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ABSTRACT 
A new simplif ied «normalization group procedure which was developed 

to treat logarithmic problems in s o l i d s t a t e physics i s applied to the^cr i t ica l 
phenomena in 4-e dimensions. I t combines the physics of the Kadanoff scaling 
idea as developed by Wilson to calculate c r i t i c a l indices in the e-expansion 
and the simple mathematical structure of the Lie equations of the Gell-Mann-Low 
mult ip l icat ive renormalization. In order to show the connection of the new 
method to the conventional Gell-Mann-Low renormalization a large c lass of the 
normalization conditions are considered including typica l examples. The new 
procedure i s found to be equivalent with the Gell-Mann-Low method with a 
spec ia l ly chosen normalization condit ion. The new procedure has i t s advantage 
in i t s considerably simpler appl icabi l i ty and, furthermore, i t i s c loser to 
the underlying physics . Ihe c r i t i c a l indices v, n, у and о the anomalous di­
mensions dip, аф2, and ащ аь w e l l , as correction to scal ing have been determined 
at l eas t up to second order in e and the expressions obtained agree with the 
resul t of other ca lcu la t ions . In four dimensions logarithmic corrections are 
obtained t o the spec i f i c heat. 

АННОТАЦИЯ 
Применяется упрощенный метод группы ренормировок к исследованию крити­

ческих явлений в 4-е размерности. Предложенный метод может быть применен к и з у ­
чению логарифмических проблем в теории твердых т е л . Наш метод удачно объединяет 
физическую картину гипотезы подобия Каданофа в форме развитой Вильсоном для оп­
ределения критических индексов на основе е - разложения и простую математическую 
структуру уравнений Ли метода мультипликативной ренормировки Гелл-Мана-Лоу. Для 
изучения взаимосвязи ооычного метода Гелл-Мана-Лоу и предложенного нового метода 
исследуется обширный класс условий нормировки. Новый метод равносильный методу 
Гелл-Мана-Лоу в том случае , если в последнем специально подьерем услолие норми­
ровки. Преимуществом нового метода является т о , что значительно легче можно при­
менять и, кроме этого, наш метод ближе к реальной физической картине. Критические 
индексы v , п, у и а, а также аномальные размерности б ф , а ф 2 и á^ и поправки к мас­
штабному поведению определены по е не менее чем во втором порядке и наши резуль­
таты совпадают с раньше полученными результатами. В случае 4-х мерных систем 
получены логарифмические поправки к теплоемкости. 

KIVONAT 
Е9У u j , egyszerűs í t e t t renormalási csoport e l járás t alkalmazunk a kr i ­

tikus jelenségekre 4-e dimenzióban. Az e l j á r á s t s z i l á r d t e s t f i z i k a i logaritmikus 
problémák tárgyalására lehet használni. A módszer e g y e s í t i Kadanoff skálahipo­
tézisének f i z iká já t , ugy, ahogy azt Wilson továbbfej lesztet te a kri t ikus in­
dexek meghatározására az e s o r f e j t é s s e l és a Gell-Mann-Low mult ipl ikat iv renor-
málás Lie egyenleteinek egyszerű matematikai struktúráját. Az uj módszer és a 
szokásos Geíl-Mann-Low renormálás kapcsolatának vizsgálatára a normalási f e l ­
té te lek egy s zé l e s osztályát tanulmányozzuk. Az uj e l járás ekvivalens a Gel l -
-Mann-Low módszerrel, ha o t t a normálási f e l t é t e l t spec iá l i san választjuk. 
Az uj módszer előnye a lényegesen egyszerűbb alkalmazhatóság, és ezen felUl 
a f i z ika i képhez i s közelebb á l l . Az n, v, у és a kri t ikus indexeket és а d<p, 
d<p2 еэ идо anomális dimenziókat é s a skálavlselkedéshez adódó korrekciót e-ban 
legalább másodrendig meghatároztuk és az eredmények egyeznek mások számolásaival. 
Négy dimenziós rendszereknél a fajhőhöz logaritmikus korrekciókat kaptunk. 

* 
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I. Introduction 

The theory of critical fluctuations in systems 
around the phase transition point was the subject of m»ny 
investigations in the last several years. A review of the 
many early attempts to account for these fluctuations 2nd 
to describe the underlying physics can be fcund in Stanley's 
book [l]. It became clear that due to the divergence of the 
coherence length the short distance behaviour is irrelevant 
for the critical behaviour of the system and only the long 
range fluctuations play an important role. As a consequence 
of thii> statement Kadanoff [2] suggested that the critical 
behaviour of a magnetic system can be studied by grouping 
the individual spins on the lattice sites into blocks. 
These blocks can then be considered as new entitles and the 
system of blocks behaves similarly as the individual spine 
do. In this way the original system is set led into a new, 
similar system with the same free energy. Using this scaling 
property Kadanoff could derive relatione between the critical 
exponents which describe the singular behaviour of thermo­
dynamic quantities. In this approach it was, however, net 
possible to determine the critical exponents themselves, 

A quite new development started in this problem with 
Wilson's [3} renormelization group treatment of critical 
phenomena. Formulating Kadanoff's scaling idea in reciprocal 
space and relying on that the physically interesting pro­
perties near the critical point are determined by the long 
wavelength (email wave vector) fluctuations Wilson noticed 



- 2 

that the large wave vectors can be eliminated successively 
by a simultaneous renormalization of the interaction para­
meters. This renormalization transformation is performed 
with the requirement that the free energy be invariant under 
it. If the renormalization procedure leada to a fixed point 
Hamiltonian and a fixed point coupling constant, the criti­
cal exponents are determined by the eigenvalues of the re­
normalization tranaformation found the fixed point or by 
the fixed point coupling constant. 

This method allows to calculate numerical valuea 
for the critical exponenta either in power aeries of £ = ̂ -Я 
where d is the dimensionality of the system cr in powera of 
4/W where "• is the number of components, Thia length aca­
ling renormalization procedure has already been reviewed by 
several authors. We refer here only to the paper by Wilson 
and Kogut [4] where all the essential ideaa can be found. 

A very similar procedure was introduced independently 
by Anderson, Yuval and Hammann (в J and by Anderaon [б] in the 
treatment of the tfando problem. Scaling of the system into 
an equivalent one was achieved through a variation of the 
short time cutoff or the energy cutoff (band width) . The 
coupling constanta of the transformed system were determi­
ned from the requirement that the free energy or the scattering 
matrix be invariant. This transformation produced acaling laws 
from which soue features of the Kondo problem could be obtained. 

Wilson's renormalization group treatment and in 
general this scaling argument is very different from the 
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usual multiplicative renoncalization group. The latter was 
discovered by StOckelberg and Peterman [7] , and applied 
successfully by Gell-Mann and Low [ß] in quantum electro­
dynamics. Later it was extended to other renormalizable 

field theories. The conventional Gell-Mann-Low renormaliza-

tion is well described in the book by Bogoliubov and Shirkov 

[9] for field theories. It was shown by Oi Castro and Jona-

-Lasinio [lo]-[l2] that this method can be used to study 

critical phenomena, and similarly to Wilson's theory, the 

critical exponents can be calculated in the £-expansion. 

The multiplicative renormalization can be formulated as 

resulting from the scaling of a reference momentum, but the 

simple physical picture of Kadanoff's scaling is absent. 

The scaling reference momentum has no simple physical meaning. 

Using the Gell-Mann-Low multiplicative renormalization afeo 

the Kondo problem was studied by Fowler and Zawadowski [l3] 

and, as well, by Abrikosov and Migdal [14] , with'the same 

result as the above mentioned papers. This indicates that 

the Wilson type so-called "modern version of renormalization" 

and the conventional multiplicative renormalization are in 

some sense equivalent. 

Recently Oona-Lasinio [l5j has proposed a general 

definition of renormalization transformations. In this 

definition "a renormalization group is a set of transforma­

tions acting on the arguments of a thermodynamical functional 

and leaving this functional invariant in value". This gene­

ral definition includes both Gell-Mann-Low and Wilson type 
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renormal izet ion, showing that the expression renoreali-
zation group is not unique and has many different rea­
lizations. Furthermore as it is shown in the present 
work, even in the bell-Mann-Low method there is an arbi­
trariness connected with the normalization condition. 
Even if we stick to multiplicative renormalization there 
are two distinct approaches using different differential 
equations for the Green's function and vertices. One 
version relies on the Lie equation of the group, the 
other uses the Callan-Symanzik equation [1б]. Although 
the formulation is different, in both cases first the 
invariant coupling and its fixed point value have to be 
determined and then the critical exponents expressed in 
terms of the fixed point coupling can be calculated. 
Making use of the Callan-Symanzik equation Brézin et al 
[l7j, LI8! have calculated the critical exponents to 
order С and £ , respectively. 

There are many other methods to calculate cri­
tical exponents, not relying en renormalization group 
arguments, Feynman graph expansion [19] , skeleton 
i,raph expansion [ző\, [_2lJ and parquet diagram summation 
[22] heve been successfully applied to calculate various 
critical exponents such as oC , (b , 7" , ° , V , ^ 
etc. 

In this paper we present a new method which is 
a combination of Kadanoff s scaling idea or Wilson's 
method of eliminating degress of freedom on the one hand 
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and multiplicative renormalization of Green's functions 
and vertices on the other hand. In solid state or sta­
tistical physical problems we usually have to deal with 
systems whore there is a natural acale of the •omentum, 
namely the cut-off raomentum. This can serve as a natural 
scaling parameter whose change will eliminate the degrees 
of freedom in momentum space. But in contrast to Wilson's 
approach a multiplicative renormalization group will be 
generated by the cut-off scaling. 

This fomulation of multiplicative renormalization 
via cut-off scaling was proposed by one of the authors 
and was applied to the x-ray absorption problem and Kondo 
problem [23] and to a one-dimensional Fermi gas model [24] . 
It was shown that in logarithmic problems this method 
provides us with a convenient procedure to do better than 
leading logarithmic approximation. In the theory of cri­
tical phenomena in 4 dimensions the situation is similar, 
and this method is expected to work correctly. -Near 4 di­
mensions the problem is not simply logarithmic in the sense 
that the higher power of logarithm is not always associated 
with higher power in the coupling - the basic element is 
V c l * 6 - ^ instead of ^ x - and it is questionable 
whether this simple renormalization procedure can be ex­
tended to calculate the critical exponents in £-expansion 
or not. The aim of the present paper is to show that the 
critical exponents can be calculated correctly applying 
this procedure. Since, as was mentioned, this procedure 
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is based on the physical picture of Kadanoff's scaling 
idea, but uses the mathematical formálisa of the Gell-
-Mann-Low renormalization, this new approach may give a 
better insights into the physics underlying the critical 
phenomena. It is shown that the new method is a parti­
cular case of the Gell-Mann-Low renormalization with an 
adequately chosen normalization condition. 

The paper is orgcnized as follows. Since the 
conventional Gell-Mann-Low multiplicative renormalization 
is not as popular as Wilson's renormalization group approach, 
a short recapitulation of the main steps seems to us ne­
cessary. In Sec. II. the method is presented with emphasis 
on the difference between field theoretical and statistical 
physical applications and on the requirement that the re-
normalization transformation be a non-trivial transforma­
tion. Our new renormalization procedure is developed in 
Sec. III. The basic idea is that a chapge in the physical 
cut-off can be compensated by an effective coupling in such 
a way that the Green'э function and vertex in the original 
and transformed system differ only by a multiplicative fac­
tor. It is shown here that this is true in perturbation 
theory to that order until the calculations can be done 
reasonably. Accepting that this procedure is generally 
true, the critical indices ^ , ̂  and Y / the anomalous 
dimensions cl^ , Л J. , and d^f and the exponent со 
describing the correction to scaling are determined in 
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Sec. IV, to order С г or с . The specific heat ex­
ponent oc is not so straightforward to calculate end 
this will be pr sented in Sec. V. In four dimensions 
the exponents have mean field values. The effect of 
fluctuations appears in the form of logarithmic corrections. 
Thie will be studied in Sec, V. where a new type of correc­
tion is obtained for the specific heat. In the last sec­
tions this new method is compared to other ones and the 
differences are discussed. 

II. Conventional Geli-Mann-Low renormalization 

2.1 Renormalization transformation 

Multiplicative renormalization was invented in 
quantum electrodynamics to cope with the problem of di­
vergent contributions from some self-energy or vertex 
diagrams. The method is excellently described in the book 
of Bogoliubov and Shirkov [ß] and we refer the reader to 

this book for the background in field theory, Thia paper 

is, however, self-contained and in £his section a brief 

review of the Gell-Mann-Low method is given. The approach 

using the Callan-Symanziк equation will not be reviewed 
since our method to be developed in the next section has 
more resemblance to the conventional treatment. We will 
put emphasis on those points which will allow us to make 
a direct comparison with our method. 

