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ABSTRACT.

In this paper we give an essentially self-contained
account of some general structural Qropertics of the dynamics
of guentun open larkovian systens. ‘e review sone recent
results regarding the problem of the classification of quantuam
liarkovian naster equations and the liniting conditions under
which the dynaniczl evolution of a gquantum open system obeys
an exact semigroup law (weak coupling limit and singular '
coupling limit). Ve discuss a general form of quantum detailed
balance and its relation to tbernal relaxation and to

nicroreversibility.
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0. IRTACLUCTICH.

Recently, nuen work has been davoind to the rirorous study

o
L

the conditions under vhich memory effects can be neglacted

4
-

the dynonical description of guantum open gystens, thus

[

cading to a2 tize evolution oveyins an exact senirroun law
[23,24,70,25-28,45,37,34,35 , 63 . This has gone parallely with
an extonded investigation of the problem of the classification
of guauntum llarkovisn master ecuations [33 ,53,60,23].

In this naper we nrecent a short, orzanic gnd essentially self-
contained review of those results in the field, of which we are
aware and which we deenm to be most representative. Ve make no
clain to completeness, since the literature on the sudbject is
groving very rapidly, and in writing the paper we have essan-
tially coniined ourselves to 2 discussion of those features

of the thecery which deal with general structural properties
rather than with specific physical eapplications. For the lat-
ter, we refer to the review articles of Hnake [4(} and Agar-
wal {5}.

Tre unified starting voint for the rigorous study of the
limiting conditions which lead to a Narkovien reduced dynanics
is the well imown generalized master equation, shich gives a
Tormally exact description of the irreversible dynanicsl evo-
lution of a quantum open systen coupled to its surroundings.
Taersfore, we give in Section 1 a short review of this techniqgue.
In Se2etign 2, we recall the property of complete positivity
of 2 reduced dynanmica and briefly touch upon the ‘probdlea of
nutomorpnic extensions of families of completely nositive maps.
In Jaction 3, we discues'qualitatively the conditions uvnder
vinich £ generalized master eguation can be approxinsted by a
fiarkovian master eaquation (weal coupling or van Hove limit and

singular coupling limit) and we review the results obtnined



so for concerning the siructure of the generators of cuantuam
dynaizical senigroups. In Scction 4, we discuss the restrictions
innlied by conplete positivity on the iarkovian dynomics of o
2-level system, %his being, to our.lmowledge, the only case
so far in which such restrictions have been given an cxplicit
form in terms of obvservable parameters of the dynamical evol-
ution. In Section 5 we give a siort sunmary of the rigorous
theory of the weak coupling limit, in the form which has
recently been given by Davies. Section 6 is devoted to an
axposition of a simple but fairly general ﬁodel of singular
coupling. In Section 7, we study a quantum form of detailed
talance for a lerkovian master equation, which turns out to
be characteristic of dynemical semigroups describing relax-
ation to thermal equilibrium, thus providing yet another
cnaracterization of KNS states. Finally, we derive in Section
8 the irmplications of microreversibility (time reversal
invariance) on the generatora of guantun dynamical semigroups
and wa discuss their relation to analogous conditions vhich
have recently been proposed in the literature, and %0 detailed
balance.

The results of Sections 7 and 8 are mostly new, and will
be treated extensively in future pudblications.

1. GEMERALIZED MASTER EQUATION.

?he generalized master eguation (GME) is a tool for
extracting the dynnmics of a subsystem of a larger system,
by the use of projection technigues on Banack spaces [65,86,
11.33,66,67,61,5.51,64,5;@} Although this technique is well
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known, we shall briefly recall it, mostly in order to introduce
the notations needed in the following.,

We are interested in a Spatxally confinad quantum system S, with
underlying Hilbert space ?5 and algebra of observables 38(555)
the algebra of bounded operators on 55
The "reservoir" R will be taken as an infinite quantum system,

with algebra of observables QI, znd Hilbert space @
determined by the GNS representatxon T, induced by a suitable

reference state u on 21 ,» which we wxll assume to be stationary
under the free evolution of R. We assume ¥, to be faithful and
in our notation we will not distinguish between an element A of
21& and its representative n’az(m .

