)
‘1 (4' ?\p F' wu ) Vg ﬁlv

The new coupling W has to be determined from the
self-consistent solution of this equation., It should be stressed
that «' does not depend on «" due to our particular choice of
the normalization conditicn, The dependence on w' of the right
hand side of eq. /2.60/ is spurious, similerly as o does

not depend on tyl if /2,60/ is transcribed into an equivalent

form

z 1 L L At
~ . U A z W A
S 1 O T U & P L
u WU — U L AL 1/ at AL, .61
VRS A S e A
| 1 L]

I G S
w = w TR . /2,62/
’ L
Introducing the function U\g\wl/“l; A /“} by the definition
H L Al
- A w A
U(i &u‘gu(ﬂt) . P(-Att‘)fl )LluL, ,\l—
2 L !
.4 At AT A p(i'%{i/-/\—,_'ul().. -AL'))
L L L
P T i /2.63/
« T 2 L A': /
GLL(’L ‘_“%I' %"v u((%, 2‘-“”
this function is equal to v when q = A
L
oA L S S NN
ae( B Fow)ed G e /2.64/
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It can easily be shown using the invariance of the combi-
At

nation ) "' d" that u. obeys the following scaling re-

lation

L t L
ATE, Lk, = WUp ( %ﬁ_' %.L' u‘),

»r- Pl“

Lg ( /2.65/

where o is given by eq. /2.64/, Due to this relation this
quantity is called invariant coupling,

The transformation properties of the Green’s function,
vertex and the invariant coupling, eqs., /2.58/, /2.59/ and
/2.65/, can be written in the common form

Als s £ow-z@ A0 AL 5 8 ).
. /2.66/

L AL

W A
Introducing the variables x: -;’7., 4*531, V=t end S= 33 )

di fferentiating with respect to x the logarithm of both sides
and finally taking 35=Xx we get

’D&«A(nq.\h\*’: L_;&_QWA(E 3 ¥ uq(K.V.“’)

- ; Y ,
ax N

“r

=1 s2.67/

and similarly differentiation with respect to Y gives

E)IM-A \ |\lu‘ L —_
(‘\.3 / =L g— QI\_A(\i,"L,\\;l Ml(jiv'u]}‘;l:‘-
55 79

This is the Lie equation of the group and this will be used

later on in the calculetions, Everywhere in what follows we
use the convention that when in the course of deriving the
Lie equation S is replaced by x or y (2" ©y h

or x'], the .otation u. will be applied instead of o«
A Callan-Symanzik-type equation cen be obtained from eq.,
/2.66/ if differentiation is performed with respect to A

and then putting 2"=%" , Di Castro [7] used this
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equation to determine the criticel exponent . The cal-

culation of 7 with field theoreticel normalization using

the Lie equations is presented in the Appendix, We will

calculate now the same quantity using the Lie equation

with this normalization scheme, to show how the method works,
We have chosen the normalization condition in

eqs, /2,35/ and /2,36/ with the aim to be able to calculate

the phyasical Green’s function and vertex with the normali-

zation mcmentum ) chosen apprepriately, Therefore we have

to calculate the dependence of < and g not only on x and -

y but on v as well. It is seen from.eq, /2,66/ that a simple

Lie equation cannot be derived if differentiation is per-

formed with respect to v, since = (“')/KL. /\1/7‘1. «)  also

dépends on v, In addition the criticism that was mentioned

in connection .'.'it:.h the field theoretical normalization is k

valid here as well, The scaling equafiona /2.58/ - /2,60/

express 8 triviality and usually are of no help in calcula-

ting the Green’s function and vertex, These relations only

tell us how the transformed function is generated from the

physical fupctio.n' but it contains no special information

about the physical function itself, These relations become

non-trivia}' if the number of variables does not increase

in the course of the transformation and the variable v - A/ X

does not appear in the Lie equations, This can only happen

in particular cases, for particular models where cut-off

scaling holds with particular normalization condition, We

4
will show that this is the case with the ¥ model and the
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particular normalization will lead to a new formulation
of the problem, A comparison with the method of Sec. 11I.
will be possible in this way.

It is important to mention that there are cases
/e. g. the Anderson model in the weak coupling limit [25]/
where the V-dependence is very weak, scaling tiolds appro-
ximately and the results obtained in this way represent
good approximations,

Supposing now that the variable v= A2 ig ab-
sent from the Lie equations, eqs, /2.67/ and /2.68/ can be
used to calculate the 7' and Wt dependence of the Green’s
function and vertex, First the Lie equation for the inva-
riant coupling itself has to be solved and then this func-
tion cen be used to determine the Green’s function and
vertex, When ueing the Lie differential equation, the right
hand side of eq. /2,67/ is usually determined in perturba-
tion theory. The solution of the equotion contains higher
order terms generated from the low order contributions,
Since according to eq, /2.67/ the bare eoupling has to be
replaced by the invarient coupling on the right hand side,
this perturbationsl calculation is useful only if the in-
variant coupling is emall, Thia is the case in = h-e
dimensions as will be shown and that is the reason why
this multiplicative renormalization scheme is very appro-

priate to determine the critical exponents in £ expansion,
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-~ ®

2.5 Calculation of the exponents

.Aa‘a typical example we will show now how ﬁhe ex-
ponent n can be obtained in this scheme., Working at «'-©
the Green’s function and vertex can easily be calculated
in perturbation theory up to second or third order, consi-
dering the diagrems of Fig., 3. and Fig. 4. reopectivély
/due to the subtraction in eq. /2,19/ the Hartree loop’ .

gives no contribution at «'=o/ L%
nwel 1 L/fy_"_ -¢ £ ! S £ lwl
C(cfl=j‘;L{i+ T u- Kal'n [U-t)‘z'\%"'i*ie“ﬂ*“}

where Kgy ‘-.[(‘H' “—A/L [r ((“] ' . We have chosen the
momentum variables on the fc;ﬁr legs of the vertex in a
special manner so t thW vertex depends on one momentum
only, This is a rea!ction only for the fourth diagram of
F‘ig. 4., the others depend anyway on one variable only,

In Fig, 5. this choice is indicated for two different ori-
entations o'f the lines, Since these diagrams with differently
oriented lines yield the same contribution due to the
structure of 'the unperturbed Girecen’s function, in general

we draw the diagram with non-oriented_lines,

]

i
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The analytic contribution of the different diagrams
is given in the Appendix. In the calculation of the relevant
integrals in the f-expansion, only those terms were retained
which will contribute to the invariant coupling and to the
critical exponents to order €hor £°,

Knowing the Green’s function and vertex in pertur-
bation theory the multiplicative factors =, and 2Z, cen be
determined as functions of /\l/)\" and L using the normali-
zation conditions in eqs. /2.35/ and /2.36/ and expressing

Je in terms of q /u, in terms of w / with the help of
eq. /2.11/, The actual calculation is pervormed with two
different choices of W (A /X, «] given in eqs. /2,46/
and /2.47/. After that the trensformed Green’s function and
vertex can be constructed as functions of q;/ll, :\_(_\l/?*l and w,

Using the first normalization condition given by
eqs, /2,35/, /2,36/ and /2,46/ the multiplicative factors

are

B N EE N E SRR AL R IR N €N
KT 1
A e (o) (R
_ L
EESRECL LS i‘[f"(?’\i - 2((%\’-,] +4 ~(§\—1\£+ -] 27y

c:.“:%;.,z (Al V,: ’!; [%_ Rl\.l')"'—, "20«/\_?7:7, " 2(4“(%}t}L l + Ty

RIS PP R VRN 75 P

At /2.72/

fid = 2 (x " -1) /2.73/

..
.
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The transformed Green's function and vertex after elimination

of 7, and Z, are
1

-
A% Al = e 5 Gl H“%c)&.%--%* 1
l

In the second order terms in W the contributions of order
£ have been neglected. It should be noted that the function
F depends explicitely on the variable A /3" and not only
on cy’/)\l . As we have mentioned, an explicit dependence on
the variable A'/\ , i.e, the appearance of an additional
variable in the transformed function makes in general this
renormalization procedure useless, In thie particular case,
howe\'/er, this variable does not appear in the invariant coup-
ling and this normalization condition can be used to calcula-
te the critical behaviour,
Making use of the expressions /2,69/ and /2,70/

for 4 and " , respectively, the self-consistent solution

of eq. /2.61/ for W is
1 -fh !’ 0 WL
4,«\f\A.(‘;;) /'[_4; ﬂ!uh (44-)(#) {(%—i

gyl 12 il L
N N A T T P

/R.76/

i

A
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Using this perturbational expression and repiacing XL by

WL the Lie equation for the invariant coupling can be ob-

tained in s straightforward manner in the form

Auﬂkl'_ lAQ(‘ {\

)

---;T" u, (v “(,4 1+~)

Pt

l Eu? A rli‘.'_.'__): ] .'.‘\:,\(4’ K,( o $

v_‘\__

/2.77/

where x- 4 /X, Tne solution of this equation for &>o

and small x is

*
Ka v W) - bl o A

/2.78/

where
4 G i (.'?..K_'_((l .3
Kauw - i ¢ U* S 1 v (e /2.79/
and
D+ l‘\l 8 7
W= @ - EtIn ety G (Y y
“ (ne gl ( /2.80/

and A is a constant,
The critical behaviour of the system in the scaling

regime is governed by the invariant coupling for small x .
The critical exponents are determined by us which is called
fixed point coupling, The term with exponent > gives the
first correction to the scaling behaviour, In order to de-
termine e.g. n the Lie equation for the Green’s function

d  has to be solved., Using the perturbational expression
from eq. /2.74/ the Lie equation /2,67/ for the present
cas»2 is

a}ﬁ_al(x v, u |
e —

/2.81/
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L
where X~ wl/) . The variable .v- AT/ does not appear,

Th~ solution of this equation is

wfz
. 4 .