The critical phenomena in d*L\-c dimensions can 
be studied es a field theoretical problem where the 
Lagrangian or Hamiltonian is of the form of the Ginzburg-
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Landau-Wilson functional 

/ 2 . 1 / 

with 

íf4x) = 2 4>vL ̂  a n d LVifW] = 2. \V ViW . /2.2/ 
n being the number of components, "^ is proportional 
to the temperature and <̂ 0 has the dimensionality x , 
In this paper only the static critical phenomena will be 
studied and therefore no time-dependence is considered. 

Renormalization of the theory means that instead 
of working with this Hamiltonian, subtraction terms are 
introduced, which - except for the mass renormalization -
can be considered as multiplicative renormalization of 
the different terms of the Hamiltonian. According to this 
first a 'mass renormalization" is performed by an identical 
transformation, introducing a quantity V. inetead of -г, 
in the free Hamiltonian 

и - $Л [ £ .,4.1 * 1И wp* fc U4l * ¥ ^ 1 
/ 2 . 3 / 

with o V * - г . - ч 1 - . 

In the perturbational calculation the first two 
terms will serve as the unperturbed part of the Hamiltonian 
while the third and fourth terms of eq. /2.3/ are consi­
dered as perturbations. The unperturbed Green's function 
in momentum representation .is 

•9 
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G 1 0 ) U v ) - - ^~7^ - / 2 . 4 / 

к is s t i l l undetermined end i t s value w i l l be f ixed 

l b t e r on. 

I n a second step the m u l t i p l i c a t i v e renormalization 

w i l l be done in a stra ightforward manner by inspecting the 

diagrams, without the intoduction of the subtraction te rns . 

The t o t a l Green's function and Ье vertex can be calculated 

in perturbat ion theory« The diagrammatic representation of 

the successive contr ibut ions is given in F ig . 1 . and 2 . for 

the Green 7e function and vertex, respect ive ly . The crosses 
с i г. 

in these diagrams represent the o*v f insert ions into the 

Green's functions. 

The Green's funct ion G and the reduced vertex 

are functions of the momenta a . , the renormalized mass 

- K L , the coupling constant Q 0 and the strength of the 

ip inser t ion ovv^ , Using a sharp cu t -o f f in momentum 

space, G and Г depend on the cu t -o f f Л . When the 

diagrammatic contributions are wr i t ten in a formal way, 

these quant i t ies depend on t h e i r unperturbed value G'°and Г 

and, there fore , we can wr i te the Green's function and 

vertex as G = G ( cf , «. , Л , ^ 0 o^ ( Г„ , &'*'/ 

and Г --- Г (<-^,*-\ л , c^,^^, П,, G > 0 ' j , Looking at the 

corresponding diagrams i<i F ig . 1 , and 2 , and considering 

the simple procedure how higher and higher order diagrams 

are constructed, i t is easy to check in any order that 

under the transformation 

t 
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По - » Г. z.< , / 2 . 5 / 

/ 2 . 6 / 

Ó K —9 о»к~ Z z. 
4 ' / 2 . 7 / 

/ 2 . 8 / 

a l l the diagrams contributing to the t o t a l Green'* function 

carry the same multiplicative factor z j 4 and similarly a l l 

the vertex diagrams have an overall multiplicative factor 2.л. 

Compensating these factors we get the following invariance 

property: 

G U \ x ' , л \ ? . , ^ , P - . ^ l f 
- - ^ G W ^ A 1 , , , ^ , ^ . * " * ) , / 2 ' 9 ' 

-z/ fl^.^A1, 1 ( oVz,, ?U, , С**,"), /2ЛО/ 

4 Ä 4 - Z< 
- < _ *-z 

/ 2 . 1 1 / 
This transformed Green's function and vertex could have been 

obtained from the following Hamiltonian 

И - 5Л4« { z^VU* íNUÍ ] + 1 z, [*>1]1 f *, % l <f'W j /2.12/ 
Fron now on we will work with this Hamiitonian and the 
physical system will be recovered by taking z, = Zj = l only 
in a final step. This is the same Hamiltonian a« that used 
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by Brezin et al. [17] to investigate Wilson's theory of 
critical phenomena by the Callah-Symanzik equation. 

Until now гА and -zs are arbitrary multiplicative 
factors which generate a two parameter continuous group, 
the renormalization group. They transform the original phy­
sical system into an equivalent one where the Green's func­
tion and vertex have the same momentum and temperature de­
pendence. This is * very essential feature of the renorma­
lization group and that will enable us to get information 
on the momentum and temperature dependence of these quanti­
ties. 

As a next step in renormalization theory, using 
either the Callan-Symanzik equation or Lie equations, the 
values of the multiplicative factors z, and т.3 and the 
"renormalized mass" * have to be fixed by imposing norma­
lization conditions on the Green's function and vertex. 
At this point the distinction between field theoretical 
and statistical mechanical treatment of the problem has 
to be made clear. For the field theoretical approach the 
transformed Hamiltonian /2.12/ is the basic Hamiltonian 
and the normalization is done in such a way that there 
are no divergences in the Green's functions and vertices 
of this transformed system when the cut-off Л goes to 
infinity. It is not required that тл and ~Zj could be 
set equal to unity in a final step, they might even be 
equal to zero or infinity. 
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In the statistical physical formulation the basic 
Hamiltonian is that of eq. /2.1/. It should be kept in mind 
that there is a minimal distance here, /the lattice constant/ 
or put in another way the integration over momenta has a 
large cut-off Л and therefore there is no inherent ultra­
violet divergence in the problem. The auxiliary Hamiltonian 
/2.12/ and the introduction of the multiplicative factors 
z, and z 3 ore only useful tools to study the behaviour 

of the system but in the final step we have to return to 
the original system by taking z^-^-L, 

The field theoretical approach is only briefly pre­
sented here to see the relation to the statistical mechanical 
treatment. In the approach using СаИьп-Symanzik equation« 
the theory is conveniently renormalized at zero momentum 
[l7J or at the symmetry point [l8J and the standard field 
theoretical arguments can be used to derive the invariant 
coupling end the exponents. 

2,2 Multiplicative renormalization with field 
theoretical normalization 

In the conventional Gell-Mann-Low theory the multi­
plicative factors are -fixed by requiring the normalization 
of the Green's function and vertex at a momentum e^t-Ъ 

and ^ will serve as a scaling parameter. Following 
Oi Castro [7] the normalization is required for 

13/ 
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and for Г( ' } - \ к 1 , «j, o - z S ( Г 0 г, ; £~з£) in $he form 

'U'Y".*\ V c ^ Z i - r « z i , G " , ' z i , ) l . t = i /2 .14 / 
and 

% ' л 

and the new "masа" к. is fixed from the condition that the 
Green в function be singular at <y »-к- , i.e. 

v.2" can be calculated from this equation step by step in any 
order of the perturbation theory. Denoting by 23 (<уг, «•) the 
self-energy corrections coming from the third term of the 
Hamiltonian given by eq. /2,3/ and by ZT («v\ *М the 
self-energy corrections which contain also the £*кг<̂  insertion 
on the usual self-energy diagram, the Green's function is 

' a. + «r + 2. (л ,*- ) + ^*w ^ + «.^Z'C-vS^J + S ^ • /2.17/ 

The requirement /2,16/ can be written in the form 

^ V ' ' /2Л8/ 
and therefore 

GU\-lb -*•*'" ^^r'UV 1'-S'^^ " / 2 Л 9 / 

The difference of 21' and 22 comes Just from the if inser­
tions and therefore in a step by step calculation it is easy 
to see that in 22 on every internal line the same sub­
traction procedure has been performed. 
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Solving the system of equations /2.14/ - /2.16/ for 

7-4 ( ?- K and <WL = f„ - viL , these quantities can be ex­
pressed in terms of > , к end a 

?-, = *i ( * , * - l b /2.2o/ 

Using these functional forms "Z1( Zj end f, can be eli­
minated from the transformed cL and Г* and the variable 
A appears instead of them. Introducing the dimensionlese 

coupling 
u = 1 * Ь # /2.23/ 

the dimensionless functions <k and Г can be written as 
functions of the dimensionless variable <у~/Л and "к /*l 

and u, , 
Л í Í , XL , ^ ) e /2.24/ 

= д (V.-S Г <^4UV,l), fUl*.*1.?), G'-*;'№*'.?)|, 
* 1 *'• *г'^' /2.25/ 

These functions are normalized to unity at «y - ̂  and <̂ ; »^ 
respectively /aee eqa, /2.14/ and /2.15//. 

Changing the normalization momentum X , a scaling 
relation can be obtained for these functions. The mathematical 
procedure of scaling ia clearly described in Ref. [7] and 
here we will only write down the relations 
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Mi, Í,~) -«u£,-l-Ml£. £,-'). 

where 
V L , - 4 ~ , ^ / , bl i L

 K

L , ) 

/ 2 . 2 6 / 

/ 2 . 2 7 / 

u ' - u . ^ / l 4 T l

l T l . u ' * , > l - V . ' / 2 . 2 8 / 

The Lie equations or the Callan-Symanzik type equa­

t ions that have been used by Oi Castro [V] are the d i f f e r e n ­

t i a l forms of these r e l a t i o n s . In t h i s form they express a 

t r i v i a l i t y , namely that eqe. / 2 . 9 / - / 2 . 1 1 / are va l id for 

any choice of ~z-\ and 2 4 * These equations contain a non-

t r i v i a l information for p a r t i c u l a r problems only, i . e . for 

renormalizable theor ies . In a f i e l d t h e o r e t i c a l problem, 

where there is no momentum c u t - o f f , the per turbat iona l expres-

8ion of «J- and V contain singular contributions which 

were non-singular for f i n i t e c u t - o f f . Calculat ing the 

Green's function and vertex with f i n i t e c u t - o f f Л , the 

transformed, renormalized functions have to be chosen in 

such a manner that the l i m i t . Л - » 0 0 should lead t o f i n i t e 

r e s u l t s . I f the transformed functions cL and Г do not de­

pend on Л , or the dependence is smooth, t h i s l i m i t proce­

dure can be performed and the ' theory is renormalizable. The 
Ц 

particularity of this if model is that it is renormalizable 
in this sense. It is shown in the Appendix on the particular 
form of ck and Г that the transformed functions do not 
depend on Л , It is also shown there how the critical 
exponents can be calculated using the Lie equations. 
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The requirement of renormalizability, i.e. the 
reqi irement that the transformed d and P shoulcPnot 
depend on Л is equivalent to a special relationship bet­
ween lower and higher order perturbational correction« and 
this allows us to use a low order percurbational expression 
in the lie equation to generate higher order contributions. 

In this renormalization procedure the original two 
parameter continuous group with z, and ~z.i is reduced to a 
one parameter group with scaling parameter X . The reduc­
tion of the number of parameters means that only a subset 
of the equivalent systems can be generated by different 
choices of X . This set is, however, fully sufficient for 
us to determine th£ momentum and temperature dependence of 
the Green's function and vertex. 

The abovementioned normalization condition is not 
very useful if temperature dependent quantities, like sus­
ceptibility are to be determined. The temperature dependei.oe 
is incorporated into v} and therefore eqe. /2.14/ and /2.15/ 
can be used only if the Green's function and vertex are 
known as a function of both <y and w- simultaneously. These 
expressions ere generally not known and this make« a cal­
culation of the exponents y, v, oc etc. practically 
impossible with this normalization condition. 

A way out of this difficulty is that in the norma­
lization condition v.L is also fixed. One possibility is to 
require 
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ЛДЧ -% Ъ ** z*, ' z'- G zi ' ^ ^ 

An equally good choice is 

In this latter formulation the scaling of X explicitely 
corresponds to scaling the temperature and the formalism 
can be worked out in the same way as for any other norma­
lization condition. There may of course be other normaliza-
tion conditions as well, in which e.g. <y and *- are nor­
malized at the вале value, corresponding to the expected 
similar behaviour in <^L and v.2", 

2,3 Multiplicative renormalization with physical 
normalization 

Turning now to the statistical mechanical treat­
ment of the problem it becomes clear that the normalization 
conditions /2.14/, /2.15/ cannot be maintained. As it was 
emphasized, in this case there is an inherent large momen­
tum cut-off, the problem has no. ultraviolet divergences. 
The multiplicative renormelization is used only as a use­
ful tool to get the low momentum or low vc behaviour of 
various physical quantities. Therefore the physical situ­
ation 7,'Z b- 1 should be recovered in the final step 

- 1 

= 1 

/2.29/ 

/2.3o/ 

1, 

1. 
/2.31/ 

/2.32/ 
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of the calculation and therefore the scaling momentum A-
has to be introduced in such a way that there should be a 
value A . , , for which the multiplicative factors ere equal 
to unity, thus 

7Tt( V v , к1, u | = i, /2.33/ 
end 

•2*(>Ду , x*- ^ • l - , /2.34/ 

In general, however, the Green's function and vertex cannot 
be normalized simultaneously to unity at the same momentum, 
and there exists no such /y which would reproduce the physical 
situation. A similar normalization problem is present in 
quantum electrodynamics for the electron Green's function 
/see e. g. Ref. [9]/. 