S + R is considered to be isolated, so that its time evol-

ution is deternined by a selfzazdjoint. Hamiltonian H acting on
§~ S BR
2@ N,
(1.1) H=139 4" + 159 u® + A SR = 1° + A 8SR
where Iis is the free Hamiltenian of §,
HR is the free Hamiltonian of Il in the representation
induced by the stationary state bJR,
v“'"
= Lo V?@V? is the interaction Hamiltonian,

e

with V7 selfadjoint on 65 and V? selfadjoint on SSR

We denote by (6 ER) the Banach space of irace-class
overavors on 6 @FSR, whxch is homo...orphzc to the space of
nornal functionaols on %()p )@ t.‘,(:‘lx, )" according to the map

[ S

~ S, ~R S Ry«
T (BB —{B&E)emUH"]

?(W)[A] = 'i‘rsm[VA] , ¥ AeBRSe ™",

In the following, we shall usc the same notation for W and g?(‘.‘l).

(1.2)
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We use capital scripts, and occasionally capital greek letters,

to denote operators acting on the spaces I(Bg), T(fp‘:), T(%ge 5:)

We denote the identity maps acti’ng on these Spaces by Us ’ DR and
™ . . ) s:’)“ L
» respectively. The dynamics on I(S:@ w):.s induced by

1.3) R =K %I* +T% 2 A RE - H° +AFSE

\'Iith %S = [I{s’ :] ’ '-}gn = [HR, o] ’ %SR = [HSR, ™ . “Ie

define two one-parameter groups of automorpanisms of 2’({{;8@ S'{3R):
) w

(1.4) t =10 :  UY = exp[-1 % t]w,

(1.5) £ = U= UM Uw = exp[-1%e]w , veT (@%@ BD

describing the uncoupled and coupled global time evolutions,
respectively.

Va2 are interested in the reduced dynamics of S, under the
assumption that the initial state of S+R is of the fomm <
'fl(O):S?@ wI: where ¢ is any normalized positive element of I(E) ).

The operation of partial trace with respect to R is defined

es

Trp . (ﬁf@ﬁsﬁ) —_— 3’(63),
(1.6)

2 [rrg 0] = 050 [wao1®)] W aeB(3) .

The “amplification" (’L [33] is the linear operator

d . < (F:)s) '——‘92(BS®‘$§)
(1.7)

a/? =?®(.A)R.

Then



5.
(1.8) ¢ - (Cb'rrn

iz o bounded idempotent (a2 projection) on ﬁ?’(f’é;jsa),
wihich projects onto the subspace ( (& )anuR, 1sonorph1c
to '\'(9 ). .

The reduced dynanics t-->1\ of S in the Schrédinger
picture is defined as follows:

(1.9) 2 (A ] = 225 [ (go P a0 L™ oe ), ¥ A )

naxely

(1.0 Agp = [U,8g] or AA3 =€U g
The dual Heisenberg dynamics t—>/\, is given by
(1.11) TrSISJ(/\"tA)J = Trs"“[(g@w“m;(wa“)],vgez(s‘?s). ¥ aeB(R)
that is
(1.12) NA =‘ﬁ‘IL:_(A®ﬂR), X 2 €B(5)
where & is defined as
¢ B R%ernal —B 35
i (CEVREEE 118 2
and can be shovn to be & conditional expestation [ 58,81,62]onto

B (5.

Starting from the Liouville-von Neumann equation for the

(1.13)

density operator of the global system S+R
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{(1.11) —2—5 W(t) = -iFw(t)

one can formally derive an exact equatiun for the reduced
density overator ?(t) = Tr "I\t;) of §,called the generalized
naster eouation, which, under our assumption on the initial
condition, has the form [41,33]

t.
(1.15) S S) = 4% o 000) +>3/ ae JG(s) ¢ (t-8)

)
where . .
%eff = [Heff’ 'J '
(1.16)
Hy = B A2 wReRyyd
. 3 J
and

111y H(e) = -1r [?CSR('J Cya -0 R3BA)

where

*

(1.28) Uy =exp[-1%E] ;B =B -©)%6)-0)
By setting
(1.19) WSR(4) - %zj%sn%z___ [eiﬁotHSRe—iHot’ ] =[HSR( t), .

ve see that the integral kern-l }{, (s) admits a formal power

gerics expansion in the coupling constant A of the form

.S
(1.20) K (2)= eﬂ")6 S[%o(s)-o- Z(-i)n/\njdt ...dtnm‘\\slt eeot ]

‘ L R A% L
Ot_ tls

vihere



(1.21) I () = -1 [% (s)(J C’)?’sn\ﬂ/_}

j‘(,n(altl...tn) =
< - e [0 D -, ) (D -6, (3- € (e ) (-6

(1.22)

'3’(/ (st tl...t ) depends on the nmulti-time correlation

funections R(V (t )...Vj(t )) of the reservoir operators
31
anrearxing in the intoraction Hamiltonian, up to order k=n+2, the

relevant tines veing t 0=% Fyreeenty B 0= 0.