_~e

d () ~ I (1+ B

- /2.82/
with
wtl 1| C('S"“_{f‘_‘ 1 u
(TSR [arel (w28l ARG /2.83/
The physical function cl(wq is obtained by taking
N o ) = A,

phye L\ 12 Lywh
A q' ) ~ %) (4o (%)« ) /2.84/
Since the total Green’s function G differs from [ by a
factor (V'L , the small momentum behaviour of G is given by
G C;T;_( (1 ¢ B (VU+. ), 2,85/
with the correct expression for '7.[)7] and also ‘ne correc-
tion to scaling [261 is obtained correctly,
Other critical exponents can be obtained in a similar
way, and all exponents are obtained correctly up to order
€', at least, The fact that the variable A'/)" appears
in E{ gives no complication since this variable disappears
from the Lie equations to this order, In higher orders this
is probably not the cese and other normalization condition
has to be chosen,
A good candidate for such a normalization condition

is the choice given by eqs, /2.35/, /2.36/ and /2,47/. The

nqrmalization factors in thies case are



z /2.86/
S e IR R ] IR R
(“'i_‘i(’;? Gwd oy el %l Qh\f\i,; | 4
SR R [T R A R
! (‘7‘»'{%(-7}'@' W \ o —}z; o) /2.87/

The transformed Green’s function and vertex is obtained as

R RN T (GRS A R R

1t Y h -
L R A I A B R P, TS 2,88
! e T ' V’ (a; )‘ I p“ '}1 - f\ q‘\ }L + ’5 4 ]4‘/ ¢ 7/
T2 . -

e ) e T

11"y

/2.89/
R 2 L 1 L/(:‘

{ —-—:-'"(E’--' ta

The pérturbationnl expansion of the invariant coupling in

this case is

rFe)
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The Lie equation for the invariant coupling tekes now the

form

A x ) x

E)L(Q(‘.‘»\) L(Q(i.u‘ { I3 K‘g
- - —-'—_

3 + Un{i_ \A‘ K((

thLL\Z U: (y,u’ui+d_ j

3L

/2.91/

where x- q /X", Considering the region x< ithe solution

of this equation to order et

is the same as that of eq.
/2.77/, i.e, this equation leads to the same fixed point

and the same exponent <« , although the equations are
different, Using eq. /2.88/ for the reduced Green’s func-
tion A , the same form is dbtained for the Lie equation
as in /2,81/ and again the exponent Yl is obtained
correctly,

The advantage of this normalizetion condition is
that the veriable A /)" drops out of the transformed func-
tions A and E and also from the invariant coupling, If
this variable does not appear, the transformed functions have
similar structure as the p¥sical functions and the scaling
relation expresses a non-trivial relation, This non-trivial
relation is reflected in the Lie equations which allow the
generation of higher order corrections from a low ongr‘.
perturbational expression, On the other hand, it is eagy'_

to check that the renormalization condition with S given -

by /2.47/ is the only one in the considered class, where

o

the transformed functions may maintain the form of thépgy~

sical functions,

- -
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-
Using a somewhat different normalization condition,

as in our first example, the variable A'/)" does not drop
out completely but the calculation of the critiecal exponents
is still possible because it does not appear in the Lie
equations., It should be emphasized that everywhere we have
calculated the singular contributions only and neglected
those terms which vanish when the cut-off goes to infinity,
The appearance and disappearance of the variable AT/A" has
been investigated in this spproximation, Probably there ies
no such physical normalization condition which would lead
to scaling relations where A/} does not appear at all,
Scaling is obeyed asymptotically only where the smooth
dependence on A /)" can be neglected.

In the next section the renormalization procedure
will be reformulated. Its relation to the usual renormali-
zation treatment will be discussed in the last sections of

this asper. 4

111, The new renormalization'6rocedure
r J

. -y .
3.l“Formulatipn,pf the new prgfedure ' e

. \ . T
(4 - »
D e

’ It was shoﬁ‘ in the prCceding;nection that in ‘Lhe

4

' -convegttbngl Gell-Mann-Low renormalizdtion acaling iu achie--“"

v .

ved offly after having introduced 1notead of the physical

Green’s ﬁynction and vertex related functions with a new .;t,

-
.

sceling variable -, . ¢ .

. -

In Wilson's theory the elimination of degrees of

‘freedom and thereby scaling is performed on the physical
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system and there is no need to introduce auxiliary scaling
variables, The physical system is mapped onto an gquivalent
one with the same number of variables eventually the number
of coupling constants increases. In view of this fact it

is tempting to suppose that the introduction of the scaling
reference momentum is not a necessity in multiplicative re-
normalizetion and a scaling of the natural momentum cut-off
can generate multiplicative renormalization of the Green’s
function and vertex,

This supposition is confirmed on the perturbational
expressions for the Green’s function and vertex as will be
seen later on, The main idea of the new renormalization pro-
cedure is the assumption that & successive elimination of
degrees of freedom or scaling of the cut-off can in fact
generate & multiplicative renormalization, If this is true,
the simple mathematics of multiplicative renormalization,
the Lie differential equations can be applied using the
cut-off as scaling varisble and no extra scaling variable
has to be introduced, We will formulate this now in a formal
way,

The Hamiltonian of the system is written in the form
1 . L .
H= (s [ 2t o Llowt]” + 5500 (g o) | 3.1/

where we have introduced an explicit cut-off dependence of the
coupling constant and u, is dimensionleas.

Similarly as in the conventional multiplicative
renormalization a mass renormalization is performed using

eqs, /2,3/ and /2,16/, The new mass w’ is related to the
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coherence length § by the relation ¢ -w ' and will be &

measure of the temperature, Introducing the reduced, dimen-
sionless Green’s function and vertex by the definitions i
A= G/ ¢ and [ - 0 fao i , these quantities depend

on the dimensionless variables q?/Al and «'/A" and on the

dimensionless coupling

(L \(l
As oA S us) /3.2/
o L L
RN IR

/3.3/

We can now formulate mathematically the basic assumption of
this new method, It is assumed that when the large momentum

degrees of freedom are eliminated by scaling the physical " S

, ‘
cut-off A to A , the dimensionless coupling constant i

U, can slmultaneoualy‘be changed to o in such s way
that the dimensionless Green’s function d and vertex r >
in the original and transformed systems differ only by
multiplicative factors =2z, and 2, which depend only on

AN/A  and u, , but are independent of the¢ momentum and

temperature variables, In addition, the new coupling constant

u. must be related to the original coupling through the

same factors 7,8nd Zp

L 1
d(%\—’,%\-{,u“,:zd(%—,uo)A(Aﬂ-,/\ﬂ_,‘ue')

/3.4/

~ 1 KL -1 " .
P(&:{-'—K{‘Un)=zl'(_’ °]P(/\" ‘ ) /3.5/ i

1 1 1L
4 A - A
Uo‘ /\‘E = u, A ZP \-_1 u" Zd ( /\’L"'(OJ,
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These equations are formally similar to eqs. /2.52/ - /2.54/
with an essential difference, namely while &s. /2,52/ - /2,54/
express an exact relation and relate the physical Green’s
function and vertex to a new function with an additional
variable, eqs. /3.4/ - /3.6/ describe a supposed relationship
between the physical functions but with wodified parameters.
Therefore the physical content of these equations is quite
different, Thie will be discussed later on,

Contrary to eqs. /2.52/ - /2.54/, these equations
are probably not exact and are valid for the singular parts
of the functions d and f; , for those contributions
which determine the critical behaviour, but these relations :
will not hold out of the critical region, We will show in the ; )
next subsection that they can be verified in perturbation }"

L

\ theory. It is very important in this respect that %',

which is the analog of the renormalized mass, must be pro-

perly chosen, Without mass renormalization, if the Green’s
function and vertex are functions of q:/Az and /A ‘

it is not possible to find a new coupling uas which is inde-

pendent of cf‘and To o -

It is a great advantage of this method, that the
new coupling u. does not depend on w" but on Nl/ﬂlonly.
This allows us to calculate either the momentum or tempera-
ture dependence of the Green’s function or other quantities
with equal ease, It follows from the group property of this
renormalization procedure that the transformation from N

avd uw. to A and u.) can be done directly or through

\ )
the intermediate state with A and u. ,




;‘\" 1A \ /A !| y
N ( A, e 7 \ A U..’ A \ L e | , /3.7/

w? V? w?

