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The Study of Discharge Cleaning in the JFT-2 Tokamak 

with Surface Observation by AES 

Yoshio GOMAY*, Teruhiko TAZIMA, Noboru FUJISAWA+, 

Norio SUZUKI-1" and Shigeru KONOSHIMA+ 

Division of Large Tokamak Development, Tokai, JAERI 

(Received July 7, 1976) 

Noticeable correlations were observed between the changes of dis­
charge characteristics, wall conditions and typical mass peaks with 
discharge cleaning in the JFT-2 tokamak. Atomic composition of the vacuum 
wall surface observed by AES becomes constant with continuing discharge 
cleaning in the level except hydrogen and helium: 30-50 % C, 20-30 % Mo, 
15-30 % stainless steel elements and 10-15 % O. The stable reproducible 
plasma with Z eff = 4,5 was obtained in this wall condition. The limiter 
and vacuum wall materials (Mo and 304 stainless steel, respectively), 
carbon and oxygen were observed depositing on the wall in the thickness of 

o o 

about 300 A at the minimum inner radius of the vacuum chamber and 40 A 
nearly at the maximum after 2900 cleaning pulses. The mechanism determin­
ing the wall condition is also discussed. 

*) On leave from Research and Development Centre, Tokyo Shibaura 
Electric Co., Ltd. 

+ Division of Thermonuclear Fusion Research, Tokai, JAERI. 
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壁状態のAES観察を含むJFT-2

放電沈浄効果実験

日本原子力研究所東前研究所大型トカマク開発部

五明由夫ホ・悶島輝彦・篠沢 登+

鈴木紀男+・木島滋+

( 1976年7月7日受理)

JFT-2トカ 7 クの放電洗浄過程でa 放電特性，壁状態，放霞により雰閉気に放出されるガス成分

の変化を観察するととにより，放電洗浄の効果を統一的に示した。壁表面の組成は，放電洗浄を続け

るにしたがって一定の状態 f原子組成;30-50%C， 20-30%乱00，15 --30 %SUS構成元素，

10 -15%0，但し.'H， Heは除く)を保つようになり，その状態でZefl=4.5の安定で再現性のよ

いプラズマが得られた。放電抗浄中壁位置でプラズ7 にさらしたサンプルには，ベロ一山位置で約

300λ 谷位置で40Aの， リミター材 (Mo)，壁材 (SUS系)，炭素，酸系で構成される堆積層が

観測された。壁状態の決定機構についても考察した。

り 外来研究員東芝総合研究所

+) 日本目立子')]研究所東海研究所 核融合研究部
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1. INTRODUCTION 

Plasma-wall interaction plays an important role in the present 
tokamak discharges and will be more important in future large tokamaks 
with higher plasma temperatures and longer discharge durations. Impurity 
concentrations in the plasma should depend on the plasma characteristics, 
especially at the boundary region, and the surface condition of the limiter 
and vacuum wall. A well conditioned wall surface should therefore be 
necessary for attaining a stable plasma with low impurity concentrations. 
Baking' of the vacuum chamber and/or discharge cleaaing have been employed 
for the purpose in current tokamak devices. It has been shown in the ATC 
that an active metal coating evaporated onto the surface of the vacuum 
chamber is a simple technique to reduce the impurity concentrations in 
the plasma [1]. 

In this paper the effect of discharge cleaning in the J'FT-2 tokamak 
is studied by observing the changes with cleaning pulses In the discharge 
characteristics, the surface compositions of the samples located at the 
vacuum wall and the typical mass peaks. We also discuss the mechanism 
determining the condition of the vacuum wall surface in view of the 
observed depth profiles of atomic compositions in the samples. 

The same kind of research was recently inlciated in the PULSATOR 
[2,3] mainly as to the material transport during discharges, and the 
deposition of the limiter and wall materials and oxygen has been observed 
on the target exposed to the plasma. The wall problems of the Inter­
secting Storage Rings (ISR) at CERN have beer, studied [A]. Some cleaning 
methods for stainless steel including glow discharge cleaning have been 
rtudled by SIMS and AES with a view to providing a clean wall surface with 
low gas desorption under ion bombardner.it [5]. 