This shows that instead of normalizing c( and ^ 
to unity, iribther normalization has to be chosen. Further­
more we want to avoid the complication coming from the de-

2» 

pendence of the invariant coupling on v~ and therefore we 
propose such a normalization of Д and P that both <̂ L and 
\c- be fixed to a characteristic value. Since for vcL there 
is no other characteristic value than zero, we will fix 
it at VL1 = O . The characteristic value of <y is the cut-off 

Л . Therefore the proposed normalization of d. and Г 
is such that tho physical value of the scaling parameter A be 
equal to Л . Denoting by «Ap^t and f^ the physical value 
of A and П calculated from the physical Hamiltonian with 
-L _ Z j - ̂  , the normalization condition can be written as 



% 

- 19 -

/2.36/ 
- Г (ч'- »\ л \ 4 - U ̂ '. Л'. it) . v • 

where U (>', л 'J ) " ̂  ( ">*, "/ ie an arbitrary continuous 
dimensionless function with the boundary condition 

ие>'.л',.>),..,, i . / 2 . 3 7 / 

The analysis of eqe, /2.35/ - /2,37/ shows that when 
А Л # indeed /, - /s-- 1 and rj -. n„ , This weans that 

the physical value of Л is Л if this normalization 
condition is accepted. The solution of eqe, /2,35/ and /2,36/ 
yields the multiplicative factors Л and ^j ,ts 

Л ' "Л ( ->•, " ) . 

7 
. • ' • • ( * . , 

t» V - ' ' 

/2,38/ 

/2.39/ 

end the new functions Л ami С after elimination of 

.', and z 3 are the functions of V̂V", K'/XL and Л /V 

, / i l «l л ? 1 «^ <U i s v , у. 4» 
~ n / 1 l « l Л'" 

Introducing the bare dimeneionless 

similarly to eq, /2 ,23/ by ( | # 

U ° - 4- Л /2.42/ 
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the normalization condition can be expressed in terms of 
the new notation as 

i .1 

.1 i /2.43/ 
и г о J 

; Ai 

(fr. 7. ?'.<•..'..'-

where obeys the boundary condition 

/2.44/ 

u l S ^ L _ , ^ i 
i 

>.л /2.45/ 
In what follows we will consider two special choices 

of the function U ( A ' A 1 , ") . The first choice is 

ЯД = i /2.46/ 

while the second choice is 
/ 

U - « 7 ^ /2.47/ 

It is important to note that the functional form of z, 
and Zj /see eqs. /2.38/ and /2.39//and consequently the 
transformed Я and Г depend on'the explicit form of 
Ц(Л1/л1,"-\ and a large variety of different renormal iza~-
tions can be generated. These different renormalizations are 
equivalent in the sense that they lead to the same physical 
Green's function and vertex;, they are, however, inequivalent 
in that sense that a particular choice of и ( л А , wj i e 

not always suitable to describe scaling end to get useful 

\ 
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information from the scaling relations of rk and f . This 
will be discussed later on. 

Other choiceb of the normalization condition are 
also possible, in which e. g. * is not fixed. A general 
form of this type of normalization is 

. . < , . , . W , . ' M » V . I I , A \ i-«"'«'' ' ' ')^'^ / 2 ' 4 8 / 

where the dimensionlesn functions M ^ . л i v' ̂ ) end 
I ( П i л i " 'l) obey the boundary condition 

V. U \ л', w«, J * 1 
'»'-л' /2.5o/ 

^ ^ ^ ' ' ' l l / 1 /2.51/ 
This normalization condition, similarly to eqs. /2.14/ and 
/2.15/ has the disadvantage that the multiplicative factors 
and the new coupling depend explicitely on v. end the cal­
culation of temperature dependent quantities is very tedious. 
In what follows we will use the normalization conditions gi­
ven in eqs. /2.35/ and /2.36/. 
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2.4 Renormal izet ion group and Lie equations 

Making use of the new notations the basic trans­
formation given by eqs. /2.9/ - /2.11/ can be written as 

and 

u - u. 
!-.-*/! 
A1 г., *з 

/2.52/ 

/2.53/ 

/2.54/ 

Repeating this transformation with normalization at another 
value of the momenta Су = А and denoting the coupling 
constant with a and the dimensionless coupling with «A where 

u = eV V , the Green's functions and vertices in the 
two cases are very simply related. Using the invariance pro­
perties in eqs. /2.52/ - /2.54/, the following identities are 
obtained 

< A 1 

:'А^!, ") "*(?'.7 . л1 '") " 2Д^> ."'Mívi >•'. £'.-'/2.55/ 

These equations show that the transformation forms a group. 

A more usual form can be obtained if the factors zi1 and 2 5 

are expressed in terms of <k and P by a special choice 

of the momenta a ; -> , We get 
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The new coupling ^ has to be determined fron the 
self-consistent solution of this equation. It should be stressed 
that и doe» not depend on ". due to our particular choice of 
the normalization condition. The dependence on vcL of the right 
hand side of eq. /2.60/ is spurious, similarly aa ^ does 
not depend on <y if /2.60/ is transcribed into an equivalent 
form 

U = U " X1 - ^ kl AV и .Wf4 ̂  ^ u » ) ' /2.61/ 
t 

The real variables of и are ^ A and A /л 
1 1 / V L л1 \ 

* a * ^ 7, Т^^Ь /2.62/ 
Introducing the function ^ R U ^ - Л ^ / U ) by the d e f i n i t i o n 

' " , 1 / i Wl """/? ~ ( ^ 4 vili ' 

t h i s function is equal t o «л1 when ^ ~ Л 
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I t can eas i ly be shown using the invarlance of the combi­

nation \-A.> f 1 ^ that u* obeys the fol lowing scal ing r e ­

l a t ion 

L, ( at ÜL. дл) - « Л 4 ^ J), 
^ * V

 A

L i * 1 ' V V ' > ' ' ' / 2 . 6 5 / 

where u. is given by eq. / 2 . 6 4 / . Due to t h i s r e l a t i o n t h i s 

quantity is ca l led invariant coupling. 

The transformation propert ies o f the Green's function* 

vertex and the invariant coupling, eqs. / 2 . 5 8 / , / 2 . 5 9 / and 

/ 2 . 6 5 / , can be wr i t ten in the common form 

л / ÍL * l лг I - - 7 Í Í 1 A l , | A i l ^ AL «.I 
/ 2 . 6 6 / 

oí" к1" Л 2" "У*-
Introducing the var iables *- y.t ^-~p.t

 v / t Y t - end S = p-

d i f f e r e n t i a t i n g with respect to x the logarithm of both sides 

and f i n a l l y taking s - x we get 

Э* ~ * C H " * ' ' l - l / 2 . 6 7 / 

and s i m i l a r l y d i f f e r e n t i a t i o n with respect to ч gives 

This is the Lie equation of the group end t h i s w i l l be used 

l a t e r on in the ca lcu la t ions . Everywhere i n what fol lows we 

uae the convention that when in the course of der iv ing the 

Lie equation s is replaced by x or у (. V ^ <V 

or v. / , the . lotation u^ w i l l be applied instead o f "~ , 

A Callan-Syroanzik-type equation can be obtained from eq. 
л ! 1 

/ 2 , 6 6 / i f d i f f e r e n t i a t i o n is performed with respect to л 

and then putt ing > « V" , Di Castro £7] used t h i s 
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equation to determine the critical exponent v . The cal­
culation of т\ with field theoretical normalization using 
the Lie equations is presented in the Appendix« We will 
calculate now the sane quantity using the Lie equation 
with this normalization scheme, to show how the method works. 

We have chosen the normalization condition in 
eqs. /2.35/ and /2.36/ with the aim to be able to calculate 
the physical Green's function and vertex with the normali­
zation momentum ^ chosen appropriately. Therefore we have 
to calculate the dependence of c' and Г not only on x and 
у but on v as well. It is seen from.eq. /2.66/ that a simple 
Lie equation cannot be derived if differentiation is per­
formed with respect to v , since -z{i'/\L

t
 л ^ ,*-«.) also 

depends on ^. In addition the criticism that was mentioned 
in connection /ith the field theoretical normalization is 
valid here as well. The scaling equations /2.58/ - /2,6o/ 
express a triviality and usually are of no help in calcula­
ting the Green's function and vertex. These relations only 
tell us how the transformed function is generated from the 
physical function but it contains no special information 
about the physical function itself. These relations become 
non-trivial if the number of variables does not increase 

A. . 

in the course'of the transformation and the variable v = л ( А 
does not appear in the Lie equations. This can only happen 
in particular cases, for particular models where cut-off 
scaling holds with particular normalization condition. W* 

ц will show that this is the case with the f model and the 
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par t icu la r normalization w i l l lead to a new formulation 

of the problem. Л comparison with the method o f Sec. I I I . 

w i l l be possible in t h i s way. 

I t is important to mention tha t there are cases 

/ e . g . the Anderson model in the weak coupling l i m i t [25] / 

where the v-dependence is very weak, scal ing holds appro­

ximately and the resul ts obtained in t h i s way represent 

good approximations. 

Supposing now that the var iab le v~ л /*L i e ab­

sent from the Lie equations, eqs. / 2 . 6 7 / and / 2 . 6 8 / can be 

used to calculate the <\~ and «- dependence o f the Green's 

function and ver tex . F i r s t the Lie equation for the inva­

r iant coupling i t s e l f has to be solved and then t h i s func­

t ion can be used to determine the Green's function and 

verte.*. When using the Lie d i f f e r e n t i a l equation, the r ight 

hand side of eq. / 2 . 6 7 / is usual ly determined in perturba­

t ion theory. The solut ion of the equotion contains higher 

order terms generated from the low order contr ibut ions. 

Since according to eq. / 2 . 6 7 / the bare coupling has to be 

replaced by the invar iant coupling on the r i g h t hand side, 

th is perturbat ional ca lcu la t ion is useful only i f the i n ­

variant coupling is smal l . This is the case in <̂ ~ ч-е. 

dimensions as w i l l be shown and that is the reason why 

th is mu l t ip l i ca t ive renormalization scheme is very appro­

p r i a t e to determine the c r i t i c a l exponents in £ expansion. 
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2.5 Calculation of the exponents 

As a typical example we will show now how the ex­
ponent >i can be obtained in this scheme, Working at \cl-o 
the Green'8 function and vertex can easily be calculated 
in perturbation theory up to second or third order, consi­
dering the diagrams of Fig, 3, and Fig. 4, respectively 
/due to the subtraction in eq. /2.19/ the Hartree loop 
give в no contribution at *l = o/ A 

V ^ 

* /2.7o/ 

where k. • U-<l _"*/j. 
it [rU)f . We have chosen the 

momentum variables on the four legs of the vertex in a 
M special manner so thj£ thW vertex depends on one momentum 

only. This is a restriction only for the fourth diagram of 
Fig, A,, the others depend anyway on one variable only« 
In Fig, 5, this choice is indicated for two different ori­
entations of the lines. Since these diagrams with differently 
oriented lines yield the same contribution due to the 
structure of the unperturbed Green's function, in general 
we draw the diagram with non-oriented lines. 

г 

I 
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The analytic contribution of the different diagrams 

is given in the Appendix. In the calculation of the relevant 
integrals in the £-expansion, only those terms were retained 
which will contribute to the invariant coupling and to the 
critical exponents to order 6. or Г.5 . 

Knowing the Green's function and vertex in pertur­
bation theory the multiplicative factors Z, and Zz can be 
determined as functions of A /A and u. using the normali­
zation conditions in eqs. /2.35/ and /2.36/ and expressing 
<i in terms of r, /u„ in terms of u. / with the help of 

eq. /2.11/. The actual calculation is performed with two 
different choices of U. ( Л1 /A* , <̂ j given in eqs. /2.46/ 
and /2.47/. After that the transformed Green's function and 
vertex can be constructed as functions of ^ /* ( Л/A 1

 a n d u., 
Using the first normalization condition given by 

eqs. /2.35/, /2.36/ and /2.46/ the multiplicative factors 
are 

~^'«'^-i.)(£Pfi£l 
.. ?Ь±^ u% 1 f, [ f'($ | - Í i( $) И -itt' -] /2.71/ 

г. 