A N ) A \
mol RIS B ( i) T ( AV NG /3.8/

Introducing the function
Ffy b o

”\‘(".“q\ I VN 4 7’.(‘,"3) 4’(, ( "“°),. /3.9/

it is easy to proof from eqes, /3.12/, /3.13/ and /3,6/ that

A (%) A
. (‘A;; '\n,,‘ o, T (—/‘»; ,"«’ P ( Al 'U-"
w? £, RY) /\'] ,
u: (/:\u) ’: ( {;‘.1.”0') ’p‘ ('/'\{7,‘“) _
w? ‘) /3.10/
- Lig g ha
and 0
A
G, - ity ( }‘."")- /3.11/ A
As eq. /3.lo/ shows, the nev coupling ¢ is invariant under L

the scaling of the cut-off an’' 8 simultaneous tranformation
of «. to u. . This quantity is therefore celled invariant
coupling or “invariant charge”,

Similarly as in the conventional method a Lie
differential equation cen be derived for the Green’s function,
the vertex and the invariant coupling itself, For this latter
this Lie equation is the differential form of eq, /3.l0/,
Differentiating with respect to <= /vz/Almnd fixing A

1

afterwards at A -/ we get

d Qu‘ ( <, \YA‘J o ,_{ %A" ( E’ uﬂ('\'u.,))

a0 AT /3.12/
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For the Green's function and vertex two Lie equationscan be
derived, differentiating the logarithm of eqs. /3.4/ and

/3.5/ with respect to either «- /A" or ~31tJ/AL and fixing
XA » V2 1

AT by 4 ch or wl= AT afterwards,
. Corog \ .
‘,)_.Ql\.ﬁ/i_-_.-»hr 4 -9 tn A (E' 4wy (. U-,\)
x » 2% " gy 7313/

' 9 X (W} U, A
A A (‘317' o Y, ’h

!

Y /3.14/

where A is any of d or ' .,

The physical picture is now very simple. Suppose we
can calculate the Green’s function for momenta near the
cut-off and would like to know it for ql<K A By scaling
the cut-off A to A' near to q we are again in the trans-
formed system at a situation where the momentum is near the
cut-off and the Creen’s function can be calculated, provided

«. is known, Using the solution in the transformed system
the Lie equation generates the soluticn for the original
physical system, Once the Lie equation for the invariant
coupling has been solved, the Lie equation for d and r
can be integrated to determine the momentum or temperature
dependence of d and 5’.

It is not only the Green’s function and vertex
which obey multiplicative renormalizetion, There might be

other quantities A(‘f/Alg “Vﬂl.“=) for which

L \ A

A ( ‘A_‘l,, ’ k_ ' u,g) = z}_\( i

0
p At 2,

3 L
LM u)
T, a1, Y

uJ A (a
! /3.15/
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i. e , under the same tranformation from A and u, to A
and «.! , the functions are transformed by a multiplicative
factor z,- independent of rf or «' , Example for such a

quantity will be shown later on when calculating the speci-

fic heat, For these quantities as well a Lie equation can be

derived, in the same form as eqs, /3.13/ and /3.14/.

3.2 Multiplicative factors and the fixed point

We will calculate the multiplicetive factora and the
invariant coupling in perturbation theory to show that eqs,

L ]
/3.4/ - /3.6/ can be obeyed and the 2z factors are indepggdent

of ‘f and u', Since thc'%ulculation of d and ﬁ as a function 2
of two variables rf/Al and ' /A i%'increosingly difficult for ~
higher order contributions, the special cases %'~ and WZrC'

|

will be studied separately, The multiplicative factors and the
renormalized coupling KJ are determined in pérturbation theory,
to second and third order, respectively,

First we study the case when the temperature is fixed
at the critical temperature, i,e, x'- O, The Green’s function
depends on one variables only, The vertex depends generally
on three momenta, Similarly to our earlier calfulation the
momenta on the four legs will be chosen in a special way so
that only one momentum variable is kept, This choice is shown

in Fig., 5, The analytic expressions for d and " have been

given in eqs, /2,69/, /2.70/ for vho, Using these analytic

forms, the multiplicative factors and the new coupling can be

determined in a self-consistent way from eqs., /3.4/ - /3.6/.




ST i "_‘;“'7 Mi‘."(.(‘ N -7 b .. /3.16/
e s e 18]
\ (ﬁ.zlj )",,Jrv; 0 "Xf LSy A/:f . /3.17/
and " M.[’%) t l - ,,:2.‘ WVa [h(%) s,,]
) v % R N N B LY

On the other hand when all the momente are fixed at q = 0 and
the only variable is '/A", the integration can again be

performed /see the Appendix/ and we get

. /3.19/

-Fh l— %U“T\l{ z/:‘.,"’ A ] ’
R M CA RN ] G PP b s

S T A

atl n'

Although eqs, /2.70/ and /3.20/ are not symmetric in q} and
v" , the self-consistent solution of eqs. /3.4/ - /3.6/ with -
these analytic forms for d and F produces the same expressions
¢l ., 7. and . as egs. /3.16/ - /3.18/. This shows that
at least in these two special cases when cﬁ=43 or u5&>, the
z factors and the new cohpling are the same, This finding
is generalized in eqs. /3.4/ -~ /3.6/ as the basic equations
of’the new method,

The perturbational expansion of the invariant coupling
as given in eq, /3.18/ is a good approximation for a small
change of the cut-off, i,e, for Nl/Az“’i. In studying the-

criticol phenomena we have to determine the Green’s function

. L
and other quantities for <(/At‘@ A or W /A«d and

. . z .2 .
therefore we need the invariant coupling for A /A <4, e,
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when almost all degrees of freedom are eliminnted, Using
eq. /3.18/ as the perturbational expansion of v , the

Lie equation for the invariant coupling /3.12/ takes the

form
'(:»Uﬂ ( “, ) . “‘!-'{ u\ l s \ u_)r‘xﬂ i (,\'“‘) V,Q
- e <, 2 1)
S N P N A 21
T 3 ot A x ) /3. /
where -~ ' /A, The solution of this equation for o<
is
Y K
V,{ ."ﬂ‘ "., ",,’ L/,l e ! A K } ° ' /3¢22/
where
¢ D e WL .
ol e Lo T Lot /3.23/
and
'}“..;‘17 7 r(‘l')
R e 73.24/
The fixed point coupling . 1is of the order of € and

this confirms a posteriori that the perturbational calculation
is adequate to calculate the right hand side of the Lie
equations, It is elso interesting to notice that this fixed
point value coincides with the fixed point value given by

eq. /2,79/ for that case of the conventional renormalization
scheme where the Green’s function and vertex are normalized
to their velues at the cut-off by assuming the normalization
condition given by eqs, /2.35/-/2,36/. Since u. is small
/we are not going to extend this method for three dimensional
systems/ the right hand side of the Lie equation for the
Green’s function can similerly be calculated in powers of

the invariant coupling and the critical exponents can be oh-

tained in the &£ expansion,
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IV, Calculation of the critical exponents v , V and

<

Y and the anomalous dimensions Ay, 44 and dqf
i

4,1 Renormalization of the Green’s function d

Knowing the behaviour of the invariant coupling as a
function of A /A , we can start now to evaluate the beha-
viour of the Green’s function and vertex as a function of the
momentum q or the inverse coherence length «w .,

First we study the behaviour of the Green’s function.
We will restrict ourselves to the one-variable case and in-
vestigate the momentum dependence (‘KL:(7) and temperature
dependence (q:ﬂb) scparately, In doing so the right hand
sides of the Lie equations /3,13/ and /3.14/ simplify consi-
derably, namely apart from the factors {/x or 4/? , respecti-
vely, the x or vy dependence appears only through the

invariant coupling.