2. EXPERIMENTAL DETAILS 

The JFT-2 device has been, described in detail elsewhere [6] except 
that the toroidal magnetic field 'a as been increased up to 18 kG. This 
experiment was performed in baking th« vacuum chamber and following 
discharge cleaning after opennir.g the torus to air for three monthes 
(Sep. - Dec, 1975). The base pressure, 5 x 10~ 8 Torr, was obtained after 
baking the chamber itself at 150 - 200°C and the observation sections at 
about 80?C. The pumping speed by a. turbomolecular pump with a liquid 
nitrogen trap is about 1000 1/sac in high vacuum pressure (10 - 4 - 1 0 - 5 

Torr) but is decreased to 100 - 200 1/sec at the base pressure. The 
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discharge conditions for cleaning are: toroidal magnetic field = 6-7 kG, 
filling pressure. = 2x 10-1* Torr (hydrogen); plasma current = 100 KA; and 
repetition time - 1-1.5 min. The total cleaning pulses are 2900 shots. 

The discharge characteristics were measured at the typical stages 
of discharge cleaning in the same conditions as in cleaning pulses 
except that the toroidal magnetic field is 14 kG. We observed the 
electron temperature and density profiles vertically at <f> = 270° (starting 
clockwise from the limlter) by Thomson scattering; the latter also 
horizontally at <)> = 180° by a microwave interferometer; and radiation 
losses at ij) = 180° by a silicon thermister bolometer [19]. 

The surface compositions of the samples were measured by Auger 
Electron Spectroscopy (AES) at the outer side of the toroidal field coils 
(<)> = 90°), using the movable mechanism of the samples as shown in Fig. la. 
The Auger electron spectrometer is a standard cylindrical mirror analyzer 
(Physical Electronics Inc.). The primary electron energy for AES is 
4 keV. The samples of 304 stainless steel and molybdenum are located as 
shown in Fig. lb, simulating the wall at the minimum and maximum inner 
radius of the vacuum chamber (304ss bellows). The vacuum pressure in the 
chamber for AEF measurement is 1 0 - 6 -10" 7 Torr. The depth profiles of 
atomic compositions in the samples were also measured after discharge 
cleaning, using Auger/sputter techniques [7] in the standard system of 
the method (Physical Electronics Inc.). The argon ion beam was used for 
sputter-etching in the conditions: Ar pressure = 5 x 10~ 5 Torr; beam 
energy = 2 keV; and emission current = 15 or 30 mA. The base pressure of 
the system is 1 0 - 9 Torr. 

The time dependence of the mass peaks which are identified to be CH3 
and CH4" from the mass spectrum, was measured in the intervals of dis­
charges by a quadrapole mass filter located at the evacuation port (<j>"Q°). 

3. THE EFFECT ON DISCHARGE CHARACTERISTICS 

The time behaviours of the loop voltage and total plasma current 
including the liner one drastically change with cleaning pulses as ahown 
in Fig. 2. The initial resistive plasma becomes inductive within 500 
shots as observed in the decrease of loop voltage and the increase, of 
current duration. The time behaviours change gradually thereafter and 
become constant at about 1500 sshots. Figure 3 shows the changes with 
cleaning pulses in the eenf-.r-il electron temperature, the plasmi resistance 
at the peak of plasma current and the radiation losses ini.egmt.ed 
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temporally during the discharge and spatially on the assumption that the 
distribution is homogeneous over the wall. The former increases and the 
latter two correspondingly decrease with cleaning pulses. This suggests 
that the impurities in the plasma considerably affect the discharge 
characteristics at the initial stages of discharge cleaning. 

The discharge characteristics at the end of discharge cleaning (after 
2500 shots) are shown in Fig. 4. Fig. 4a shows the time behaviours of 
loop voltage, plasma current, mean line-of-sight density and peak 
electron temperature and Fig. 4b the electron density and temperature 
profiles at the peak of plasma current, 22 msec after the start. From 
these results, the energy confinement time TJJ is 3.2 msec on the assumption 
that the ion temperature is one third of the electron, the poroidal beta 
for electrons $ is 0.17 and the effective ionic charge Z *.. is 4.5 with 
the effect of trapped-particles included, assuming that the current 
distribution is proportional to T e ( r ) 3 ' 2 and 2 eff is constant over the 
plasma column. 

4. CONDITIONS OF THE VACUUM WALL 

(A) SURFACE COMPOSITION 

Quantitative analysis with AES is not fully established yet, but 
semi-quantitative analysis is possible with the aid of standard spectra 
of the elements as published in a handbook [8]. In this method the 
relative atomic content Ri, denoted by atomic percents, of the element 1 
except hydrogen and helium is obtained by [9]: 

Pi , n P ± 
R l = FT I E "ST x 10° (1) 

a i i=i & i 
where Pi and Si are the observed Auger peak height and the relative yield 
of Auger electrons in each main peak, respectively, and n is the number 
of the observed elements. Here we assume that the Auger peak shape, v:he 
escape depth of Auger electrons and the influence of backscattering on 
the relative yield in each element are the same as in the cases of 
standard spectra. The accuracy of the method is expected to be within a 
factor of two [9]. 