/Z •72/ 
where 
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The transformed Green s function and vertex after elimination 
of Г, and Zj are 

. k-^j! ^ ^ [ ̂ l i-^$> Í * 1 • / 2 ' 7 4 / 

In the second order terms in U. the contributions of order 

£ heve been neglected. It should be noted that the function 

P depends explicitely on the variable A /AL and not only 

on (\ /* . As we have mentioned, an explicit dependence on 

the variable Л /\L , i#e. the appearance of an additional 
variable in the transformed function makes in general this 
renormalization procedure useless. In this particular case, 
however, this variable does not appear in the invariant coup­
ling and this normalization condition can be used to calcula­
te the critical behaviour. 

Making u*e of the expressions /2,69/ and /2.7o/ 
for Я and Г , respectively, the self-conslatent solution 
of eq. /2.61/ for IA is 

, (^ ) ' и чЛ^ íi - t | [ 4.. ] - Ь # ^ Х 
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Using this perturbations 1 expression and replacing "X' by 
<\ the Lie equation for the invariant coupling can be ob» 

tained in a straightforward manner in the form 

~ '- U #, / 2 ' 7 7 

where x~ <y / * , Tne solution of this equation for e > o 
end small x is 

where 

lOv/- ̂ j £- |> г ̂ £ ] • *(e>) 
and 

/ 2 . 7 8 / 

/ 2 . 7 9 / 

to -- £ - -г-туг- с 4 v.> «••/ • 
. (*•" /2.8o/ 

and Л is a constant. 
The critical behaviour of the system in the scaling 

regime is governed by the invariant coupling for small x . 
The critical exponents are determined by u 0 which is called 
fixed point coupling. The term with exponent <-o gives the 
first correction to the scaling behaviour. In order to de­
termine e.g. ri the Lie equation for the Green's function 

d has to be solved. Using the perturbational expression 
from eq, /2.74/ the Lie equation /2.67/ for the present 
case is 

it 

Э* " " " /2.81/ 
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where х- <v /> . The variable *v* Л*/*1 does not appear. 
Th"- solution of this equation is 

MA ~ * V L ( и ь ,""4 ) / 2 . 8 2 / 

with 

The physical function '!(<y ) is obtained by taking 

* " ̂  phys * Л < 

дс,ч~ &Г"(< + Ч*ТЧ I. A.B4/ 

Since the t o t a l Green's function & d i f f e r s f ro« Д by a 

factor <̂ ~ , the small momentum behaviour of G is given by 

V * ' /2.85/ 

with the correct expression for -*i (.17J and also line correc­
tion to scaling [ 2б| is obtained correctly. 

Other critical exponents can be obtained in a similar 
way, and all exponents ere obtained correctly up to order 

€l , at least. The fact that the variable A /A appears 
in P gives no complication since this variable disappears 
from the Lie equations to this order. In higher orders this 
is probably not the case and other normalization condition 
has to be chosen. 

A good candidate for such a normalization condition 
is the choice given by eqs. /2.35/, /2.36/ and /2.47/. The 
normalization factors in this case are 
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^ 1 -;,_*•."'.. f t í j - i ^ ' i v ^ ' f i f ' í í j - i f ( ÍJ. , j 
/ 2 . 8 6 / 

Vv * 

U i l l 

?.-;»•. „•*..• [ 1 * 4 - n . J . ] , 
i\ 4 í 

t i i ( * »í l t | / к 
17 ^ [ - ^ í 4 ] / 2 . 8 7 / 

The transformed Green's function and vertex is obtained as 

U,iU-_..«! „ ! „ ; ( i I."' •,,,; i | . r ; , 4 i j , «-, 1 + /2.8«/ 

> M U ? I / '- i f '- <\ .. 1 Í J ' 1 . ] 

/ 2 . 8 9 / 

4 . 

The per turbat ionel cxpanaion of the invariant coupling in 

th is case is 

» « ' - l - f / l Г „ - / ^ i L . . f / t / V - . » • ' ) ' ' I 1 ' *•*"** x [ " - ( % T " J 
/ 2 . 9 o / 

# 
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The Lie equation for the invariant coupling takes now the 
form 

a * 

where x - ц /V~ . Considering the region v<<lthe solution 
of this equation to order е г is the sane as that of eq. 
/2.77/, i.e. this equation leads to the same fixed point 
and the same exponent ю t although the equations are 
different. Using eq. /2.88/ for the reduced Green's func­
tion ck , the same form is obtained for the Lie equation 
as in /2.81/ and again the exponent ^ is obtained 
correctly. 

The advantage of this normalization condition is 
that the variable A /^ drops out of the transformed func-
tions cL and Г and* also from the invariant coupling. If 
this variable does not appear, the transformed functions have 
similar structure as the pĥ feical functions and the scaling 
relation expresses a non-trivial relation. This non-trivial 
relation is reflected in the Lie equations which allow the 
generation of higher order corrections from a low order 
perturbational expression. On the other hand, H is easy 
to check that the renormalization condition with 3-^give* -
by /2.47/ is the only one in the considered class, where 
the transformed functions may maintain the form of thé»p̂ a/-v 
sical functions. 
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Using a somewhat different normalization condition, 
as in our first example, the variable Л!/>' does not drop 
out completely but the calculation of the critical exponents 
is still possible because it does not appear in the Lie 
equations. It should be emphasized that everywhere we have 
calculated the singular contributions only and neglected 
those terms which vanish when the cut-off goes to infinity. 
The appeerance and disappearance of the variable Л /X has 
been investigated in this approximation. Probably there ia 
no such physical normalization condition which would lead 
to scaling relations where A /-* does not appear at all. 
Scaling is obeyed asymptotically only where the smooth 
dependence on A /X can be neglected. 

In the next section the renormalization procedure 
will be reformulated. Its relation to the usual renormali­
zation treatment will be discussed in the last sections of 
this ртрег. •> 

Л 
I I I . The new renormalizat ion procedure 

3 ,1 For'muletiorvpf the new procedure . , 
• ' " • » * • • ' • » • • • 

4 , • .-
" I t was shown in the preceding/sect ion that in the 

• * • * • ' 

• conventional Gell-Mann-Low renormalization scal ing is .echie-
• • ' • • • * * • . _ 

ved опДу a f t e r having introduced instead of the physical. 

Green's function and vertex re lated functions with a new *'•..,. 

seeling var iab le '. t • ' # • '• » 

I n Wilson's theory the e l iminat ion of degrees of 

freedom and thereby seeling is performed on the physical 
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evetem and there is no need to introduce auxiliary scaling 
variables. The physical system is mapped onto an equivalent 
one with the same number of variables eventually the number 
of coupling constants increases. In view of this fact it 
is tempting to suppose that the introduction of the scaling 
reference momentum is not a necessity in multiplicative re-
normalization and a scaling of the natural momentum cut-off 
can generate multiplicative renormalization of the Green's 
function and vertex. 

This supposition is confirmed on the perturbational 
expressions for the Green's function and vertex as will be 
seen later on. The main idea of the new renormalization pro­
cedure is the assumption that a successive elimination of 
degrees of freedom or scaling of the cut-off can in fact 
generate a multiplicative renormalization. If this is true, 
the simple mathematics of multiplicative renormalization, 
the Lie differential equations can be applied using the 
cut-off as scaling variable and no extra scaling variable 
has to be introduced. We will formulate this now in a formal 
way. 

The Hamilton!an of the system is written in the form 

where we have introduced an explicit cut-off dependence of the 
coupling constant and u„ is dimeneionleas. 

Similarly as in the conventional multiplicative 
renormalization a mass renormalization is performed using 
eqs. /2.3/ and /2.16/. The new mass vcL is related to the 
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coherence length § by the relation f *и and will be a 
measure of the temperature. Introducing the reduced, dimen-
sionless Green's function and vertex by the definitions 
el . Q>( G 'ol and Г , Г / "• л , these quantities depend 
on the dimeneionless variables су М and к >л and on the 
dimensionlese coupling 

rX ^ <A{ * i , 7? . "•) / 3 . 2 / 

г- г ( # , $,*.) 
/3.3/ 

We can now formulate mathematically the basic assumption of 
this new method. It is assumed that when the large momentum 
degrees of freedom are eliminated by scaling the physical 

. i cut-off Л to Л , the dimensionless coupling constant 
i Uo can simultaneously be changed to u Q in auch a way 

that the dimensionleas Green's function d and vertex Г* 
in the original and transformed systems differ only by 
multiplicative factors ~z^ and Z r which depend only on 

л' /Л and u. , but are independent of thf momentum and 
temperature variables. In addition, the new coupling constant 

кл^ must be related to the original coupling through the 
same factors 7Л and "Zr . 

/3.V 

/3.5/ 

/3.6/ 
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These equations are formally similar to eqs. /2.52/ - /2.54/ 
with an essential difference, namely while 4qs. /2.52/ - /2.54/ 
express an exact relation and relate the physical Green's 
function and vertex to a new function with an additional 
variable, eqs. /3,4/ - /3,6/ describe a supposed relationship 
between the physical functions but with modified parameters. 
Therefore the physical content of these equations is quite 
different. This will be discussed later on. 

Contrary to eqs. /2.52/ - /2.54/, these equations 
are probably not exact and are valid for the singular parts 
of the functions d and П , for those contributions 
which determine the critical behaviour, but these relations 
will not hold out of the critical region. We will show in the 
next subsection that they can be verified in perturbation 
theory. It is very important in this respect that к , 
which is the analog of the renormalized mass, must be pro­
perly chosen. Without mass renormalization, if the Green's 
function and vertex are functions of íy'/л and <o//\ , 
it is not possible to find a new coupling u„ which is inde­
pendent of cy and t0 , 

It is a great advantage of this method, that the 
new coupling u. does not depend on *. but on Л1 /л only. 
This allows us to calculate either the momentum or tempera­
ture dependence of the Green's function or other quantities 
with equal ease. It follows from the group property of this 
renormalization procedure that the transformation from A 
e*>d и» to Л and u„4 can be done directly or through 
the intermediate state with A and u 0 , 
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' .' V Л ' , " ' 

Introducing the function 

/ Л' \ / Л , 

( ^ , " 0 7 г ( > . "-')• 

/ 3 . 7 / 

/ 3 . 8 / 

* < , К" - \ 
г л 

ч - 1. ^ . К ' . " 4 .%' ( «.«•.), / 3 . 9 / 

it is easy to proof from eq*. /3.12/, /3.13/ and /3.6/ that 

11 .- Л 

» / А"' \ П ' 11 Л"' , | -1 / Л'" И 

/3.lo/ 

and 
и ч - /3.11/ 

As eq. /3. lo/ «hows, the nev: coupling u p is invariant under 
the scaling of the cut-off an ' a simultaneous tranformation 
of u„ to n„ . Thie quantity ie therefore celled invariant 
coupling or "invariant charge". 

Similarly a« in the conventional method a Lie 
differential equation can be derived for the Green'e function, 
the vertex and the invariant coupling itself. For thie latter 
this Lie equation is the differential form of eq. /3,lo/. 
Differentiating with respect to <i - Л / л a n tj fixing Л 

»>-afterwarde at Л г л we get 

/ 3 . 1 2 / 
5 < 
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For the Green e function and vertex two Lie equations con be 
derived, differentiating the logarithm of eqs. /3.4/ and 
/3.5/ with respect to either <^ <\' /Л or î  K'/A and fixing 

л'г- 7 л , г ! 0'-
л by <\ - л or' M - Л afterwards. 

Эх * «^ П V i' * ' ' ( i H . /3.13/ 

1" /3.14/ 

where A is any of d or V „ 
The physical picture is now very simple. Suppose we 

can calculate the Green's function for momenta near the 
cut-off and would like to know it for cy «A , By scaling 
the cut-off Л to A near to q we are again in the trans­
formed system at a situation where the momentum is near the 
cut-off and the Green's function can be calculated, provided 
Mo is known. Using the solution in the transformed system 

the Lie equation generates the solution for the original 
physical system. Once the Lie equation for the invariant 
coupling has been solved, the Lie equation for d and Г1 

can be integrated to determine the momentum or temperature 
dependence of d and Г1

 # 

It is not only the Green's function and vertex 
which obey multiplicative renormal izet ion. There might be 
other quantities А(«у'/Л1, K'M'.U») for which 

n V л'' ' л'1' ' K л ' л ' л ' ' /3.15/ 
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i. e . under the same tranformation from Л and u Q to Л 
and u} , the functions are transformed by a multiplicet ive 
factor гл~ independent of <y or к г . Example for such a 
quantity will be shown later on when calculating the speci­
fic heat. For these quantities as well a Lie equation can be 
derived, in the same form as eqs. /3.13/ and /3.14/. 