Tne Born approxi mat:.on of the GIE (1.15) =2mounts to kecoing
N ~i%85, . . - .
only the terrn e &0 (s) in tie expansion (1.20) of T(a).
The term AZGR(V;)VSS is 2 modificotion to the free Hamil~
)
tonian due to the inveraction with the reservoir.. It vanishes

wien wa(v j) =0 V j, vhich is the case in several applications
{5,33,41] and will be assumed for simplicity in the following.

2. COMPLETE POSITIVITY OF THE REDUCED DYNANICS.

Before taking up the problem of the conditions undexr which
the CLE (1.15) can be well apvroximated by a liarkuvian naster
equation and siudying rigorous mcdels the:feof, we discuss a
special feeture displayed by the reduced dynamics, independently
of the nature of the systems under consideration and of their
interaction. '

To this end, we first ‘recall a definition. Let ;’219.11(1 LB
ve C¥-algebras, and denote by M(n) (n integer 2> 1) the algebra

of nxn complex matrices. A linear map gb s % — ’:8 is called
n-nositive Iif the map




P, AL SuN) —s D 1nn),

¢ _(a@m) = PWEM, 1, nei(n),

is prositive. ‘:P is called comnictely nositive if it is n-positive

ior a‘llnieutegers n. Two imnortent classes of completely positive

naps aTer X -automorphions and the conditional expectations [77,

‘.} . Also, if ;"Z‘Land/or % is comautative, every vositive nap
into Jd is completely positivae [12,19,77,78]. On the

ther hand, there exist posivive maps which are not 2-positive;

N

o
s

o

0

an exanple 1s provided by the * -antiaulomorphisms and more gen~
erclly by the Jordan automorphisms which are not reduced %o
#* -autonorphisms [38].
There is an extensive mathematiczl literature cn positive and
completely positive maps [12,19,20,77-73} .
The reduced dymamics in the Helsenberg picture t—»/\*t
of a system S coupled to a reservoir R has the remarkadle prop-
erty that A"t is conmpletely positive for all ¢, since it is the
counncsition of a *-aujbomorphism and ' a conditional expectation.
To our knoviledge, the complete positivity of a reduced dynarics
was first pointed out by Kraus [54, 55] in the context of state
changes produced by quantum measurements, and has beenr subseguen-
tly discussed by several authors [58,38,2} from different
standpoints. ' _
Conversely, Evans [ 31] has recently shown by construction
that if t—>@,, teR,, is o fanily of completely positive
raps of a (concrete) C*-algebra L into itse)f with ¢t(ﬂ =1
¥ t and ¢°= ", then there exist a larger (concrete) C¥-algebra
5, a group {o(t} of ¥ -automo rphisms of B and a condit-
jonal expectation ‘& from 3 onto Y such that

$ 8 = G, w]  Va e .
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In this sense, all fanilies of conpletely positive identity
nros2rving nrps of a C*-alge'bra are sinilar to reduced dynanmics.
However this construction has no direct physical interpretation.

In the particularly interesting case when QI_ = 23(555) and
t "“?t is 2 nom~ continoag%migrc;up, there is an entirely
citrferent construction [22, 321 of ,E ’ lo(t} and % for which
{.;L t§ is implemented by a strongly continous group of unitary
oncrators on the Hilbert space on which 23 acts. This cons-
truction suggests an interpretation of B as the algebra of
observables of a larger system wvhose global dynanics {dt}
induces the reduced dynanmics iCP t} on 21, . Remark however that
t —d % is weakly'*—-continous, but not strongly continous,
unless the generator of t —> CPt is a derivatioxn. Indeed,
supncse that {o{ t} is strongly continous with generator i%
and that the generator L of {q),t} ie the closure of its res-~
triction to V()N A , then L = :+EW , which is again
a derivation [32].

e suspect that the construction of Refs. 22,32 corresponds
to a singalzr coupling of the system. QI. to a boson or femion
resarvoir, in the sense of the models to be discussed in Sec-
tion 6. However, we have not been able so far to give a proof
of this statement.