¢ i ,Jl (x‘ uJ
>"‘ T ‘, \“f:' | (o el v u 1\), _ /4.1/

o) x

Ofw Al uld
< .ﬁh_’_)A _i o - "A {, N ( ty, (3' u.,‘) ) /4.2/
949

where the generators 'V, , and ‘t, are given as

\{‘ (‘\Aﬂ_k {‘u,,” :S")" pt\ (‘( ki, L, l(Q(V,I.( )')\‘_1 , /4 3/

-

~r L(\'(R(’(.u‘]) - 9—_ QV\ (J{ (O‘ VL' I).g(\a. u.‘)"l=1 s /4.4/

Since the critical exponcnts ) and vy ar% defined through
the leading terms in the x and y dependence of d for

~ 1 and PR { they can be obtoined by replacing the
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invariant coupling on the right hand side of the Lie
equation by its value at Y- or \3=C‘, i.e. by the

fixed point coupling. Simple integration of these equations

gives
VAR I AR :
Al - (Y d owee 4.5/
\!L(“:} L\!,V(\("
.“a) ! - (;) N 4 A /4.¢/

Since u. is of the order of ¢ , the perturbati-
onal expansion of the generators in powers of the iavariant
coupling will automatically yield an expansion of the critical
exponents in powers of & . The function { is symmetric in
the variables WL and ! , at least to second order in ‘:.
as acen from eqs. /2.69/ end /3.19/ ani we ge%: from eqs,
/4.3/ and /4.4 |

we? ¢l ! wt 2 7
T B e B T U LT

144 l‘(.\uﬂr i ’ /4’7/

From the definition of the exponent 7

(.y ( &4 u U) (]'/7 -1 /4.8/
and therefore
1) < S o ‘{/L
(l(rv ) S (v(r_yl)/" G '((y1) - (Cvl) /4.()/

Comparison with eq. /4.5/ and /#.7/ gives

LW ) 1Y, (wd) 7. /4.10/

In order to determine the exponent 2 to order ¢}
the perturbational expansion of d to order 42 has to be
token, This js given for K'=0 in eq. /2,697, The Lie equa-

tion has the same from as cq, /2.81/ and the generator 'Y, is

T’




- 45 =

2 2 S{n+2){( ne 8
Wy lug) s SE we Kl (s o) - Tl B ayn, /4.1

Inserting the fixed point coupling the exponent 2 is ob-
tained correctly, as in eq., /2.83/

4,2 Temperature dependence of the coherence length

and the susceptibility

Analogously to eqs. /4.8/ and /4.9/, the Wt dependence

of the Green’s function is

() ~ (11)1/1

/4.12/
and
A 1\ 1
G(q=0, W)~ 17(1‘) Ve I /4.13/
where eqs, /4.6/ and /4.1o/ have been used. The susceptibility b |
X is related to the Green’s function by )
Y (T-Te) ~ Glq=0, T-Te], /4.14/
and the expnent 0 is defined by
SEEEA PV L fa1ss

The inverse coherence length W has been introduced as o

measure of the temperature difference T-Tc and
-1 — 3V
=Y~ (T /4.16/

and this is the definition of the exponent V , Comparing
theese equatione the scaling law

‘ Y= (Z“’L) v /4.17/
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follows immedistely at least up to second order in &£ .
We still have to determine the & -expansion of
V or Y ., The inverse coherence length W hae been intro-

duced by relations /2,16/ or /2,18/ with
Sl =4 - w” ~ /4.18/

where 1, 1is linear in the temperature, At the critical
. ’
temperature Jat .= ¥.c / % =°O and the Green s function

is divergent at cy"-—O. Therefore .. can be defined by

Z\(Olo) * Voo = Q. /4.19/

Combining eqs, /2.18/ and /4.19/ we get

7 } F R 7—' —

w - Z (—K w |+ 0,0 = ¥~ ~ T-Tc .

' ] L( J < « /4.20/
7" means that the

o —

We have to keep in mind that the prime on

appropriate subtraction procedure has to be nerformed step

by step in the perturbational calculation of the self-energy.
Using eq., /4.16/ we write eq, /4.20/ in the form

4
Wb T (= )+ 200 ~ ()

/4.21/

or ‘ |~ ' (0,0) Loy
1 R A CONE 5
F(ut)= A - — (") . 022/

This new function F(«')is multiplicatively renormalizable in
the sense of eq. /3.20/ and the Lie equation has the form
Dn F (g )

1
4 5 ¥ (g, /4.23/

o




with -a=kl//\l and
P " .
\t3(uk(\1‘ue\) = é—'i b F ('l, U\qk‘j\ J)l‘l" /A.24/

The asymptotic behaviour for g « { ie again governed by the
fixed point coupling and

)t
~ (x if /N L /a.28/

The self-energy has been calculated to second order in u. for

"Vlz Wt with the result /see Appcndllx/
7' (-, ] - To,0 = R Kt e ;

t !
°l V& "L'L (‘-‘—Ik\li + % OA‘:—‘I*‘-‘ )4‘"' /4.26/

—_— Al
Making use of this expression R
W, (g ] = - 2wl + T ug gl k4
/4.27/
and
wt 2 (b# 1) (13&4-'1'1, 3
Yo lwt) = - Tt - L (wetf? ¢ o(e) /4.28/

Since vV 1is related to ‘ki(u:) via eqs, /4.22/ and /4,25/

I wtl ha2) (Wt + 23n + G0) el e}
Vag+ s ™ g (et e o)

- /4.29/
Using the scaling law in eq.:/4.17/ the € -expansion of X

is obtained

arl ‘ (wed) (At 422n +S) e3
Y= i+ FIeTs A b w+d) e+l ) /4.30/

The integration of the Lie equation can be performed not

only in those cases where the invariant coupling in the
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generators Y. is approximated by the fixed point coupling.
Using the form given in eq. /3.22/ which contains also the

first correction when A /A" « 4, simple integration gives

dlq )~ 4T (e B g~y ]

/4.31/
ML R E»l - {L” (1+ C{:L\u...)

/4.32/
Y (']~ T (P

/4.33/
/X(H ~ 4 (4+E{>uub~..) /4.34/

where t:=r.-¥, . ~ T—-Tc , These expressions show thaf
.. the exponent  characterizes the first corrections to

the scaling behaviour,

4,3 Anomalous dimensions

Until now the behaviour of the Green’s function
has been considered. In a similar fashion the momentunm

dependence of the vertex can also be studied, The Lie

~

equation for " at «'=O has the form

’c)fl»\ ﬁ(l,u-l
D« = ﬁ'¥fh(U“{x'“4L /4.35/
with
YL‘ kUg\(X'UQ\] = % Q“ C (E' Ol UR(X‘\AJ)(}:i /4’36/
The asymptotic behaviour of 0 for x& i {s
~ :\ A d k\»(:)
M (x) ~ x ~(qf) ) /4.37/
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Using the analytic form of the perturbational expansion of

the vertex given in eq. /2.70/ we easily get

, Ly26u + 108
Y (e bl = {L:L_?uq\l(d(h g) o nEr it )
. /4.38/
‘ {4+ T N
and
& w+1 1 (03
Yol § - B © e o) 74.39/

This exponent is very closely related to the anomalous di-
mension d, , which can be defined /see Ref, (16]/through

the relation

~ 4= b d |
From these relations we get d —bdy = 2Y,(u!)  and A
y L L 3 ~
Ldy=l-g+ Fm et ° (] /4.41/

The scaling law 2 d, = d - l+"l is indeed satisfied,
Other, higher order vertices can also be studied
and the anomalous dimension of higher order fields are
easily calculated-in this method, One of the authors [27]
has applied multiplicative renormalization and the Lie
equation to determine the anomalous dimension d,: of the
field ge"(xl to order & , He has studied the function
F‘:L‘ (1.1) = <~el(‘| Uil(v;l? .Here we present another calculation

to determine the anowalous dimension d,: to order e* from

the behaviour of the one-particle irreducible part of



/4.42/

one pabticle irreducible

M e U x ) = U gt el
The Fourier transform of this Green’s function is

P(uu ( U)"S g s pun tpary) 1) 4 4 ]
d‘si‘sl G Prfr, Ve = Ve <t?‘ X (P(!\(“’ \PFL(ll'l> d x A X, 0( X,

/4.43/

- d bk
= Skl (Pku keq, K« Ler,‘s. \eh‘gl

This function is considered as an amputed Green’s function,

i.e, the external lines which aEe shown 6n the diagrannafic
representation in Fig, 6. are not teken into account i? the

analytic expression, The diagrams are thus the aﬁne’uﬁ to

second order in the coupling as for the four:point vertex, e
only the geometrical factors are different,

From the strugture of this fun tion r

(4 1} . L - "_V

(ar ey 4 pe w)  ya.44/

(t2)

e (ot = Sy, 8y e

and for the opecialfchoice of p,=0 the analytic expression

ie
4

ER (g 0 g0 ue) 2 LR S K @)[(_“q«4}
*(M*i) u ( [%(L %“4) Ak ]L /4.45/
w5

It follows from the definition of the anomalous dimension

Ao [17], that for q'/A" « 4 .

!

e de ]

-1A +dgt
PQ Y “h O, 4, ) ~ ) oo /4.46/
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This small momentum behaviour of ['“" can be obtained by

using the Lie equation, since this function is multiplicatively

renormalzable for which
[ 3
Dt P (4wl

= = Ly, (uelonw), /4.47/

with :
W Qulnd = 3% & USSR /4.48/
and f:he notation P«'ﬂ(f.".) = P("U(v.o,x, w.) has been used

with x= 4'/A', The asymptotic behaviour of r'(""(x,u.)for X<« {

is easily obtained as

. (u} s (wf)
PO ad v X ~{gt) T

/4.49/
Using the perturbational expression in eq. /4.45/ the generator

Y. reads . L2
wel b 1 wa
Yo (ua) = 5*—7‘%.“.( (“%‘_)‘l(‘?{%l we Ka = =7 Cla v }
{4_'.‘_‘_1..'14';\(4“‘»:)‘;...34 /4.50/
Inserting the fixed point value of eq. /3.23/ we have
4 wsZ G(’Ml)

\f‘(‘“)— llmﬂp [ - (n+ w8t CI * o(g‘} /4.51/
The anomalous dimension d\f can be calculated from the
relation ,

dyt = Ldy + 2 ¥ (w) /4.52/

which is a consequence of eqs. /4,46/ and /4.49/.