3.2 Multiplicative factors and the fixed point 

We will calculate the multiplicative factora and the 
invariant coupling in perturbation theory to show that eqe, 

t /3.4/ - /3.f>/ can be obeyed and the z factors are independent 
of <|/ and v. . Since the calculation of d and Г as a function 
of two variables <у/л a r K ' v'/l\ is* increasingly difficult for 
higher order contributions, the special cases v =• о and «у-о 
will be studied separately. The multiplicative factors and the 
renormalized coupling ^« are determined in perturbation theory, 
to second and third order, respectively. 

First we study the case when the temperature is fixed 
at the critical temperature, i.e. к -о. The Green's function 
depends on one variables only. The vertex depends generally 
on three momentл. Similarly to our earlier calculation the 
momenta on the four legs will be chosen in a special way so 
that only one momentum variable is kept. This choice is shown 
in Fig. 5. The analytic expressions for d and Г have been 
given in eqs, /2.G9/, /2,7o/ for v о . Using these analytic 
forms, the multiplicative fnctors and the new coupling can be 
determined in a self-consistent way from eqs, /3.4/ - /3.6/. 
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• 2. i ,, ' - л Л ' ? 

.-., г 1 4 -—-- U..K., ^ ^ » . . / 3 . 1 6 / 

' A1' ' .U+ l«i « l / t л А!'" 

' л'1 W..-L*- ? 1 / г С * L \ / 3 . 1 7 / 

l ^ ' í i I [/ ' » ' /!_ •>* • '<<• ! у L р . * _ , / 3 . 1 8 / 

On the other hand when all the moments are fixed at q a 0 and 
the only variable is v. /л , the integration can again be 
performed /see the Appendix/ and we get 

« * - I 4 -T*T ̂ - ' ~ ^ + л /3.19/ 
г- ^ ^ ^ Г и ^ Г - О ^ 1 

ьс и-
Although eqe. /2.7о/ and /3.2o/ are not symmetric in <**, and 
v L , the self-consistent solution of eqs. /3.4/ - /3,6/ with • 

these analytic forms for d and Г produces the same expressions 
M p 7,4 , Z r and u o as eqs. /3.16/ - /3.18/. This shows that 
at least in these two special cases when <-yl-o or к.1=о# the 
z factors and the new coupling ere the same. This finding 
is generalized in eqs. /3.4/ - /3.6/ as the basic equations 
of the new method. 

The perturbational expansion of the invariant coupling 
as given in cq. /3.18/ is a good approximation for a small 
change of the cut-off, i.e. for л M --' 1 # j n studying the* 
critical phenomena we have to determine the Green's function 
nnd other quantities for (\ / д ^ i or v. /Л « 1 and 
therefore wc need the invariant coupling for Л1 /Л <.< 1 , i.e. 
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when almost oll degrees of freedom are eliminnted. Using 
eg. /3.18/ as the pertiirbat ional expansion of •<» , the 
Lie eqiintion for the invariant coupling /3.12/ takes the 
form 

S. , *-'! M,.lMi.| ^ 

where 
is 

where 

and 

i\ /A • The solution of this equotion for 

t',< u.; ( . h 

(«. >' i' 

• ( : " . i ! r 

* -(VI 

< .Mt* ) 

/3.21/ 

<<. 1 

/3.22/ 

/3.23/ 

/3.24/ 

The fixed point coupling u „ is of the order of f. and 
this confirms a posteriori that the pertiirbat ional calculation 
is adequate to calculate the right hand side of the Lie 
equations. It is also interesting to notice that this fixed 
point value coincides with the fixed point value given by 
eq. /2.79/ for that case of the conventional renormalization 
scheme where the Green's function and vertex are normalized 
to their values at the cut-off by assuming the normalization 
condition given by eqe. /2.35/-/2.3G/, Since u.. is small 
/we are not going to extend this method for three dimensional 
systems/ the right hand side of the Lie equation for the 
Green'в function can similarly be calculated in powers of 
the invariant coupling and the critical exponents can he ob­
tained in the £ expansion. 
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IV. Calculation of the critical exponents V , v and 
Y and the anomalous dimensions ^y.^^and d-ч? 

4.1 Renormalization of the Green's function d 

Knowing the behaviour of the invariant coupling as a 
function of A / A , we can start now to evaluate the beha­
viour of the Green's function and vertex as a function of the 
momentum q or the inverse coherence length к . 

First we study the behaviour of the Green's function. 
We will restrict ourselves to the one-variable case and in­
vestigate the momentum dependence (ч'^о) and temperature 
dependence Ц' =o) separately. In doing so the right hand 
sides of the Lie equations /3.13/ and /3.14/ simplify consi­
derably, namely apart from the factors </x or 4/ч , respecti­
vely, the x or у dependence appears only through the 
invariant coupling. 

/4.1/ 

~ ~ - - i ~ - - - -; t I . ( ' . - , ( i , - - . i ) , / 4 . 2 / 

where the generators \t, , and 4'2 are given as 

• t itu e(-, U.l) - ^ U A(0, 1, "^'ä.-))| r,. /4.4/ 

Since the critical exponents *i and V are defined through 
the leading terms in the x and у dependence of d for 

I and < «: 1 they can be obtained by replacing the 
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invariant coupling on the right hand aide of the Lie 
equation by its value at '̂",'' or \j = ° , i.e. by the 
fixed point coupling. Simple integration of these equations 
gives 

<•<'»-' * {l) ^ * Ä 1 /4.5/ 

J l ^ "4 - Ы -f v : i /4-c/ 
Since u„ is of the order of f # the perturbati-

onal expansion of the generators in powers of the invariant 
coupling will automatically yield nn expansion of the criticnl 
exponents in powers of г . The function Я is symmetric in 
the variables <y" anil v , et least to second order in <' • 
as seen from eqs. /2.69/ end /3. 19/ and we gê : from eqs. 
/4.3/ and /4.4/ 

From the definition of the exponent >i 

С ( <y, v-ü) . ~ / 4 # B / 

and therefore 

Comparison with eq. /4.5/ and /#.7/ give« 

/4.V 

2 . ^ ( ^ : 1 : ;_vf, (uj) - ^ . / 4 . i o / 

In order to determine the exponent n to order c* 
the perturbetional expansion of c( to order u e has to be 
token. This is given for u -• О in eq. /2,69/, The Lip equn-

w tion hoo the seme from as cq, /2,81/ end the generator xi 
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of the Green's function ia 

cl(u') ~ ( ч М Ш 

and 

GIV-o. «') ~ 7^* 1 ) % ~ 
4 

^ 4 ' 

\ L . I i ^ + 2 . г- I/ *- / . . 9 i S"(«+2.)( *+íJ з ,, з / A l l / 
4M**)-- 7^7 "-^ И + V ) ^ U « ^ A + - /«•"/ 
Inserting the fixed point coupling the exponent у is ob­
tained correctly, aa in eq. /2.83/ 

4.2 Temperature dependence of the coherence length 
and the susceptibility 

Analogously to eqa. /4.8/ and /4.9/, the v. dependence 

/4.12/ 

/4.13/ 

where eqa. /4,6/ and /4. lo/ have been uaed. The susceptibility 
л/ ia related to the Green'a function by 

•YJT-TC) ~ G(<v"=0< Т ~ Г ^ , /4.14/ 
and the exponent -Y is defined by 

у (r-Tt) - (т--т«Г* / 4 Л 5 / 

The inverse coherence length v. has been Introduced aa a 
measure of the temperature difference T-~t e n cj 

^"-V1 ~ I"" Г-) /4.16/ 
and thia is the definition of the exponent v , Comparing 
these equations the асаling law 

Ц-^-Х^ /4.17/ 
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follows immediately at least up to second order in £ . 
We still have to determine the £. -expansion of 

v or У , The inverse coherence length vc has been intro­
duced by relations /2.16/ or /2.18/ with 

c^ 1 = -г.- тЛ /4.18/ 

where „̂ is linear in the temperature. At the critical 
temperature /at K- *oo / ъ" = о and the Green s function 
is divergent at <^-°» Therefore "»V can be defined by 

Z4o,o) * ̂  -Ő. / 4 # l g / 

Combining eqs. /2.18/ and /4.19/ we get 

We have to keep in mind that the prime on 71 means that the 
appropriate subtraction procedure has to be performed step 
by step in the perturbational calculation of the self-energy. 

Using eq, /4.16/ we write eq, /4.2o/ in the form 
5U» 

/4.21/ 

^ ' K L ч /4.22/ 

This new function ^(Vjis multiplicatively renormalizable in 
the sense of eq. /3.2o/ and the Lie equation haa the form 
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with м - к 
and 

The asymptotic behaviour for м <£ i is again governed by the 
fixed point coupling and 

FUll - U) i f ч7л 1 <£4 /4.25/ 

The »elf-energy has been calculated to second order in a. for 

o > - _ ^ L with the result / s e e Appendix/ =. — \L 

. i i i „.'w,1 v l (- ̂ u 1 ^ • £ e.iv... )д.... /*.2в/ 
Making use of this expression . 

and 

Since v is related to \fc,lu*)via eqs. /4.22/ and /4.25/ 

^ -Í ̂  ű^T) £ " u-«!1 £ ^ o ( e ]

 / 4 # 2 9 / 

Using the scaling law in eq.»/4.17/ the & -expansion of Y 

ia obtained 

Í 1 Ц к Н Г Ц (*+«)* /4.3o/ 
The integration of the Lie equation can be performed not 
only in those cases where the invariant coupling in the 

M 

/4.27/ V 
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generators ^ is approximated by the fixed point coupling. 
Using the form given in eq. /3,22/ which contains also the 
first correction when Л /Л c< 1, simple integration gives 

V /4.31/ 

y(v*) - v. ^ ( U D 
1*4 I О 

1С -t- . 

/4.32/ 

/4.33/ 

у (*| ~ t" y ( 44 TL*""»-.. ) /4.34/ 

where ^ - f.-iot ~ T-T c # These expressions ahow the* 
the exponent to characterizes the first corrections to 
the scaling behaviour. 

4.3 Anomalous dimensions 

Until now the behaviour of the Green's function 
has been considered. In a similar fashion the momentum 
dependence of the vertex can also be studied* The Lie 
equation for г at u - о has the form 

3 k г U,u.) Ä 7 ̂ U ^ ^4 
with 

/4.35/ 

^ ц К ^ , « о | ] -2- Í* П l^ О/ 4 Í M 1 /4.36/ 

The asymptotic behaviour of P for x<£ 1 is 

Г Ix) ^ X ~ Ц ' / 4 . 3 7 / 
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Using the analytic form of the perturbational expansion of 
the vertex given in eq. /2.7o/ we easily get 

, /4.38/ 

and 

This exponent is very closely related to the anomalous di­
mension dy , which can be defined /see Ref. [l6j/through 
the relation 

From these relations we get d. - ч A^ - L. х ц 

and 

^t't-t + A 1 ' * ' ^ /4.4V 
The scaling law 1 ^ = Д - 1 + '») is indeed satisfied. 

Other, higher order vertices can also be studied 
and the anomalous dimension of higher order fields are 
easily calculated-in this method« One of the authors [27] 
has applied multiplicative renormalization and the Lie 
equation to determine the anomalous dimension tíLi of the 
field <̂ >L(x| to order £ . He has studied the function 

Г' ». (x,̂ )= ̂ Ч* Н ч Ц'> .Here we present another calculation 
to determine the anomalous dimension A^i to order £ fron 
the behaviour of the one-particle irreducible part of 
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in ) / 4 . 4 2 / 
*W V, N *>>-~ < № V ^ V ^ o n e particle irreducible 

The Fourier transform of th i s Green's function i s 

Cf' ( * "• "• --) - i«- i l y + r " ' + r i 4 , « f > ) % ы V J > Л л * ^ 
_ f d 4 к / 4 . 4 3 / 
" ̂ íí? < Ц Ч- ̂ ^ ^ ^ l > 

This function is considered as an amputed Green's function, 
i.e. the external lines which are shown on the diagrammatic 
representation in .Fig. 6. are not taken into account in the 
analytic expression. The diagrams are thus the same up to 
second order in the coupling as for the four-point vertex, 
only the geometrical factors are different. 