The surface composition except hydrogen and helium in the samples 
located at the vacuum wall (Fig. lb) changes with cleaning pulses as 
shown in Fig. 5. The surfaces are covered by carbon and sodium in the 
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composition of more than 90 atomic percent (.a/0) before discharge cleaning. 
This initial contaminated layers are removed with continuing discharge 
cleaning and then the surface composition is saturated in the level of 
30-50 a / 0 C , 20-30 a/ 0Mo, 15-30 a/ 0 stainless steel elements and 10-15 % 0 
after 200-500 shots in the samples located at the minimum inner radius of 
the vacuum chamber and 500-1000 shots in the one located nearly at the 
maximum. 

Comparing these results with the changes of the discharge characte­
ristics (Fig. 2), we may consider that the drastic changes of the discharge 
characteristics observed in the initial 200 shots and succeeding 300 shots 
are mainly caused by conditioning of the wall near the minimum and maximum 
inner radius of the vacuum chamber, respectively. We have not enough 
results to discuss the following gradual changes up to 1500 shots, but 
homogeneous conditioning throughout the torus may be necessary for obtain­
ing the stable discharges without negative voltage spikes. 

We had apprehensions of misunderstanding the surface composition by 
adsorption of the ambient gas species and deposition of carbon under 
electron bombardment for AES, since it took 1-2 hours to measure the four 
samples. These effects were examined in the standard AES/sputter system. 
After the samples sof 304 stainless steel and molybdenum were cleaned by 
sputter-etching, they ware exposed to the almost same vacuum, 2 x 10~ 7 Toirr, 
as at the measurement in. JFT-2 and to electron bombardment for AES in the 
same vacuum. Fig. 6 shows the time dependence of the surface composition 
in these processes. Exposed to the vacuum, the cleaned surfaces of both 
samples are covered with carbon by 20 - 30 a/ 0 and oxygen by 5 a/ 0 in 
less than a minute and have no change thereafter. Exposed to electron 
bombardment, the molybdenum surface is gradually covered with carbon up 
to 60 a / 0 in 30 minutes. The deposition under electron bombardment cannot 
be found in the other cases such as carbon or oxygen on the stainless 
steel surface and oxygen on the molybdenum, since there exists no dif­
ference between the results of adsorption and deposition. 

These results suggest that the adsorption of ambient gas species 
cannot considerably affect the data of surface composition (Fig. 5), 
since it will be almost saturated in the interval of cleaning pulses 
(1-1.5 tnin). On the contrary, the deposition of carbon on the molybdenum 
surface under electron bombardment: affects the data in such a poor vacuum 
pressure for AES measurement as ussed in JFT-2. The radiation time of 
primary electron beam was therefore shortened in the measurement as far 
as possible. 

- 4 -
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(B) DEPTH PROFILES 

Quantitative analysis with Auger/sputter techniques is not ful3" 
established for mixed layers, since etching speed is difficult to be 
estimated and preferential sputtering at etching 13 inevitable [7]. But 
we perform it for semi-quantitative discussion, estimating the former from 
the data for each element and neglecting the latter effect. 

Figure 7 shows the depth profiles of atomic compositions in the 
samples (Fig. lb) except Mo-B observed after discharge cleaning. Though 
the samples were exposed to air for three days before the measurement, the 
contaminated layers on the surface mainly composed by oxygen and sodium 

o 

is only about 10 A in thickness. Under them there exist the deposited 
layers of the typical atomic composition: 40 - 50 a/ 0 Mo, 20 - 30 a/ 0 C, 
10 - 15 a/ 0 Fe, 5-10 a/p 0, and 1 - 5 a/ 0 Cr and Ni. In deeper regions there 
seem to exist semi-bulk layers of each metal (Mo or 304 ss) which contains 
carbon by 10 a/o in every samples. In bulk layers of 304 stainless steel 
carbon content should be the same order as estimated from the chemical 
composition (0.06 %C) [11]. 

The etching speed of argon ion beam (2 keV, 15 mA) is 11 A/min for 
molybdenum and 17 A/min for iron [10]. If the thickness of the deposited 
layers in the stainless steel samples is defined by the depth where 

o 
molybdenum content is decreased to 10 a/0 , it is 300 A for aS-B located 

o 

at the minimum inner radius of the vacuum chanber and 40A for SS-B located 
nearly at the maximum on the assumption that the etching speed of the 
layer is 15 A/min. The deposited layers in Mo-A are similar to those 
in SS-A except that the initially adsorbed sodium remains by about 10 a/o 
at the depth corresponding to initial surface and the decrease of iron 
content in the layers between the deposited and semi-bulk layers is 
steeper than that of molybdenum in the same layers of SS-A. The detailed 
data of Mo-B was not obtained, but it was confirmed that the thickness of 
the deposited layers is the same as in the case.of SS-B. 