Mhother exponent which is of interest and is
related to an anomalous dimension is the cross-over exponent
9 . Yemezaki and Suzuki [28} have shown that *» can be
expressad in ternlof the anomalous dimension d., of the field
ol yly)  as

devlanay) | .83/
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ly, 18 in turn obtained from the momentum dependence of
the Fourier transform of the one-particle irreducible part
of the Green’s function

TS
(1PP'K~(“1"”' ] = Cq gy ) gl Py (X1 “fh.Sﬂ/

The special case x=+ , n=1 will be considered, in
which case

w (1)

(qp )= (4% o «

appp VT Zaft & Tex Na-kp Moy, Pa-p v > **P/a.85/
The essential difference with respect to pe) is that
here &+, Similarly as there, the amputed Green’s function
is studied., The diagrammatic representation is the same as

r,u,z.)

for wich different geometrical factors, The spin ~

structure of the function is

wizl

n (2]
“(y Y (q" P u") B ( Suﬁ‘ CSML t (Sw"- ‘SM'« ) r (OY' P u°); /4.56/

and again for p=0 we get

P o = 4w fuke (B () 1w ]
+ LG ( ) L_%i« I‘UL 4) A+ lt

. e /4.57/
V\+Ll1 MQVIL%) [ Rm AT Zlv\i +1+.. J

This function is multiplicatively renormalizable and the

Lie equation has the form

é)QW r (x,uJ

w {1z

= Ly (e (ol | /4.58/

Ax
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where

\f‘(ua,) = 5—% Q-« (

M (1

(§| g (X, uo))h:‘ /4.59/

W) n(l‘
and the notation [\ (x u.) =0 (x, 0, u)  has been used

with X = 4 /AL

] (lj

]he perturbational expression of 0 (x, “cJ in eq.,

/4.57/ leads to the following expression for the generator Y

i PR S e T ¢
W, (ual = {LGUKVA(“%_) - 17 e K = 3z uc *i
- 4.60
{ 4— ’45 Ue Ky +- 5 / /
or )
- z
P | wi-bLun -36 s
=z - g &
\f“’(un } wi g £ [4 2(“\+”L ]+ o(€ , /4.61/
The small momentum behaviour of r‘“‘”(x, U.) is given as ~
n {1} Y (u:, k4 (“4:]
[ ’ (x| ~ x o 'V(GVL’ ¢ .
/4.62/

On the other hand the anomalous dimension o(w is defined
[23] by the relation
wif ~2dy + d
M7 (g0, w) ~ g7 7777 4 q/N <L s4,63/
Comparison of thease last two equations gives

oy = LY (ul) Ldy /4.64/

Using our earlier result for d, /eq,/4.41//, the anomalous

dimension d,, is

_ (arb)(w-12) ot

d,, = L-— A & 4 o(f.s), /4.68/

¥y w+ § 2(w+8)




and the cross-over exponent is

" nw s 2l 68) 2 ,
cb - uld Ao = L+ ot ——h—lf(—:\—:ﬁ‘— £+ c(e) /4.66/

<~in agreement with other calculations [}9] .

V, Determination of the specific heat exponent

The Gell-Mann-Low multiplicative renormalization is
a very guitable tool to investigate the behaviour of the
Green’s functibn and vertices, because the renormalization
transfo- ition is performed on these quantities, Its
applicability to determine thermodynamical quantities, like
the specific heat, is less straightforward, If the specific
heat is expressed in terms of Green’s functions we can even-
tually hope to get multiplicative renormalization for it and -
then the machinery of the Lie equations could be us~d to
calculate the exponent X,

Larkin and Khmel nitskii [29] have shown that the
leading singularity in the specific heast C. can be ob-
tained by studying the temperature dependence of the den-
sity-density correlation function, The thermodynamical rela-

tion defining C, is

—~[73s —[F '
e =%, - - '(DTL)V ' /5.1/
Writing the free energy F in the usual form
— - H /T
F=eTfa Tr(c ) /5.2/

it is seen that the temperature dependence comes from two
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sources; an explicit dependence on | and the temperature
dependence of the parameters of the Hamiltonian /3.1/, The
leading singularity comes from t..is latter dependence. Since
Yo in eq. /3.1/ is linear in T, the wingular part of the

heat capacity can be written as

L L LF L
0F 2F J2F . (4 d'y <@gy >

Co~om ¥ 3 ()" . /5.3/

where only the most singular terms have been kept.

The free energy can be represented by connected, closed
diagrams, Differentiation of the free energy with respect to
the inverse of the Green’s function means to introduce vertex
points with one incoming and one outgoing lines without
momentum transfer and therefore C, can be obtained from the
contribution of the diagrams in Fig, 7. There is no mass re-
normalization yet and that is the reason why in the second
diagram there is a Hartree-loop on the bubble, We can per-
form the mass renormalization now, introducing w! instead
of %.. This leads to the canqellation of the contribution
of the second diagram /it is incorporated into wth /X Finally
up to second order in 4, the diagrame shown in Fig, 8, have
to be taken into account,

The sum of these polarization diagram contributione is

denoted by g1N (vf, AL,U«) . Since multiplicative renormali-

X To make the mass renormalization in the free energy diagrams
before differentiation would be in~orrect, because the free

energy diagrams have a prefactor depending on the order of

the diagram,




- 56 -

zability in the sense of eq. /3.20/ does not follow from ge-
neral arguments, it has to be checked whether T« Aa U
satisfies such scaling equation or not. The analytic contri-
bution of the diagrams in Fig, 8, have been calculated with
the result

T, A ) =l G (Ul e

—h Ty-f W
A I TR

e W) e Y

“’““”‘—L‘H W, 4 \* . At

\ w {nr2) ol (Kl}'”‘ [f‘)t (_ EKL% . ,

4.‘\ < J\ \A(
w s t) 3 SE e o, 1wt )
+ 'L:'g—‘ U.,LV\‘,L (KL) L'XT’ (‘E("‘KTLL" .
, vy
where fix) = 5 (x L—().

The term linear in the logarithm have not been calculated for
the last two terms since they are irrelevant if the specific
heat exponent o is determined to order EI‘.

Making use of the perturbational expansion of u as a
function of A/A" given in eq. /3.9/.8 simple calculation
shows that eq. /3.20/ cannot be satisfied with a multiplicative
factor z independent of w*, Sipilar situation has already
been encountered in studying other physical problems like
x~-ray absorption [23] and one dimensional Fermi models[?4].
These systems are multiplicatively renormalizable by scaling
the cut-off similarly as the model studied here, the response
functions, however are not multiplicatively renormalizsable,

\te have learned on these examples that an auxiliary quantity

can be introduced for these response functions which is already
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multiplicatively renormalizable and for which the Lie equa-
tion can be used, In these examples the zeroth order contri-
bution was a simple logarithmic function and the auxiliary
quantity was obteained by differentiating the response function
with respect to this logarithm,

A straightforward generalization of this procedure

suggests to introduce

P uL o T((L(L, AZ' u,)
It k AL UO) - 3“(0, (_‘*ln A /5.5/
where . ,
']T'"‘(KL’/\L‘): nV,{(u_l); ' (*((%)‘4*— )
N L ( “TI P ) /5.6/

The perturbational expansion of this auxiliary quantity is
= Z w
T o) = 4 ek (%)™ (el .

|
e 2)" gt Wy e ¢ )L
*_‘.1_; uat(.u((j) (((“1)4»44.

pnkae G (e L
REEL A G—t){ (Zﬁf%)f“ J+ ..

It is easily checked that this quantity up to thie order
obeys the relation

T~
-

T )= 2 U5 ) T ), s5.8/

Supposing that this equation is valid in higher orders as well,
the Lie equation reads

3w T Loy, ua)
= é; Yy Loy, ol

EN
8

/5.9/




where

: J
\&,_' ( W ( Y, qu)) g "' Q\,\_ Tr ( \ Ugn ( \a\ u -.‘) )
3 (.VZ. ~L \L: 4 /5. lo/

The solution of this equation for small y is obtained by

inserting eq. /3.22/ for

W, (ud) ( wh )

Tly) ~ oy f Ry

/5.11/
The exponent \f;(u:)itaelf is obtained by using eq. /5.7/ to

calculate Y5 (ug) from eq. /5.lo/

L
Wt +1 L wel 2oL
\Y?A(uq)fk LL\KKA(‘“%_\*'(%UéVA* ——,uKl(,(L.]