From the struojture of this fun* tion 

Г«р.,5Ч ^'P'-f*."-!* V p i ^ . f ' T i Г < 1 Ц . P.;. vr« , *•) / 4 . 4 4 / 

and for the special choice of pf-o the analytic expression 

i s 

№U *№ [*)"-') ^ "Г /4.«/ 

I t follows from the definition of the anomalous dimension 

<k x. \}l\. that for у / л 1 " « ! * 

Г ' («V, °, <y, "•) ~ <Y . / 4 . 4 6 / 
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This small momentum behaviour of Г ' can be obtained by 
using the Lie equation, since this function is multiplicatively 
renormaHzable for which 

Э й . г ( 4 л > (,*»j < ̂  / , ,| 
with 

\ l ^ l ^ - l - Ц ̂  VU'L) <*• U ^ x - ^ ) i = l , /4.48/ 
and the notation Г ,l (*, «*.) - Г ,l (у,о,х, u„) has been used 
with * = <\1/Л1. The asymptotic behaviour of r̂ 'l,(x,u.)for < <£ 1 
is easily obtained as 

Г ' (*,u.) ~ x ~ Ц / /4.49/ 
Using the perturbational expression in eq. /4.45/ the generator 
"*±с reads 

•{|-^м.КИ1»'1* -1"' /«•»>/ 
Inserting the fixed point value of eq. /3.23/ we have 

^bf^c[^^4-H /4.51/ 
The anomalous dimension AyL can be calculated from the 
relation 

вЦ1 - 1ьЦ + l \ W l /4.52/ 

which is a consequence of eqs. /4.46/ and /4.49/. 
AHother exponent which is of interest and is 

related to an anomalous dimension is the cross-over exponent 
<f> . Yamazaki and Suzuki [28] have shown that <|> can be 
expressed in terms of the anonalous dimension ef7f of the field 
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c( 4 í is in turn obtained from the momentum dependence of 
the Fourier transform of the one-particle irreducible part 
of the Green's function 

The special case * ̂  4 / ^ - 2. will be considered, in 
which case 

(i-l . „ ,* 

55/ 

The essential difference with respect to I is that 
here cx=/(i . Similarly as there, the amputed Green's function 
is studied. The diagrammatic representation is the same as 
for Г | i | wich different geometrical factors. The spin 
structure of the function is 

Г"'(ЧФ ^ ' P' ̂  ~~ ^ ̂ * ^ + ^ l ^ * ' Г " U ^ °*' P' U ° b /4.56/ 

and again for f> = o we get 

г'"( го,».)чч*Й'"'[НЙ"-<!- 1-] 

This function is multiplicatively renormalizable and the 
Lie equation has the form 

-, ̂ с С и ^ у - ц - ! ) Л. 58/ 
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where 

and the notation Г (*, u„) = Г (*, 0, u»l has been used 
with * r V / д 1 • 

n" ^ ' / 1 
Jhe perturbational expression of i U, WW in eq. 

/ 4 . 5 7 / leads to the following expression for the generator 4? 6 

Г , < I/ . Г 1 / 4 . 6 o / 
• [ 4 - i U^KA 4-.. j 

or 

X l O = ^ Ф ~ "-f£hj^ «:]*.>(«•) /4 .61/ 
The smell momentum behaviour of I U,«„J i 8 given as 

Г (x| ~ x -̂  v̂ v ' 
/4.62/ 

On the other hand the anomalous dimension d^ is defined 
(28 ] by the relation 

Г'"" ( -у.». -| ~ <f1"' * **« i { ,VV « l /4.63/ 
Comparison of these last two equations gives 

d^ -- 2 - ^ b U * ) f 2 . ^ /4.64/ 

Using our earlier result for 4^ /eq.M.4l//t the anomalous 

dimension d^ is 

, n W+ t ,. ^ + - 4 ) ^ - 1 1 ) г. , О / A A R / 
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and the cross-over exponent is 

.in agreement with other calculations \jL9~\ . 

V, Determination of the apecific heat exponent oC 

The Gell-Mann-Low multiplicative renormalization is 
a very suitable tool to investigate the behaviour of the 
Green's function and vertices, because the renormalization 
transfo' it ion is performed on these quantities. Its 
applicability to determine thermodynamical quantities, like 
the specific heat, is less straightforward. If the specific 
heat is expressed in terms of Green's functions we can even­
tually hope to get multiplicative renormalizetion for it and 
then the machinery of the Lie equations could be ua*»d to 
calculate the exponent 0(. 

Larkin and Khmelnitskii [29] have shown that the 
leading singularity in the specific heat C v can be ob­
tained by studying the temperature dependence of the den­
sity-density correlation function. The thermodynamical rela­
tion defining C v is 

Эт/„ - ' X 3 T V V - /5.1/ 
Writing the free energy F in the uaual form 

F -_ _ t ^ TV(^ I / 5 # 2 / 

it is seen that the temperature dependence comes from two 
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sources; an explicit dependence on I and the temperature 
dependence of the parameters of the Hamiltonian /3.1/. The 
leading singularity comes from ti.is latter dependence. Since 
-t\, in eq. /3.1/ is linear in l , the «singular part of the 
heat capacity can be written as 

where only the moat singular terms have been kept. 
The free energy can be represented by connected, closed 

diagrams. Differentiation of the free energy with respect to 
the inverse of the Green's function means to introduce vertex 
points with one incoming and one outgoing lines without 
momentum transfer and therefore C v can be obtained from the 
contribution of the diagrams in Fig. 7. There is no mass re-
normalization yet and that is the reason why in the second 
diagram there is a Hertree-loop on the bubble. We can per­
form the mass renormalization now, introducing VL instead 
of ^o. This leads to the cancellation of the contribution 
of the second diagram /it is incorporated into "K.2" / x Finally 
up to second order in u e the diagrams shown in Fig. 8. have 
to be taken into account. 

The вит of these polarization diagram contributions is 
denoted by . Since multiplicative rsnormali-

x To make the mass renormalization in the free energy diagrams 
before differentiation would be incorrect, because the free 
energy diagrams have a prefactor depending on the order of 
the diagram. 
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zebility in the sense of eq. /3.2o/ does not follow from ge­
neral arguments, it has to be checked whether IT v 4 , A ( u„) 
satisfies such scaling equation or not. The analytic contri­
bution of the diagrams in Fig. 8. have been calculated with 
the result 

Т Г ( у , л 1 , и . ) = к . к Л ч Ч " с ' 1 ( - К т - 1 - 1 ' - J 

.^.'«iW^Pi-uiH' lJ / 5 ' 4 / 

where {( x| - Y ^ x L - i j . 
The term linear in the logarithm have not been calculated for 
the last two terms since they are irrelevant if the specific 
heat exponent oO is determined to order £ . 

Making use of the perturbations1 expansion of ". as a 
function of A* I f\ given in eq. /3.9/. a simple calculation 
shows that eq. /3.2o/ cannot be satisfied with a multiplicative 
factor z independent of ^ , Similar situation has already 
been encountered in studying other physical problems like 
x-ray absorption [23] and one dimensional Fermi modele [24J, 
These systems ere multiplicatively renormalizable by scaling 
the cut-off similarly as the model studied here, the response 
functions, however are not multiplicatively renormalizable. 
We have learned on these examples that an auxiliary quantity 
can be introduced for these response functions which is already 
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roultiplicatively renormalizable and for which the Lie equa­

t ion can be used. I n these examples the zeroth order c o n t r i ­

bution was a staple logarithmic function and the a u x i l i a r y 

quantity was obtained by d i f f e r e n t i a t i n g the response function 

with respect to t h i s logarithm. 

A straightforward genera l izat ion o f t h i s procedure 

suggests to introduce 

•- . / . 3TT(.u\ *', u.l 

where 

The perturbat ional expansion of t h i s a u x i l i a r y quant i ty is 

, ^ \ : i^ tér i «£)•<•• Г 
t ^ и ^ ^ Г ( lu£*. ] /5-7/ 

I t is easi ly checked that th is quant i ty up t o t h i s order 

obeys the r e l a t i o n 

Supposing that t h i s equation is v a l i d in higher orders aa w e l l , 

the Lie equation reads 

/ 5 . 9 / 
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where 

L T- / S . l o / 

The so lu t ion of t h i s equation for small у i s obtained by 

insert ing eq. / 3 . 2 2 / for Mfc 

7 1 ^ ~ 1 ( ^ F 1 ^ • ) • / 5 . 1 1 / 

The exponent ^ > ( u 4 ) i t s e l f i s obtained by using eq. / 5 . 7 / to 

c a l c u l a t e \t% WnJ from eq. / 5 . 1 o / 

^ , t u. ) - [ ^ u, КЛ »- i ) 4- t i ^ u i itf , "-fi «i " * * • • ] , , 
L ь / 5 . 1 2 / 

and 

Knowing the behaviour of TC (•«-/, the leading s ingu lar i ty in 

1 | u J i s obtained by taking into account that К 

contains a factor (к г ) *" and therefore 

4 M « / | - £ ' i , _ / U M T 
/ 5 . 1 4 / 

К is proportional to the specific heat but before getting 
the exponent tf we have to reexprese ч in term of t ~ T - Tc 
by using eq. /4.32/. Finally we get 

С Д 1 Tj ~ \ ' Л (\* P ' - ^ V ) /5Л5/ 

where 

/5.16/ 
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This is in agreement with earl ier calculations for (V and 

obeys the scaling law 

1 _ «x - d . • / 5 # 1 7 / 

The exponent oC is usually calculated by making use of this 
relation. A direct calculation based on skeleton graph ex­
pansion has been carried out by Abrahams and Tsuneto [Зо] . 
This result shows that thia renormalization scheme works 
properly. 

It is interesting to see that a similar calculation 
can be performed for the momentum dependence of the polarization 
operator. Considering the contribution of the same diagrams 
as in Fig. 8. as a function of an external momentum q at 
y. l=o а straightforward calculation gives 

7Г (<v\ *',-\ -- -*M<V>~"' { (f(£|- <U ) 

. *£ ^<(4\C {'Si*- ) /S.»8/ 

4Í 

In the same way as above i t i s eas i ly seen that thisequentity 

i s not muItiplicatively renormalizable under a cut-off scaling, 

but the derivate of T with respect to 7T< 0' i s already 

a good quantity for which the Lie equationcan be used 

+ W U . t W LL * t , /5.19/ 
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The Lie equation for R ( C \ 'has the form 

Э ? ^ Ы < v* i l и I) 
Эх 

where 

/ 5 . 2 o / 

4 f u R u M - -Ä e. ir ( ! ,u ,u^) . ( / 5- 2 1/ '! л ' - 'I 
Using the perturbational expansion of Ĵ  (*l 
vt,i".i = Í4- 1"«^«* ы - Ч ^ к < -

and 

^ /5.23/ 
This expression is the same as ^ tw0*| in eq. /5,12/ 
showing that in the asymptotic region ^/A <C< i and K.7/I(<:<1 

the polarization operator is symmetric in <\ and к al­
though the perturbational expansion valid for <̂  /Л1 ~ 1 
or ЛА1 /1\ ~-1 does not show this symmetry. 

Solving the Lie equation for ТС Ы 

TX U ~ x H + G * *" >• /5.24/ 

It " (<yl, Л Jcontaine a factor (^ I . Taking this into 

account we get f inally 

7Г ( V , ̂ u - ) - ^ <И + G 4 W 4 • • • ) 
/5.25/ 

with 

/5.26/ 
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This exponent has been calculated earlier by Ma [31] 
with the same results using the Feynman graph expansion end 
by one of the authors [27] using a method similar to the one 

re­presented here. The anomalous cfimension c< г is related to X 
by t;he -following relation Л - - (J•- I d ^ J . The result 
of our previous calculation of ci^i. given by eq. / 4 . 5 2 / 
agrees with this recent calculation. 

VI. Corrections to mean-field behaviour in four 
dimensional systems 

In the preceding sections the critical behaviour of 
systems with dimensionality <t- ^~ €. (£>°)waa studied. 
The problem of phase transition in a four dimensional model 
is not of theoretical interest only since Larkin and 
Khmelnitekii [29] have pointed out that phase transition 
in uniaxial systems with dipolar interaction /uniaxial 
ferroelectrics/ is formally equivalent to a four dimen­
sional problem. These systems are available for experiment 
J32] and therefore the theoretical study of four dimensional 
systems seems worthwhile. 

The critical exponents are mean-field-like for £.= 0 
and the real question is how corrections to this mean-field 
behaviour look like. The specific beat exponent oC being zero, 
this correction will determine the actual behaviour of the 
specific heat near T c , The specific heat itself was investi­
gated by Larkin and Khmelnitskii [29]. Wegner and Riedel [зз] 
obtained logarithmic corrections to the susceptibility 



- 62 -

and magnetization using Wilson's renormalization group 
approach. 

First we show that theae results can be obtained from 
our renormalization group approach as well and then further 
corrections will be considered. 

The Lie equation for the invariant coupling /3.21/ 
has now the form 

Us ч^ц- Щ¥ M , U S ) C - \ 

In the first step of an iterative solution the first term is 
kept only and we get 

к-"*'*) = - £ ? £ * • • • / e - 2 / 
wh ere s stands for x or y. 

Inser t ing t h i s expression into the Lie equations for 

the Green's function or po la r i za t ion operator , only the 

lowest order term of the generators should be considered. 