The mechanism in which the deposited layers are produced may be that 
the atoms of the limiter and wall materials, leaving each place by 
interaction with the plasmas, arrive at the wall as ions and the gas 
species of carbon and oxygen are adsorbed by the active surface in the 
intervals of discharges. The limiter material may enter into the plasmas 
by either sputtering due to ions or evapolation caused by localized 
temperature rise and the wall material mainly by sputtering due to charge 
exchange neutrals. The particles arriving at the wall are considered to 
be ions from the fact that the thickness of the deposited layers in the 
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sample SS-A is about ten times as large as in SS-B. This well corresponds 
to the results in PULSATOR [3]. 

The sources of carbon and oxygen should exist in the vacuum chamber, 
since the contents of carbon and oxygen become constant with continuing 
discharge cleaning in the surface composition (Fig. 5) and they are also 
constant over the deposited layers (Fig. 7). The sources may be the 
ambient gas species, considering that gas species including carbon and 
oxygen seem to be adsorbed by the surface in view of the difference of 

o 

molybdenum content in the region of 20 A from the surface. We can 
estimate this difference by applying that the escape depthes of Auger 

o o 

electrons from molybdenum atom are 5 A and 20 A for the energy of 221 eV 
and 2044 eV, respectively [9]. Calculating molybdenum content with these 
two Auger peaks, it is suggested that the molybdenum content in the region 

o o 

of 20 A from the surface is a few times as large as in 5 A, or more 
carbon and oxygen exist in shallower region from the surface. The adsorp­
tion may also be the reason why the carbon or oxygen content in the 
surface composition (Fig. 5) is larger than those in the deposited layers 
(Fig. 7). 

The adsorbed carbon seems to form carbide by successive recycling 
between the plasma and the wall, since Auger peak shape of carbide [12] 
was observed in the measurement of the depth profiles and of the surface 
composition after more than several hundreds of cleaning pulses. 

The total amount of deposited material for 2900 cleaning pulses at 
the sample SS-A is nearly 6 x 1 0 1 6 Mo atoms/cm2, 3 * 1 0 1 6 atoms of 
stainless steel elements/cm2, 1 0 1 7 C atoms/cm2, and 1 0 1 5 0 atoms/cm2. 
If we assume that the molybdenum particles are deposited uniformly In 
toroidal direction, the total deposited amount per discharge throughout 
the torus is about 1 0 1 8 atoms. This nearly corresponds to a tenth of 
.total plasma particles. 
As for carbon and oxygen, assuming that they are adsorbed with the stick­
ing probability of 0.1 during discharge cleaning (4 days), the necessary 
partial pressure for deposition is about 1 0 - 9 Torr for carbon species and 
1 0 - 1 0 Torr for oxygen species which can be expected from the mass 
spectrum at the base pressure shown in Fig. 9. 
5. OBSERVATION OF MASS PEAKS 

The effect of discharge cleaning has been studied by observing the 
changes of mass peaks with cleaning pulses including their differences 
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between before and after the discharge [13]. In this • xperiment we found 
that CH[j released from the wall surface by the discharge is almost 
evacuated, since the mass peaks of m/e = 15 and 16 were observed to 
increase instantaneously by the discharge and then decrease in accordance 
with the evacuating speed. Such phenomena were not observed in the other 
mass peaks, m/e = 1 8 , 28, 32, 44 and so on. The peak heights generated 
by the discharge rapidly decrease in initial 500 shots and become constant 
thereafter as shown in Fig. 8a. This result is similar to the carbon rate 
change in the surface composition (Fig. 5). We can well understand this 
similarity, considering that the peak heights should correspond to the 
sources of CH^ on the wall surface. 

We have another same kind of data shown in Fig. 8b which were 
obtained in helium discharge cleaning performed before. The result is 
similar to that of hydrogen discharge cleaning (Fig. 8a) except that more 
cleaning pulses are necessary for attaining the nearly constant peak 
heights. 

The constancy of the peak heights observed in both cases suggests 
that the sources of CH4 exist in the vacuum chamber. This may be 
correlated with the sources of carbon and oxygen in the deposited layers 
(Fig. 7). As described before, these sources may be the ambient gas 
species in which considerable amount of water and acetone exist as 
identified from the mass spectrum at the base pressure shown in Fig. 9. 
This may be caused by the low baking temperature (^80°C) of the observation 
sections. 