[N

6 /5.12/
-1
.[4—Lv\—_~27\ U(l{,‘ 4 . ]
and

+ L A3+ LY
Yolud) = e Mee SR J« o) /5.13/

Knowing the behaviour of %E(vf), the leading singularity in
re)
N (ul) is obtained by teking into account that n

L&
contains a factor (u J and therefore

\y}(uo.‘l- 6/1 ‘%

TGE A ) ~ ) UW(—H S PR Y

T is proportional to the specific heat but before getting
the exponent o we have to reexpress «in term of t ~T-Te

by using eq. /4.32/. Finally we get

Coliid ~47% (s F' ey ) /5.15/

/5.16/
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This is in sgreement with eerlier calculations for <’ and

obeys the scaling law

2*0("(.*1-". /5.17/

The exponent o is usually calculated by meking use of this
relation, A direct calculetion based on skeleton graph ex-
pansion has been carried out by Abrahams and Tsuneto [30] .
This result shows that this renormalization scheme works
properly,

It is interesting to see that a similar calculation
can be performed for the momentum dependence of the polarization

operator, Considering the contribution of the same diagrems

as in Fig, 8. as 8 function of an external momentum q at

= o e straightforward calculation gives

O R N AR (IT P "
b 3T (g e )
N CS R R TN T |
pRE LT CU RN /5.18/

In the same way as above it is easily seen that this quantity

is not multiplicetively renormalizable under a cut-off scaling,

but the derivate of T with respect to el is already
8 good quantity for which the Lie equation_ con be used
— ot . OW(ql A u el “’L( e
7r(\%1|uJ ) 37" (LAG = A+ = qu \A‘ { ’ 14
kR
+(“H) N (m) ( ﬁ‘l “ )
+ v:_‘-l"- 1‘(,{_( (Zp ‘A 4— )
i | /5.19/
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The Lie equation for Tr(ql)haa the form

Dt T (x
_‘-%-_—_—- = i)\ \tﬂ (\L(R(xluo))
D x /8.20/
where
o o~
\i,i (u(l (y‘u,)) B _5’5 Q.\ ’]\‘ (Klu"’. ()(, MO))E:Q /5.21/
Using the perturbational expansion of N (x}
- {w ZL i
e e I
-1
. wrl Tt wtl 1y, ".‘i_l .
R L X P L [ TR Iy
and
4 W 4 ?\ . 41“\*[‘("‘ ‘S
N RIS P _-——Uwg’ﬁc] v oled)
/5.23/

This expression is the same as Y, (u.) in eq. /5.12/
showing that in the asymptotic region qz/Al<Ki.and wWint« |
the polarization operator is symmetric in q} and %" al-
though the perturbational expansion valid for ql/"l’v A
or /A~ does not show this symmetry,

Solving the Lie equation for T (<)

el ('\+ G xwh

T (<) ~ x o). /5.24/

- 1 B!
TV(‘(WL;A’contains a factor (ql) . Teking this into

account'we get finally

T(Wl,/\z,u.) ~ W) (\+ C"’yu *")

/5.25/
with
w- L Q"*l)(“"‘* L‘(‘, , L Qg
>\:. -;\—4“8‘ s+ (M+g)g T + 0( J .

/5.26/
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This exponent has been calculated earlier by Ma [31}
with the same results using the Feynman graph expansion and
by one of the asuthors [27] using a method similar to the one
presented here., The anomalous glmension dwz is related to X
by the following relation ) = ~(A-Z_JTL) . The result
of our previous calculation of Cl,h given by eq. /4.52/

agrees with this recent calculation,

vi, Corrections to mean-field behaviour in four

dimensional svstems

In the preceding sections the critical behaviour of
systems with dimensionality <l:L- & (¢>c)was studied. .
The problem of phase transiticen in a four dimensional model ~
is not of theoretical interest only since Larkin and
Khmelnitskii [29] have pointed out that phase transition A
in uniaxial systems with dipolar interaction /uniaxial
ferroelectrics/ is formally equivalent to a four diren-
sional problem, These systems are available for experiment
l§2] and therefore the theoretical study of four dimensional
systems seems worthwhile,
The critical exponents are mean-field-like for £=0
and the real question is how corrections to this mean-field
behaviour look like, The specific heat exponent o being zero,
this correction will determine the actual behaviour of the
specific heat near 1., The specific heat itself was investi-

gated by Larkin and Khmelnitskii [29]. Wegner and Riedel (33]

obtained logarithmic corrections to the susceptibility
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.
and magnetization using Wilson’s renormalization group

approach, .

First we show that these results can be obtained from
our renormalization group approach as well and then further
corrections will be considered,

The Lie equation for the invariant coupling /3.21/
has now the form

L( 7 kgj % '(\ R ’ 3 f -
-mh_k,:m = ‘.L] \i\i “AK(“\) V‘H - (—3'\;22 L'l,i (S) M“I 4 . &

As soLm . /6.1/

In the first step of an iterative solution the first term is
kept only and we get

i [N 1
(g ls) = = 2= — 4 /6.2/

£w S

wh ere s stands for x or vy,

Inserting this expression into the Lie equations for
the Green’s function or polarization operator, only the
lowest order term of the generators should be considered,

Using eqs. /4.1/, /4.2/, /4.23/ and /5,9/ with the res-

ponding expressions for the respective generator

SYRP N ‘2 L o) ‘
(__ ’a)( - ,4; %T.‘ U; (J()'KL‘ 4+ , 4 .' /6.3/
L
Q%M Lol gk /6.4/

9
y (’,»L F(‘I) ntZ |
L@La S il IEEA AR /6.5/
3w T el
‘C—f—*—J@k‘ b Lon gl /6.6/

These equations are solved in a straightforward way if the

variable
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’L:{"A\!’ or !_~’~"\

ies introduced

m*8)" L x

Al ~ exp L= ooip ot b

wal A N
w8t Lax

- /6.7/
wt ___L_ . v {
‘{(“‘b‘ ~oerp i_— (\4&8)7“ f.-\xa t 3 B :&—\ .

g
(v\tl‘/(.\;g’
F(\Q) ~ \Q“j‘

-, /6.8/

/

/6.9/
. _2(net) /(e l)
i1y (1\) ~ \ij( .

/6.1lo/

The momentum and w dependence of the Green’s function and

the temperature dependence of «“ is obtained from /6,7/ -
/6.9/ as

wr 1
G(Oyl\ < _4—1_ K«_

T o Tt
Y W) e o l /6.11/
v - _4‘ _ 5_&_-__1_ 4 B b
G L)~ o (1 WA ok ) /6.12/ |
T (h‘-L’/(kl—” {
W % ~ t /6.13/ .

where t~ T-Tc and the relationship between the function
and T-Tc¢

F(*-a)
, given by eqes, /4.20/ and /4,22/ hes been used,
By inverting this relation

r~

wn+

DLV T

|

/6.14/
and

nrl

- ot wtl
Y )~ GUI~ T et T U O g | Jeasy
For obtaining the specific heat ’E(j) has to be integrated

R
Cly) ~ Ty~ (41 Ty
Ly ) g 9 TH:‘) . /6.16/
4 4~L% wa§ y v::: - .
ba l ~ — b3 NEEN A
Cly) ~ iy (B o ‘

W g k=t
Al /6.17/
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The temperature dependence of the specific heat is obtained

by expressing «’ in terns of t . The leading term is
hon
T ek = d o ntl
Cv&) ~ "5‘18/
E,v\ lg"\tt \‘(, ‘\':Ll

All these results agree with earlier works of Larkin
end Khmelpitskii [29] and Wegner and Riedel [33] , and in
sone sense they are the counterparts of the expressions in

£ expansion if only the linear terms are retained,
It is possible to get further corrections if in solving the
Lie equation /6.1/ for the invariant coupling the second
term is also considered, which then yields the counterparts
of the €' terms.

In the next step of the iterative solution the in-

variant coupling can be written in the form

W, wgls) = — 2= 1 4 aulslk, /6.19/

e RN S OEF wds | /6.20/

This equation has the solution
Laus 1Y QMIEMSl
A UQ(S) l»(u.‘ - 71 (v\* 8)3 TEAS}L /6.21/

and therefore the invariant coupling is

A Tur s A tw .';‘
Ka ugls) =~ oE ot +7 w(‘“’?)l mf’..f‘ - !

/6.22/
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The next correction is of order !/4."s , Apart from a small
intermediate region around s ="'  both for sS~1 and for

s<< | the term Un{bsl /’ZKLS is larger than the term

with {/0%s and will be neglected in this approximation,

Due to this particular festure of the invariant coupling that
it does mot go simply in powers of 4/L.s , the next correc-
tions to the Green’s function, coherence length and specific
heat are obtained by keeping the seme Lie equations as /6.3/ -
/6.6/, neglecting the higher powers of U , but inserting
eq. /6.22/ for the invariant coupling., These equations can

again be solved easily keeping the leading corrections only

Alx) = A — wel 1 N G(vwl)(lkd“l b\”,\,(( .