Using eqs. / 4 . 1 / , / 4 . 2 / , / 4 . 2 3 / and / 5 . 9 / with the corres­

ponding expressions for the respective generators^, 

7) < * Л U Ч "• /6.3/ 

^ H l ' T i i - Ч г 1 « ^ ч 1 "•.*•••, /6.6/ 

— J - J , T

u « h ) ^ " /6.6/ 

These equations are solved in a straightforward way if the 
variable 
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[_ - Z^ » o r L ~ *•<•- i i s introduced 
о 

<~< / 6 . 7 / 

ív t j - U^l 
/ 6 . 9 / 

/ 6 . l o / 

The momentum end v. dependence of the Green's function and 
w 

the temperature dependence of x L is obtained from / 6 , 7 / -

/ 6 . 9 / as 
СЦЧ - ^ (И- ^ ^ - ), / 6 Л 1 / 

G U V ^ ~ ^ T ^ * " ^ / 6 . 1 2 / 

К 1 | U 7Í I ^ i / 6 . 1 3 / 

where { ~ T ~ r c and the relationship between the function F(^) 

end T-Tc , given by eqs. / 4 . 2 o / and / 4 . 2 2 / he« been used. 

By inverting this relation 

-t Uvvt| / 6 . 1 4 / 

and 

Xu: 
For obtaining the specif ic heat ТП^) has to be integrated 

.) ~ GUI ~ V1 М Г ' U~ ^ IT + 1- / 6 ' 1 5 / 

* - . i 

1 T ц / O . 1 6 / 

^ И ^ 1 - M ^ l í к % 1 7 / 
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The temperature dependence of the specific heat ia obtained 
by expressing v. in terns of t The leading tens ia 

4 K=ti 

All these results agree with earlier works of Larkin 
and Khmelnitskii [29] end Wegner and Riedel [зз] , and in 
some sense they are the counterparts of the expressions in 
£ expansion if only the linear terma are retained. 
It is possible to get further corrections if in solving the 
Lie equation /6.1/ for the invariant coupling the aecond 
term is also considered/ which then yields the counterparts 
of the £ terms. 

In the next step of the iterative solution the in­
variant coupling can be written in the form 

^ U * U i - - ^2 I~ + ^ гЫ^ц /6.19/ 

then eq. / 6 . 1 / becomes 

Э 5 ' s e*s * ' * ( *<* f A j s / б . 2 о / 

This equation lias the solut ion 
' w <if L I (w si 

A u c (ь)Кн --• 72. 11 ' (* -»;* ( ^ s ) L / 6 . 2 1 / 

and therefore the invariant coupling is 

Кд u f t U) - - —г 4 7 2. г- —' * ... / 6 . 2 2 / 
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The next correction ia of order WL^s . Apart froa a snail 

interaediate region around S = e~ both for s ^ l and for 

S « 1 the tera t v l ^ s l /^s i 9 larger than the tera 

with V ^ s and w i l l be neglected in this approxiaation. 

Due to thia particular feature of the invariant coupling that 

i t doe» -not go siaply in power« of V ^ s , the next correc­

tions to the Green'a function, coherence length and specific 

heat are obtained by keeping the aaae Lie equations aa / 6 . 3 / -

/ 6 . 6 / , neglecting the higher powers of <лк , but inserting 

eq. / 6 . 2 2 / for the invariant coupling. These equationa can 

again be solved easily keeping the leading corrections only 

/ 6 . 2 3 / 

/ 6 . 2 4 / 

/ 6 . 2 5 / 

/ 6 . 2 6 / 

The Green's function ia obtained froa eqa. / 6 . 2 3 / and / 6 . 2 4 / 

as 

r t M - i - (/i ~ ^ ' 4. С С^гК^.мч) « K I ^ ^ | \ /6 .28/ 
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The temperature dependence of the coherence length is ob­
tained implicitly from eq. /6.25/. 

M ^ И + е—köp™ ~г-^-" + ^ 

Solving iteratively for м. we get 

tl^r" (ьбЦ^'^ + . . | 

/6.29/ 

/б.Зо/ 

and therefore the susceptibility is 

^(t)~-fc M r I (1 + k, ^ 7 7 F - — ^ T " *" / / 6- 3 1/ 
The polarization operator as a function of кЛ is obtained 
by using eq. /6.16/ 

*ii> 
4 - Í — 

Z — - 4 N" ""^w'Hr^'^iHi / 6 . 3 2 / 

or 

1Г K T — + J/6. TT x^ 3 3 / 

Making use of eq. /6,3o/ and keeping in mind that both V/A 1 

and t are less than unity and therefore 

the temperature dependence of the specific heat is 

с.Ы~-цМ1 H~v ̂  IX"4-] /6.35/ 
In the special case of physical interest/ ^=1 this expression 
has a simpler form 



- 67 -

СЛ) ~ M l M II ~1йГ <-- J- /6.36/" 
This agrees with Brezin's result [34j. As it was shown by 
Brezin and Zinn-Dustin j_35] , the equivalence of d«4 problem 
with d«3 dipolar problem holds for the leading logarithmic 
corrections but not for the subleading divergences and 
the refore this correction term is not experimentally obser­
vable, 

VII. Comparison of the conventional and new method 

In the conventional formulation of the Gell-Mann-Low 
transformation the multiplicative renormalization of the 
Green's function and vertex is equivalent to the introduction 
of transformed functions with renormalized coupling and 
v'th an additional variable X . This transformation can 
be performed on almost any system and in most of the ca­
ses it is not easier to study the transformed system than 
the original physical system. For a restricted class of 
problems, however, scaling is an inherent property of the 
system. In such cases the scaling transformation, which 
is characteristic to the physical system, can be expressed 
in the form of a multiplicative renormalization group 
transformation of a special kind, where the number of va­
riables of the transformed functions is the same as that 
of the physical functions. In a renormalizable theory the 
new variable X and the renormalized coupling can be 
introduced by an appropriate normalization condition in 
such a way that the transformed functions remain finite 
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when the cut-off goes to inf ini ty , i . e . the cut-off 

drops out from the transformed functions. We have seen 

examples for this in Sec. II . both with f ie ld theoretical 

and physical normalization. In this case the renomalizat ion 

ref lects a non-trivial scaling relation and can be e f f e c t i ­

vely used to determine the c r i t i c a l behaviour by solving 

the Lie equation. 

The specif ic heat i s a good example to show that 

the simple multiplicative transformation cannot be applied 

is a l l of the cases to study scaling and the cr i t i ca l be­

haviour. Looking at the diagrams in Fig. 8, and performing 

the transformations / 2 . 5 / - / 2 . 8 / for these and higher or­

der polarization diagrams, a relation enalogous to eqs. 

/ 2 . 9 / and / 2 . 1 o / can be obtained for 7Г (ч 1 , Л1, ц.) 

Т(У, л1, v ( 5 к \ Г . , G-'J 

= ̂ l тп*\ л\ 1 ( 5.4,, г.*,, G"V) . / 7 Л / 

This 8hows that the polarization operator is a multipli­
cative ly renormalizable quantity. Fixing "z.11 ~Z-i and 

5^b by an appropriate normalization condition as in 
Sec. II, ecaling relations analogous to eqa, /2.26/ - /2.27/ 
or /2.58/ - /2,59/ can be derived. Unlike the Green's func­
tion end vertex, the variable Л I\ does not drop out 
from the Lie equations and therefore it cannot be used to 
obtain a summed up expression from the perturbational ex­
pansion, thus the scaling property of the specific heat is 
not apparent if a multiplicative renormalization transfor­
mation ia performed on it. 
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In the conventional Gell-Mann-Low scheme the para­
meter X in general has no physical meaning. The trans­
formation maps the physical system onto another system, 
but the formal way of introduci ng X usually does not 
allow a simple physical interpretation of the renorma-
lization transformation. 

In the new renormalization procedure, what we have 
proposed for other systems and for studying critical 
phenomena, the physical system is mapped onto an equi­
valent one by changing the physical cut-off Л . The 
underlying physical picture is the same as in Kadanoffs 
cell construction or in Wilson's theory of eliminating 
degrees of freedom. The scaling relations as written in 
eqs. /3.4/ - /3,6/ are non-trivial relations in contrast 
to the trivial transformation relations of eqs. /2,26/ -
/2,27/ or /2.58/ - /2,59/. As we emphasized these rela­
tions become non-trivial if the variable Л drops out 
and then the scaling variable Л plays the same role in 
the conventional method as the cut-off in the new method. 
Thus one may expect that a formal relationship can be 
found. 

Comparing eqs, /2.88/, /2.89/ for the transformed 
functions and eqs, /2,63/, /2.7o/ for the physical Green's 
function and vertex, it is seen that these functions with 
^ and A and with "« and Л have exactly the same 

analytic form. This statement holds also if the x L 

dependence is considered. Taking z, and г х as given 
I 

in eqs, /2,86/ and /2.87/ and inserting then into the 

f 
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transformed Green's funct ion and vertex et (^ =ot these 

functions have the f o r m 

/ 7 . 2 / 

/ 7 . 3 / 

These functions have the same analytic for» as the physical 
functions in eqs. /3.lo/ and /2.11/ if u 0 and A 
is replaced by <-< and 'X 

These similarities show that the conventional for­
mulation of the Gell-Mann-Low renornalization using the 
normalization conditions in eqs, /2.43/, /2,44/ and /2,47/ 
and the new renormalization procedure are equivalent if 
only the singular parte of the Green's function and vertex 
are considered. This means automatically that the multi­
plicative factors z 1 and -г.г in eqa. /2.86/ and /2.87/ 
are the same ai 2 r and Z^ in Sec, III, if "> and u. 
is replaced by A and u. . 
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VIII. Discussion and Conclusions 

In t h i s paper we have developed in d e t a i l a new 

method t o study the c r i t i c a l phenomena for the Ginzburg-

Landau-Wilson model. The physical p ic ture which i s the 

s tart ing point of t h i s method i s very c l o s e to that of 

Wilson's renormalization ^theory [ з ] , but i t i s formulated 

in a completely d i f ferent mathematical framework. In fact 

the mathematical formulation i s analogous t o that of the 

Gell-Mann-Low m u l t i p l i c a t i v e renormalization, a c t u a l l y , 

the new method i s a s impl i f i ed version of the Gell-Mann-

Low method by assuming a priori the e x i s t e n c e of s c a l i n g . 

The e s s e n t i a l new feature of Wilson's theory was t o 

show that the number of degrees of freedom can be decreased 

by integrat ing out the large momenta and t o make sure that 

the transformed system has the same thermodynamics1 be­

haviour as the or ig ina l one, the parameters character iz ing 

the system /coupl ing cons tant s / have to be changed simul­

taneously, Wilson emphasized the importance o f the f ixed 

point Hamiltonian which is obtained in the l imit when 

a l l the degrees of freedom are e l iminated. The parameters 

of the f ixed point Hamiltonian determine the c r i t i c a l ex­

ponents. I t was a l s o rea l ized [ з б ] that the way the t rans ­

formed Hamiltonian approaches the f ixed point Hamiltonian 

determines the correct ions to the sca l ing behaviour, 

Adopting the same physical p ic ture we have shown 

that t h i s transformation leads a t the same time to a 

m u l t i p l i c a t i v e renormalization o f the Green's function 

and vertex. In our opinion t h i s i s the centra l point in 



- 72 -

this new approach. In the same way as in Wilson's theory 
degrees of freedom are eliminated by recuding the momentum 
cut-off A to Л Changing simultaneously and in an 
appropriate way the coupling constant u0to uc, it may 
occur that not only the thermodynamics1 behaviour is the 
same before and after this transformation, but the Green's 
function and vertex differ only by multiplicative factors 
independent of the momentum and temperature variables. 

We have shown this to be the case in perturbation 
theory for special choices of the momentum and temperature 
variables. Relying on this result we have supposed that 
the scaling of the momentum cut-off Л generates a multi­
plicative renormalization. We could use then the simple 
mathematical structure of the Lie equations to get infor­
mation on the critical behaviour. 

The independence of the multiplicative factors of 
the choice of momentum variables is especially important. 
The scaling transformation is equivalent to transforming 
out the high momentum region in the internal lines of the 
Green'в function and vertex. As the internal momentum 
variables are integrated over, the renormalization proce­
dure can be worked out consistently only if the renorma­
lization constants are independent of these variables. 

In contrast to the usual Gell-Mann-Low renormaliza­
tion no extra variable is introduced to scale the momentum 
because it is assumed, that the scaling does not change 
the form of the vertex and Green's functions. Furthermore, 
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the scaling^is parametrized by a single physical para­
meter, the momentum cut-off. Due to this fact it is very 
easy to interpret physically what the Lie equation means. 
Suppose we can calculate the Green's function or vertex 
for momenta near the cut-off in a perturbational way and 
for small coupling strength this is a good approximation. 
We want now to determine this quantity for smaller momenta 
where this perturbational expansion is not enough. We will 
transform our original system to a case where the new 
cut-off is at the momentum where the function is to be 
determined. In this transformed system the momentum is 
now at the new cut-off and therefore a perturbationel cal­
culation yields good approximation, provided the trans­
formed coupling is small. Using the perturbational result 
for the transformed system the solution of the Lie equa­
tion provides us with a good non-perturbative result for 
the original problem. 