3. MARKOV APPROXINATION AND CLASSIFICATION OF
DYNAMICAL SENIGROUES.

An evolution equation for the density operator of a subsysten
S of 2o closcd system S+R is said to be a Markovian master equat-

ion (i3®) if it has the form
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(3.1) o) =Low) = % 9y +& o)

vihere C}Geff is as in (1.16), and where the operatoro£D
contains all dissipative effeets. Equations of the form (3.1)
imply a semigroup law of evolution for the state of S, and aie
of common use in the phenomenological treatment of open systems
(relaxation processes [1,11,13,14] y quantum theory of damping
[3], Brovnian motion [4], optical pumping f43], superradisnce
[16,17] y theory of lasers [42}; for extensive lists of refer-
ances, see M] and {5} For applications to the gquantum theory
of measurement and to the decay of unstable sysitcems, ‘see res-
pectively [36} and [80,56] ). However, it is in genexral impos-
sible to derive an MME as an exact consequence of (1.15).' Indeed,
1 9 is such thet %e g¢ 204 j‘d(s) are well defined operators,
and if (1.15) can be put in the form (3.1), it follows that L
is trivially given by (see [29])

L9 - T8 o = 1% -
Hence we do not expect. (1.15) to reduce to the form (3.1)
unless the global dynamics "‘(,Lt of S+R has some "“singulaxr"
cheracter, correspending to a limiting eituat;’i.on in which the
nmermoxry effects which are present: in (1.15) become negligible.
Trom the structure of the kermel j{(s)_ in (1.15), one expects
that a situation of tkis kind will take place if the typical
variation time "CS of ¢(t) is much longer than .t.lf_z’e decay time
Ty 0f the correlation functions of the reservoir. Then (1.15)
should be well approximated by anMME (3.1) with

00
(3.2) i = "i:'%eff +>\i ds K(e)

for times larger than ‘Z'R. A similar argument. applies to other
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types of master equations, such as those satisficd by the
coarse-grained density operator which describes the dynamics
of the macroscopic: observables of a large system[@ﬁ,%@é?,'l;?,57,68,82,831_
Zven thowzh the importance of thq separation of two time
scales for the validity of the Markovian approximation to the
GiZ® has been recognized long ago El5,83,65] and made object of
extensive studies [83,11,33] y rigorous treatments of the
liriting procedure 77 /‘CR--;— oo are rather recent.
Two posgible limits can be taken:
1) the weak coupling limit AN\ — 0, with rescaled time T =/\2tC82,85].
In this case ?TR remains constant, while ‘Cé tends to infinity.
digorous models thereof were studied by Davies [é3,24] and Puleé
.[70]\énd a general rigorous treatment has been recently given
by DavieS'{ZB-QZJ, and will be discussed in Section 5. Roughly’
speaking, it turns oub: that in the limit A—>0 the expansion
(1..20) reduces to “he Born approximation and the integral ex-—
tends to infinity due to the change in the time scale. In par-
ticular, this situation is approximatelyr verified for a system
which is not completely isolated from its surroundings and
relaxes to thermal equilibrium with it}
2) the singular reservoir limit, in which ?7R-"0. As an exam-
ple, this could be regarded as a drastic simplification of a
situation like the one which takes place in a laser, where the
systen of interest is driven by the various pump and loss
mechanis:s, To our knowliedge, it
was first explicit ly recognized by Hepp and Lieb¢[}5} that the
condition 7§R= 0 requires avsingular coupling. In Refs. 37, 34,
35 , to be discussed in.Section 6, we have shown on explicit
nodels that this kind of limiting prbcedure 2llows one to derive
all conpletely positive trace preserving semigroups of an

N~level system. Briefly spéaking, the Markovian behaviour is
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ochieved in the linit T, -—>0 since jﬁo(s) tends to 'jﬁog(s)
and the higher order correctjions vanish.

Since the completely rositive mapvs of a C*-glgebra fornm 2
convex corie which is closed in the VYounded-weak topology [58] ’
the property of complete positivity oI the Heisenberg reduced
dynamics is not destroyed by any cr the ln‘.miting procedures
which are employed to obtain a Markevian master equation.