(::ﬁl L x (u+?}l‘ At x /6.23/
‘ ~
wil (nr (3 S) g | tnyl
Al -t e T e Tt
.
/6.24/
X3
'_‘m Q\H_)(l\ti‘-l‘ L.\\U\ |
Fly) = oy ™[4+ 6 Sy bu;i b
. | /6.,25/
= B N e} (3net) g | by
™ L3§ ~\Qn~3| L4 AL ——7::il-¢,. ]
/6.26/

The Green’s function is obtained from eqs. /6.23/ and /6,24/

as
t
1 wl e2) (Busts) B[t X )
Glqt)+ & (U= (5 g ¢ T Tax v rer/
) wl (o) (3 14 g [0 2 /6.28/
G(uﬂ‘i‘t“"mtz:-%%- ——mr— -'Zl:ful;l+)
At
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The temperature dependence of the coherence length is ob-

teined implicitly from eq. /6.25/.

ntl T
T r) (3wt e
\Q" ( (1+G w8 "Z‘_T‘L'\—'*“ )N-{'_
. /6.29/
Solving iteratively for & we get
we L
T ome + w e A4) & ‘6\""
z + ! . Q}_l_)i'S___‘_‘: N
Wt et ] (1~ 6 (we)? Tk ) /6.30/
and therefore the susceptibility is
] wil [ .
-~ T . '»\+L)('s‘\*"‘, Q.L b\*“
AW~ ot [T (e S YT ;M w631y

The polarization operator as @ function of ' is obtained

by using eq., /6.16/

wtl

wel
Tl ~ e Vgl 46358 g [l o
o 11'34 L (eg" 1S 1 /6.32/
. ()t [0 2|
WLy el 0 eIty (B X .
T(‘/ﬁ ~ P*— “A—G - ——‘T—‘(h+8) —T‘—(I———,L,_.J/G‘aa/

At
Making use of eq. /6.30/ and keeping in mind that both /At

end t are less than unity and therefore

%5 | =l bl + 2L (bt
el (= BET ) /6.34/

the temperature dependence of the specific heat ia

v t-w Wl _C
IR P S il bl

CV&) ~ (v\a g)? Lot

/6.35/

In the special case of physicael interest, w=1 this expression

has & simpler form
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iy ¢ G lectld .
Coh) o~ et 1= T mt T } /6.36/

This agrees with Brezin’s result [34]. As it was shown by

Brezin and Zinn-Justin [?5] , the equivalence of d=4 brobleu
with d=3 dipolar problem holds for the leading logarithmic
corrections but not for the subleading divergences and

therefore this correction term is not experimentally obser-

vable,

VII, Comparison of the conventional and new method

In the conventional formulation of the Gell-Mann-Low
transformation the multiplicative renormalization of the
Green’s function and vertex is equivalent to the introduction
of transformed functions with renormalized coupling and
vith an additional variable X, This transformation can
be performed on almost any system and in most of the ca-
ses it is not easier to study the transformed system than
the original physical system, For a restricted class of
problems, however, scaling is an inherent property of the
system, In such cases the scaling transformation, which
is characteristic to the physical system, can be expressed
in the form of a multiplicative renormalization group
transformation of a special kind, where the number of va-
riables of the transformed functions is the same as that
of the physical functions., In a renormalizable theory the
new variable )\ and the renormalized coupling can be
introduced by an appropriaste normalization condition in

such a way that the transformed functions remain finite
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when the cut-off goes to infinity, i.e. the cut-off

drops out from the transformed functions, We have seen
examples for this in Sec. II., both with field theoretical
and physical normalization. In this case the renormalization
reflects a non-trivial scaling relation and can be effecti-~
vely used to determine the critical behaviour b* solving

the Lie equation,

The specific heat is a good example to show that
the simple multiplicative transformation cannot be applied
is all of the cases to study scaling and the critical be-
haviour, Looking at the diagrams in Fig, 8. and performing
the transformations /2.5/ - /2.8/ for these and higher or-
der polarization diagrams, a relation analogous to eqs,
/2.9/ and /2.lo/ can be obtained for T (!, A, ua)

T(\Ll, /\l, Yo, 5»\1, Fo, C’m))

I < (o} -1
2l TR g, SN, Tz, 6T /7.1

This shows that the polarization operator is & multipli-

catively renormalizable quantity. Fixing =z, Zj and
Sw® by an appropriate normaelization condition as in

Sec, 11, scaling relations analogous to eqs. /2.26/ - /2.27/

or /2.58/ - /2,59/ can be derived, Unlike the Green’s func-

tion and vertex, the variable AI/AL does not drop out

from the Lie equations and therefore it cannot be used to

obtain a summed up expression from the perturbstional ex-

pansion, thus the scaling property of the specific heat is

not apparent if a multiplicative renormalization transfor-

mation is performed on it,

P
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In the conventional Gell-Mann-Low scheme the para-
meter X in general has no physical meaning. The trans-
formation meps the physical system onto another system,
but the formal way of introducing X usually does not
allow a simple physical interpretation of the renorma-
lization transformation,

In the new renormalization procedure, what we have
proposed for other systems and for studying critical
phenomena, the physical system is mapped onto an equi-
valent one by changing the physical cut-off A ., The
underlying physical picture is the same as in Kadanoff’s
cell construction or in Wilson’s theory of eliminating
degrees of freedom, The scaling relations as written in
eqs. /3.4/ - /3.6/ are non-trivial relations in contrast
to the trivial transformation relations of eqs, /2,26/ -
/2.27/ or /2,58/ - /2,59/. As we emphasized these rela-
tions become non-trivial if the variable N drops out
and then the scaling variable A plays the same role in
the conventional method as the cut-~off in the new method,
Thus one may expect that a formal relationship can be
found,

Comparing eqs. /2.88/, /2.89/ for the transformed
functions and eqs. /2.63/, /2.70/ for the physical Green’s
function and vertex, it is seen that these functions with

« end X and with u. and A have exactly the same
analytic form., This statement holds also if the wt
dependence is considered, Taking <2z, and Z, as given

'
in eqs, /2.86/ and /2,87/ and inserting then into the
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transformed Green’s function and vertex at rfEO, these

functions have the form:

L
a+ L H 1 u
CL: "'F :L‘t‘ [V ‘(ol Q\F 4 ..

) o /7.2/
R AT AR (VRIS

L

V\("GKQ lo 1, L ul € L w € (S
T LA_V,{(FJ [E((F) »1)+1+.,] /7.3/

gv\tll Ll(l Q"‘_L)QC i AR QKZM.L J
T CO I A AU I

These functions have the same analytic form as the physical
functions in eqs. /3.10/ end /2.11/ if u. and A
is replaced by « and 2\ .,

These similarities show that the conventional for-
mulation of the Gell-Mann-Low renormalization using the
normalization conditions in eqs. /2.43/, /2.44/ and /2.47/
and the new renormalization procedure are equivalent if
only the singular parts of the Green’s function and vertex
are considered, This means automatically that the multi-
plicative factors =z, and Z, in eqs., /2.86/ and /2.87/
are the seme as Z. end Z4 in Sec, III, if ) and &

is replaced by A and u. ,

s
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VIII, Discussion and Conclusions

In this paper we have developed in detail a new
method to study the critical phenomena for the Ginzburg-
Landau-Wilson model. The physical picture which is the
starting point of this method is very close to that of
Wilson’s renormalization %heory [3], but it is formulated
in a completely different mathematical framework, In fact
the mathematical form:lation is analogous to that of the
Gell-Mann-Low multiplicative renormalization, actually,
the new method is a simplified version of the Gell-Mann-
Low method by assuming a priori the existence of scaling,

The essential new feature of Wilson’s theory was to
show that the number of degrees of freedom can be decreased
by integrating out the large momenta and to make sure that
the transformed system has the same thermodynamical be-
haviour as the original one, the parometérs characterizing
the system /coupling constants/ have to be changed simul-
taneously, Wilson emphasized the importance of the fixed
point Hamiltonian which is obtained in the limit when
all the degrees of freedom are eliminated, The parameters
of the fixed point Hamiltonian determine the ciritical ex-
ponents, It was also realized [36} that the way the trans-
formed Hamiltonian approaches the fixed point Hamiltonian
determines the corrections to the scaling behaviour,

Adopting the same physical picture we have shown
that this transformation leads at the same time to s
multiplicative renormalization of the Green’s function

and vertex, In our opinion this is the central point in

~—
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this new approach. In the same way as in Wilson’s theory
degrees of freedom are eliminated by recuding the momentum
cut-off A to N . Changing simultaneously and in an
appropriate way the coupling constant u to uL, it may
occur that not only the thermodynamical behaviour is the
same before and after this transformetion, but the Green’s
function and vertex differ only by multiplicative factors
independent of the momentum and temperature variables,

We have shown this to be the case in perturbation
theory {or special choices of the momentum and temperature
variables., Relying on this result we have supposed that
the scaling of the momentum cut-off A generates a multi-
plicative renormalization, We could use then the simple
mathematical structure of the Lie equations to get infor-
mation on the critical behaviour,

The independence of the multiplicative factors of
the choice of momentum variables is especially important,
The scaling transformation is equivalent to trensforming
out the high momentum region in the internel lines of the
Green’s function and vertex. As the internal momentum
variables are integrated over, the renormalization proce-
dure can be worked out consistently only if the renorma-
lization constants are independent of these variables.