The transformed coupling is small only if the dimen­
sionality of the system is near to four, otherwise it 
might become of the order of unity and therefore it will 
not be allowe'' r e the perturbational result any more. 

The use : momentum cut-off Л as a scaling 
variable indicates с jrly that^jye atudy a statistical 
physical problem and not a field theoretical one. It 
should be stressed that the whole renormalization proce­
dure is only a useful tool to get the low momentum be-
haviour starting from the <\, -J л region by scaling 
down A to small values. 
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We have made an attempt to clarify the relationship 
of the simplified new method to the original Gell-Mann-
Low technique. We have shown that in the Gell-Mann-Low 
technique it is not assumed that the physical functions 
obey a scaling relation. It is based on a completely gene­
ral symmetry property and the symmetry transformation re­
sults in such new vertex and Green's functions that their 
functional forme are in general, different from the phy­
sical ones. In the general case, the transformation can be 
parametrized by at least one new parameter X , which doe* 
not necessarily have any physical meaning. This new para­
meter means a new variable for the different functions. 
The transformation parametrized by У. usually leads to 
transformed functions with increased number of variables. N 

By choosing different normalization conditions, different 
multiplicative factors and different transformed fu^ptions v 
are obtained. It may happen that for some statistical phy­
sical system the transformed function is equivalent to the 
physical function if appropriate normalization condition 
is taken. In this case scaling is an inherent property of the 
system and all of its consequences can be explored. It has been 
shown that by applying slightly different parametrization of 
the transformation /i.e. slightly different normalization 
condition/, the transformed function may depend on the variable 
л /X but this dependence is unessential in the sense 

that this variable does not appear in the Lie equations 
and the critical behaviour is reproduced correctly. It 
should also be mentioned here that the multiplicative renormalizatlor 
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could be successfully applied to systems which do not 
obey exact scaling and show only an approximate scaling 
behaviour /see Ref. [25] /. In this case the extra variable 
has to be introduced and the renormalization procedure 
cannot be described by cut-off scaling. 

Concerning the conventional Gell-Mann-Low technique, 
the most important result of this paper is that *we have 
found the adequate normalization condition. Imposing this 
condition /see eqs. /Г.43/, /2.44/ and /2.47/4 the trans-

z. t 

formed functions both in <-\ and "* dependence have the 
same analytic form in perturbation theory as the physical 
Green's function and vertex if those smoothly varying 
parts,which are irrelevant for the critical behaviour, 
are neglected. Thus the number of variables is not in­
creased and the scaling parameter is in fact the cut-off. 
In this way the equivalence of the conventional Gell-Mann-
Low renormalization and the new renormalization procedure 
proposed in Sec, III. is demonstrated. This consideration 
is not restricted to the problem of phase transition, thus 
that can be extended to any of those problems where cut-off 
scaling holds e.g. one-dimensional metallic system, Kondo 
problem, etc. 

In our new renormalization procedure everything is 
reduced to calculate the renormalized, invariant coupling 
u c and there is no need to introduce higher order 
couplings /three-, four-particle scattering/. In Wilson's 
formulation of the renormalization group transformation 
the introduction of higher order couplings is very essen­
tial and the renormalization procedure cannot be described 
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consistently by keeping the two-particle scattering only. 
In first and second order in £ these higher order couplings 
are not relevant and our procedure is in agreement with 
that of Wilson. The relation of the conventional Gell-Mann-
Low renormalization, our new procedure and Wilson's theory 
in higher orders is not clear and needs further studies. 
If the higher order couplings become relevant in higher 
order in С , this may be reflected in the Gell-Mann-Low 
theory in the fact that the variable Л /XL does not drop 
out and it describes how far the system is scaled from 
the physical situation. 

By extending the method discussed in the present 
paper more complicated systems than the simple isotropic 
q> model can also be studied and it can be shown that 
in these cases as well cut-off scaling generates a multi­
plicative renormalization. This problem will be studied 
in a separate publication. 

Finally we believe that this method can be applied 
to study the dynamics of critical behaviour after a 
rather straightforward extension of the formulation to 
include the energy variables. A calculation of this type 
has been carried out by Zawadowski and Greet [37] and 
they obtained similar results as Abrahams and Tsuneto 
[38J and De Dominicis et al [3g] using very different 
methods. 
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Appendix A. 

In this tppendix we give a comprehensive list of all 
the integrals which are relevant for the analytic contribution 
of the diagrams diacuaaed in this paper. The integration over 
the «omenta goes everywhere on a hypersphere of radius Л , 

• 

/A.4/ 

( 4JÜ- СЛ«- | - J — ' — J L -L • —Í \ -

t t , • / A ' 5 / 
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С ^± C A / -J í í - JL J í__ \ 

\ ^ \ * J i C^Pa J i _ _J í _ J_ 
W Ja,r i-^* rí (^„f ( r i ^ (̂ *г»Г nl 

/ A . 7 / 

/A. 8 / 

1 
raV fíV ( d i ' —! , _ i _ . — i _ -
417 W '(ы* (r*l**l)L (pT^vr (г,**)1«-*1 (Р^Р,)Ч*1 

/A. 9/ 

(£SL [±i±. \€i± <±- - í — J í í —*— -
\{lif i i ü ? . 41»l" p,r (Pi^*" Гх1 (fi-^Г (p^Pi)1" (f^p) 

VM* ) е т *ŰW* (pTT^pL^T^1 I M . ) 1 ^ 1 ( I ^ W ^ 1 

* / < 

'pi * * 
] • 

/A . I I / 

.tí(-f 1^^»lU7l-
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Appendix В 

The critical exponents have been calculated in the 
paper by using the new renormalization procedure of 

Sec. III. The exponent v has also been calculated by 
the conventional method but using a physical normalization 
condition. Mere we will calculate the same quantity with 
the field theoretical normalization to illustrate how this 
method works. 

As we have emphasized earlier, normalizing the Green's 
function and vertex to unity, as in eqs. /2.14/ - /2.15/ 
has the consequence that the physical Green's function 
and vertex cannot be reproduced by a special choice of Л . 
Nevertheless if we are only interested in the critical 
exponents and do not want to determine the prefactors, 
this normalization condition is permitted. 

Starting from the perturbational expansion calculated 
for finite cut-off A , the normalization conditions 
/2.14/ - /2.15/ lead to the following form for -гл and 2 3 

- \ 4 * -~ - ̂  \ \ -€ 

uJ V\ U /п. i/ 

У-, - \ *• ^ < ^ [(<-í,K Í л' 
\v\ t i M .. I 

\V 
- • " \ > 

v: b'i <U* iv 4. • 
/D.V 
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The transformed Green's function and vertex are obtained 
after eliminating z 1 and гг , 

and the invariant coupling is 

Writing no» the Lie equatior for the invariant coupling 

i i / B . 6 / 
_ I ^ J - U ^ U - I K A + • • ) , 

TL 

with * - У / > г • T h e 8 o l u t i o n o f t h i e в Я " а ь 1 о п c a n b e 

wri t ten in the вате form as eq. / 2 . 7 8 / , but with a d i f f e ­

rent vnlue for the f ixed point . 

^ ^ • i ^ n - b ^ ) ! - u ! ) / Ö . 7 / 



- 82 

The fixed point coupling being a non-measurable 
quantity, this difference has no consequence for physical 
quantities, like the critical exponents. Calculating >? 
in this всheme, the Lie equation for d is 

Э. 1ЦЦ 

_^(^AK^I! u i U u K * 4... } / B . 8 / 
11 ! 

This equation is different from eq. /2,81/ in the co­
efficient of the s*cond term. Inserting the fixed point 
value fiom eq. /B.7/ we get exactly the same result as 
in eq. /2.28/ with the correct у and <o . 



- 83 -

References 

К. Е. Stanley, "Introduction to Phase Transitions 
on Critical Phenomena", Oxford University Press, 
New York, 1971. 
L. P. Kadanoff, Physics 2 /1966/ 263. 
K. G. Wilson, Phye. Rev. B4 /1971/ 3174, 3184. 
K. Gf Wilson and 3. Kogut, Physics Reporte JLZ,/1974/ 75. 
P. W. Anderson, G. Yuval and D. R. Hamwann, Phye. 
Rev. Bl /197O/ 4464. 
P. W. Anderson, 3. Phye. C: Solid St.Phye. 3 /197o/ 2346. 
E. C. G. Stueckelberg and A. Peterman, Helv. Phye. 
Acta. 24 /1951/ 153. 
M. Gell-Menn and F. E. Lour, Phye. Rev. 95 /1954/ l3oo. 
N. N. Bogoliubov and 0. V. Shirkov, Introduction to 
the Theory of Quantized Fields, Interscience Publ. 
London /1959/. 
C. Di Castro and 0, Oona-Lasinio, Phye. Lett. 29A, 
Д969/ 322. 
C. Di Castro, Riv. Nuovo Ciroento JL /1971/ 159. 
C. Di Caetro, Lett. Nuovo Cimento 5 /1972/ 69. 
M. Fowler and A. Zawadowski, Solid State Coromun. 
9 /1971/ 471. 
A, A. Abrikosov and A, A. Migdal, Э. Low Tenp.Phys. 
3 /l97o/ 519. 



- 84 -

G. Dona-Lasinio, Proceedings of the Nobel Symposium 
XXIV, p. 38. 
Academic Press, New York /1973/ 
C. G. Callan, Phys. Rev. D2 /l97o/ 1541; K. Symanzik, 
Comm. Math. Phys. ,18 /l97o/ 227. 
E. Urezin, 3 -C, Le Guillou and 3» Zinn-3ustin, 
Phys. Rev. D8 /1973/ 434. 
E. Brezin, 3.-C, Le Guillou and 3. Zinn-Ouetin, 
Phys. Rev. D9 /1974/ 1121. 
K. G. IVilson, Phys. Rev. Letters 28 /1972/ 548. 
F. de Pasquale and P. Tombesi, Nuovo Ciroento 12B /1972/43. 
T. Tsuneto and E. Abrahams, Phys. Rev. Letters 3_o 
/1973/ 217. 
S. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 66 /1974/647. 
3. Sólyom, 0. Phys. F: Metal Physics 4/1974/2269. 
N. Menyhárd and 3. Sólyom, 3. Low Temp. Phys. \2 

/1973/ 529, 
and 3, Sólyom, 3. Low Temp. Phys. _12 /1973/ 547. 
G. Iche, 3. Low Temp. Phys. Jt_l /1973/ 215. 
E. Urczin, 3,-C, Le Guillou and 3. Zinn-3ustin, 
Phys. Rev. B8 /1973/ 533o. 
G, Forgács, Lett, Nuovo Cimento Alo /1974/ Я45. 
Y. iflmnzaki and M.Suzuki, Prog. Theor. Phys. _5o 
/1)73/ lo97. 
A. 1. l í i r k i n anó D, E. Khi.Kj 1 ' ni i . f i k i i , Zh, I k s p . 

Teor. f i z . 56 / 1 9 6 9 / 2o87 /Sov.Phys.JLTP 29 / 1 9 6 9 / 1123/ 



- 85 -

E. Abrahams and T. Tsuneto, unpublished. 
S. K. Ma, Phys. Rev. A7, 2172 /1972/ 
G. Ahlers, Л. Kombiit and К. D. Guggenheim, 
Phys. «ev. Letters 34 /1975/ 1227. 
F. D. Wegner and E. K. Riedel, Phys.Rev. B7 /1973/ 248. 
E. Brezin, Э. de Phyiique Lett. 36 /1975/ L-51. 
E. Brezin and D. Zinn-Oustin, Phys. Rev. B13 /1976/ 251. 
F. D. Wegner, Phys. Rev. B5 /1972/ 4529. 
A. Zawadowski and G. S. Greet, to be published. 
E. Abrahams and T. Tsuneto, Phys. Rev. Bl_l, /1975/ 4498. 
C. De Dominicis, E. Brezin and D. Zinn-Oustin, 
Saclay preprint DPA-T/75/17. 



- 86 -

ons 

Typical low order diagrams for the Green's 
function. 

Typical low order diagrams for the vertex. 

Second and third order self-energy diagrams. 

First, second and third order vertex corrections. 

Third order vertex corrections with different 
orientations of the lines. 

First, second and third order corrections to 
r- IM! 

the vertex I . 
Diagrammatic r ep resen ta t i on o f the d e n s i t y -

- d e n s i t y c o r r e l a t i o n f u n c t i o n , 

Ze ro th , f i r s t and second order diagrams f o r the 

p o l a r i z a t i o n К . 
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