From the above discussion, we conclude that the operator SE
in the IMME (3.1) can be regarded zs the generrator of a strongly
continous one-parameter semigroup of poesitive and trace pres-
erving maps of Z (SS) whose dual maps arxe completeiy positive
(and automatically ultraweakly continous and identit_y praser—
ving): such semigroups are referred to as dynamical semigroups
[43, 38,58, 47,28].

A classification of norm continous (or, equivalently, with
a bounded generator) dynamical semigroups of 3:(75), 55
separable, has been recently given by Lindblad [58] . T
general form of the generator of such a semigroup is the
following:

2 - afig] «2 2, ove] + [vs’*"‘]}
(3.3) -i[n,g]..+%ngv;‘--- L{Z v ,g} XA(=3

wnere H is a bounded selfadjoint: operator, {vj}'et is a seguence

ti

of bounded operators, Z‘l" v*j‘vj converges ultraweakly, and the
r.h.s. converges in the trace nom.
o{* . Ax
The generator of the dual semigroup % in the

Heisenberg picture is given by

L¥a = i[m,a) + 2 i[v ]v +v"[q, H
i d] « Yy w Y, @, aeB,

]

(3.4)
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vinere cho convergence is ultraweak, and where

(3.5) A) = ZV‘T‘AV.
\HN}( ) = VY

is the gencral form of a completely,positive ultrawezlly

continous nap of 7)3 ({5) into itself [54,55] . Tuis result

7T'-algebrael

has been successively extended to more general W
under certain conditions on their cohonology groups [60] .

The problem of the classification of unbounded genrerators
is very difficult. A particularly simple case is obtained .by,-
allowing foxr the selfadjoint operator H in (3.3) to be
unbounded. Sone physically more meaningful c¢lasses of unbounded
generctors are discussed in [28, 59] .

In the case of an N-level systen (dimfj‘ = N), (3.3) and (3.4)
can be given the form [38]

N2
~i[n, ¢]

o) o 323 ouy{fe e+ [rypt]]
3.1 LS i[H,A]

+

N2-1

325 0 J{[F;‘AJFI * r’a‘[“‘Fl}}

+

where H = HY , 'r(H) =0, Tr(Fj)= o, Tr(F*;_Fj)= gi‘j y end {Ciij}
is any positive metrix. For a given Of y H is uniquely
detexmined by the condition Tr(H)= 0, and llci;j} is uniquely
determined by the choice of the Fj'a. The conditions Tr(H)=0,
Tr(Fj)=0 provide a canonical separation of the generator into

a Hamiltonian plus a dissipative part. There is no generasl
immediate criterion for an analogous separation vhen din ﬁ: 00,
If the condition of complete positivity is replaced by the
vieaker reqguirement of simple positi\iity, the generator for

an N-level system can again be written in the form (3.6), vnere
the matrices {ci;js belong to a strictly larger convex cone



thinn thie wogitive one.

for the vrool. of (3.4) and (3.6), we rofer to [‘38, 38,‘53}.

$Till in the cooe of an W-level system, the Xalowledge of the
general foxma of the generator hes ::];10.'md Snohn to dorive
sufficicnt conditions Ior the existence orf 2 unisue stationary
stote |75, 76]. With the generator of written in the form (3.3)
(resvectively, (3.6)) a sufficisnt condition for the wnisueness
of the stvavionary state and for all states to relax to it in
the limit v — o0 is given by

(3.8) L:P {‘Jj ’ jé I} is selfadjoint and {‘Ijl .)'G.I}' =C1 ’
where lsp denotes the linear span and

{ }' denotes the commutant in B () (resnectively,
by the reouirexent that the nultiplicity of the eigenvalue
zero of the natrix {cij} ve less than N/2). Also the irreduci-
bility condition given by [21] ensures the existence of a
unique Taithful stationary state. There is no apparent striight-
forviard extension of the above results to the infinite-dimen-
sioral case. An exanmple thereof where the stationary state is
unigue and approached by all states for long times is provid.od

by the Browvmian notion of a quantum harzonic oscillator [59] .

4. I'PL.ICATICNS OF COLPLETE POSITIVITY (2-LEVEL SYSTELS).

In the case of an MN-level system, the conditi.on' {Cij}zo
i-plicitly expresses insqualities to be satisfied euong the
physical p2remsiers characterizing the dynemical evolution
(such a2s relaxction times and components of equilibrium states),

vhich would be weaker or even non-existing if just positivity
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were raquired.