6. CONCLUSION AND DISCUSSION 

It has been shown that there exists noticeable correlation between 
the changes of discharge characteristics, wall conditions and methane 
emission by the discharge with discharge cleaning using low toroidal 
magnetic field. The surface condition of the vacuum wall becomes constant 
with continuing discharge cleaning and the stable reproducible plasma with 
Zfrff =4.5 was obtained in this saturated wall condition. The discharge 
characteristics, especially Z e j f , will not be further improved by continu­
ing discharge cleaning. 

The limiter and wall materials, carbon and oxygen deposit on the 
samples expcsed to the plasma at the vacuum wall during discharge cleaning. 
Considering the results throughout this paper, the saturated level of the 
wall condition may be determined by deposition of the metallic materials 
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during the discharges and adsorption of the ambient gas species in the 
intervals of discharges. 

In order to obtain a clean wall surface by discharge cleaning, it is 
necessary to suppress contamination by the ambient gas species. Higher 
vacuum, higher wall temperature and using more continuous discharges such 
as radio frequency and glow ones are preferable for suppressing adsorption. 
Filling gas species for discharges are also important for producing 
volatile materials on a wall surface. 

Considering from the results of this paper, in-situ coating of the 
first wall by suitable material is another potential method for obtaining a 
clean wall surface as shown in the ATC [1]. 

The' existence of oxygen and carbon as impurities in the plasmas has 
been confirmed in JFT-2 [6, 14] and it was recently shown that the main 
impurity may be oxygen [18] as observed in other tokamak devices [15, 16]. 
It is still an open problem why more oxygen is desorbed from the wall 
than carbon in spite of less oxygen on the wall surface. A possible 
mechanism io chemical effect such as H2O formation on th:; wall surface by 
particle bombardment [17]. 

It is interesting from another point of view that the strongly 
adsorbed carbon, supposed from the fact that the Auger peak shape of 
carbide was observed, may have a small desorption yield with plasma-wall 
interaction, comparing with the case of adsorbed oxygen. This may 
suggest that the metal, which strongly adsorbs carbon and has negligible 
oxygen on the surface, is feasible for the first wall. 
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Fig. la Schematic view of the system for surface observation 
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Fig. lb Location of the samples exposed to the plasma 
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Fig. 1a Schemati己 viewof the system for surface observation 
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Fig. 1b Location of the samples exposed to the p1asma 
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2 The changes with cleaning pulses in the time behaviours 
o£ loop voltage V̂  and to ta l discharge current I p + 1^ 
where In i s the plasma current and I j the l iner one. 

100 1000 
SHOT NUMBER 

3 The changes with cleaning pulses in the central 
electron temperature T e(0) and the plasma resistance 
at the peak of plasma current, and the radiation ji 
losses P r integrated temporally during the discharge 
and spatially on the assumption that the distribution 
is homogeneous over the wall. 
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Fig・2 The changes w1th cleaning pulses 1n the time behaviours 
of loop voltage V R， anc:1. total discharge current Ip + IR， 
where Ip is the plasma current and IR， the liner one. 
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Fig. 3 The changes with cleaning pulses in the central 
electron temperature Te(O) and the pl訪問 resistance
at the peak of plasma current， and the radiation‘:.R 
losses Pr integrated temporal1y during the discharge 
and spatial1y on the assumption that the distribution 
i8 homogeneous over the wal1. 
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Fig . 4a The time behaviours of plasma current I p , loop 
vol tage V^, mean l i n e - o f - s i g h t densi ty <n e>, and 
cen t r a l e lec t ron temperature T e (0) a f t e r 2500 shots . 

500 -

Fig. 4b The radial profiles of the electron temperature T e 

and density n e at the peak of plasma current after 
2500 shots. 
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Fig. 4a The time behaviours of plasma CUl.'rent Ip. loop 
voltage V2. mean line-of-sight density <ne>， and 
central electron temperature Te(O) after 2500 shots. 
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Fig. 4b The radial profiles of the electron temperature Te 
and density ne at the peak of plasma current after 
2500 shots. 
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Mo Ft Cr Ni C O N N» Ci 
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Fig. 5 The changt of the surface composition with cleaning pulses 
except hydrogen and helium in the samples of (a) SS-A, 
(b) Mo-A, (c) SS-B and (d) Mo-B located as shown in Fig. l b . 
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Fig. 7 The depth p ro f i l e s of atomic 
composition in the samples of 
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(c) Mo-B located as shown in 
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