In contrast to the usual Gell-Mann-Low renormaliza-
tion no extra variable is introduced to scale the momentum
because it is assumed, that the scaling does not change

the form of the vertex and Green’s functions, Furthermore,
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the scaling is parametrized by a single physical para-
meter, the momentum cut-off, Due to this fact it is very
easy to interpret physically what the Lie equation means.
Suppose we can calculate the Green’s function or vertex
for momenta near the cut-off in a perturbational way and
for small coupling strength this is a good approximation,
We want now to determine this quantity for smaller momenta
where this perturbational expansion is not enough, We will
transform our original system to a case where the new
cut-off is at the momentum where the function is to be
determined. In this transformed system the momentum is

now at the new cut-off and therefore a perturbational cal-
culation yields good approximation, provided the trans-
formed coupling is small, Using the perturbational result
for the transformed system the solution of the Lie equa-
tion provides us with a good non~perturbative result for
the original problem,

The transformed coupling is small only if the dimen-
sionality of the system is neoar to four, otherwise it
might become of the order of unity and therefore it will
not be allowes 'r e the perturbational result any more,

The use . » momentum cut-off /\ as a scaling
variable indicates ¢ .rly that e study a statistical
physical problem and not a fiefg‘theoretical one, It
should be stressed that the whole renormalization proce-
dure is only a useful tool to get the low momentum be-
haviour starting from the WL”“/V'region by scaling

down A to small values,



q.

We have made an attempt to clerify the relationship

of the simplified new method to the original Gell-Mann-
{.ow technique, We have shown that in the Gell-Mann-Low
technique it is not assumed that the physical functions
obey a scaling relation, It is based on a completely gene-
ral symmetry property and the symmetry transformation re-
sults in such new vertex and Green’s functione that their
functional forms &re in general, different from the phy-
sical ones, In the general case, the transformation can be
parametrized by at least one new parameter X , which does
not necessarily have any physical meanjng, This new para-
meter means a new veriable for the different functions,
The transformation parametrized by ) usually leads to
transformed functions with increased number of variables,
By choosing different normalization conditions, different
multiplicative factors and different transformed fuggctions
are obtained, It may happen that for some statistical phy-
sical system the transformed function is equivalent to the
physical function if appropriate normalization condition
is taken, In this case scaling is an inherent property of the
system and all of its consequences can be explored, It has been
shown that by applying slightly different parametrization of
the transformation /i,e. slightly different normalization
condition/, the transformed function may depend on the variable

AL/A} but this dependence is unessential in the sense
that this variable does not appear in the Lie equations
and the critical behaviour is reproduced correctly, It

should also be mentioned here that the multiplicative renormalizatior
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could be successfully applied to systems which do not

obey exact scaling and show only an approximate scaling
behaviour /see Ref.[ZS] /. In this case the extra variable
has to be introduced and the renormalization procedure
cannot be described by cut-off scaling,

Concerning the conventional Gell-Mann-Low technique,
the most important result of this paper is tbat he have
found the adequate normalization condition, Imposing this
condition /see eqs. /:.43/, /2.44/ and /2,47/{ the trans-
formed functions both in WL and W dependence have the
same analytic form in perturbation theory as the physical
Green’s function and vertex if those smoothly varying
parts,which are irrelevant for the critical behaviour,
are neglected., Thus the number‘of variables is not in-
creased and the scaling parameter is in fact the cut-off,
In this way the equivalence of the conventional Gell-Mann-
Low renormalization and the new renormalization procedure
proposed in Sec, 1II, is demonstrated, This consideration
is not restricted to the problem of phase transition, thus
that can be extended to any of those problems where cut-off
scaling holds e.g, one-dimensional metallic system, Kondo
problem, etc,

In our new renormalization procedure everything is
reduced to calculate the renormalized, invariant coupling
Mo and there is no need to introduce higher order
couplings /three-, four-particle scattering/, In Wilson’s
formulation of the renormalization group transformation
the introduction of higher order couplings is very essen-

tial and the renormalization procedure cannot be described

4

P
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consistently by keeping the two-particle scattering only,
In first and second order in £ these higher order couplings
are not relevant and our procedure is in agreement with
that of Wilson. The relation of the conventional Gell-bann-
Low renormalization, our new procedure and Wilson’s theory
in higher orders is not clear and needs further studies,

If the higher order couplings become relevant in higher
order in £ , this may be reflected in the Gell-Mann-Low
theory in the fact that the variable N[ does not drop
out and it describes how far the system is scaled from

the physical situation,

By extending the method discussed in the present
paper more complicated systems than the simple isotropic
qh model can also be studied and it can be shown that
in these cases as well cut-off scaling generates a multi-
plicative renormalization, This problem will be studied
in a separate publication,

Finally we believe that this method can be applied
to study the dynamics of critical behaviour after a
rather straightforward extension of the formulation to
include the energy variables, A calculation of this type
has been carried out by Zawadowski and Grest [37] and
they obtained similar results as Abrahams and Tsuneto
[3iﬂ and De Dominicis et al (39| using very different

methods,
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Appendix A,

In this topendix we give a comprenensive list of all
the integrals which are relevant for the analytic contribution
of the diagrams discussed in this paper. The integration over

the momenta goes everywhere on a hypersphere of radius A ,
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Appendix B

The critical exponents have been calculated in the
paper by using the new renormalization procedure of
Sec, 11I, The exponent 1 has elso been calculated by
the conventional method but using a physical ncrmalization
condition, Hlere we will calculate the same quantity with
the field theoretical normalization to illustrate how this
method works.

As we have emphasized earlier, normalizing the Green'’s
function and vertex to unity, as in eqs. /2.14/ ~ /2.1&4
has the consequence that the physical Green’s function
and vertex cannot be reproduced by a special choice of A,
Nevertheless if we are only interested in the critical
exponents and do not want to determine the prefactors,
this normalization condition is permitted.

Starting from the perturbational expansion calculated
for finite cut-off A , the normaiization conditions

/2.14/ - 72,15/ lead to the following form for =z, and Z,

N At
we ¥ o A z
2‘1 - ’{ * meme—— LA \(Ul 1 'i‘\(‘/\l) - ) - ( L + %
1
NI 7 2 A /[;'1/
- “W;i’(;:“ [ Vd [,v\ 7\; +
- )
» 7 : 5 A S
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The transformed Green’s function and vertex are obtained

after eliminating =z, and 2.,

e R R S

+(:‘_’_Z'%\;ﬂ-u3l(i|:ﬂkL%t _3&\%{2 4_...]4\_“ /8.3/
(a0 - et [B =) ] e a(E
+(uw8) IIVLQM‘L% N gp\’;ll zvl&\lt+ Y

and the invariant coupling is
L Ly-fh 1y-E
Ug, (j{tu = ULE'E) {4+ “(LY w Wy [(% 4 1«{\(4‘(2&) )+}

L L
L 1 1 g 4w 1,t
FETIRPTRENENT S SO

/8.5/

\1

Writing now the Lie equatior for the invariant coupling

O ug (v u) _ g (X, ul {_

wil
=~ - +"‘:'i"ua("‘*)\(dl(‘*%_)

polfn

1 1 B.G
I E L 2 U /8-6/
T

with x'=wz/)z . The solution of this equation can be
written in the same form as eq. /2.78/, but with a diffe-~
rent value for the fixed polnt,

¢ [ / Fu s WL
ool - S Lo one Bk oo

/8.7/
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The fixed point coupling being a ron-measursblae
quantity, this difference has no consequence for physical
quantities, like the critical exponents., Calculating n

in this scheme, the Lie equation for d is

Dl A le ) wel 1 1 q
e e b AR 2
3 .
B ,S(v\»l‘(:*g’ u;(Y\M) Kol + § /B'a/
12

This equation is different from eq. /2.81/ in the co-
efficient of the s~>cond term, Inserting the fixed point
value fiom eq, /B.7/ we get exactly the same result as

in eq., /2.28/ with the correct 'z and w .,
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Figqure captions

Fig. 1. Typical low order diagrams for the Green’s

function,

Fig. 2. Typical low order diagrams for the vertex,

Fig., 3. Second and third order self-energy diagrams,

Fig. 4. First, second and third order vertex corrections,
Fig. 5. Third order vertex corrections with different

orientations of the lines,

Fig, 6. First, second and third order coryections to
)
the vertex ﬁ:hb
e

Fig, 7. Diagrommatic rcpresentation of the density-

-density correlation function,

Fig. 8. Zeroth, first and second order diagrams for the

polarization TU ,
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Fig. 3.
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