So {ar, vie hove only veen able to make such incgualitics
axnlicit Tor a 2-level system [38,51]. In this case, let
it —t Ly t7/0} be a positive trace preserving seaigroup

of t(n), and leu\ﬂ;u{F} i=1,2, 3 be ‘a conolete oxthosonel sot

A §
of selfedjoint natrices, with 1' =% 51 'ﬂ+ 5 5 £i;ika' Then

=i

the polariszation comvonents i, (t) Tr [( At s?).? ] satisfy the
Bloch eoquntions:

3
(+.1) SR (t) = .Zl f.lakh (1, (t) - m;’c)- a/i.(bii(t)'l';;)

wiere

h:. real,
\eo —
8 =0 5T )p0y =0

tnd 1’ 3 Z3
(Y. X. -~:.1° y
Ry Xy +X 3=

;\:B is o stationary state for the evolution (4,1) and it iz
the only stationar:; state iff X1X2 X3>O; in this case every
stete apynroaches I.Io ag t 0o,

The condition of complete positivity, expressed by the pos-
itivity of the matrix { i J} imposes further restrictions on
the range of va-.xtion of Io" and implies the inequalities

(4.2) Nr¥a?8ys o B2 s Yy 78 -

Since the J’i's are essentially inverse ralaxetion tines,
(4.2) shows thaet no two relaxation times can e much longer
than the third. In particular, a completely positive non-Hanil
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tonian evolution of a 2-level system adnits at most a one-
dinensionnl wnanifold of stetionaxry states.

Ads a sneeial oxonple, take hl= h2= 0 and the systemn to be
axially symmetric about the direction of the "external magnetic
field“. In this case mg = r.tg =0, I/¥,= 1/, = 1y, = 2,
(transverse rclaxation time), 14r3= lén =1, (1ongi§udinal
relaxetion time). The necessary and sufficient condition for

the dynamics to be completely positive is

(4.3) Ty 7

N

m
J.J..

To our knowledge, this relation.is satisfied experimentally
in all known cases [1,13,41' and references quoted therein].

A further insight into the strong geometrical restrictions
imposed by complete positivity on the reduced dynamics of a
2-level system is p'rc')vided by & coniaparison of the structures
of the exireme points of the convex sets P(2) and CP(2)
respectively of the positive and the completely positive trace
vrescerving linear maps of 1i(2). Writing a density matrix as
? = %(/1 + ‘5;’,?),"?{“41, where {Oﬁ i=1,2,3 are the Pauli matrices,
the extreme points of P(2) (respectively, of CP(2)) are the
following [39] :

xi= % cos(d-—{.’,)

up to 0(3)

Xy= X, cos(dd -(3;)
o transformations
xi.-. x3cos(al -(S)cos(d +(5 Y+sin(ol -(5)sin(ot +{5) =
(respectively, )
X = X cos(n(-ﬁ)
X\ = X, cos( d +(5) up to S0(3)
_ transfo_mations),
x3= chos(d -(S)cos(el +(3 Y+sin( o -{3 Ysin(ol +{5) |
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whooe S)':: :i-‘(ﬂ * Y‘-?):rf , | €p(2) (respectively, [e cP(2))
and the range of variation of ol and P is given by

[4=p =0’
0 -’_-[54,,44 /4 ,
z‘7’/4- LAL /2, OLBLT/2 - o,

i

. WEAX CCUPLIKG LILIT.

A rigorous justification of the reduction of the GME (1.15)
to the MMBE (3.1) in the weak coupling limit has been given by
Davies in a series of papers [25,26,27]. Here we present; a short
sketch of the simplest version of this method.

Assure that ’.}f»s is bounded and Tr a't;SRa O so that
Ne £ %S. In order to avoid domain problems, it is conven. ent
to wvork with an integrated form of the GME. An elementary change

ot varicbles in the double integration yields

{t-u

(5.1) p(s)= U’ ?(O)+/\2[ du/ dx qlf_,_uﬁ(x) plu),
where °u.i = exp[ L 38 5]

We pass to the interaction picture and we rescale thes time,
setting A24=T ana Nu=V , with the purpose of letting
N 2o to zero. The use of the interaction picture can be inter-
preted as an averaging over "fast microscopic oscillations".
We define '

(5.2) PLT) = \1_130%_;\-2 $(A2T)

and find
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, z (X% g g
?I(z;).-: {1 (0)+ lin dv‘LL %I{f dx ZLL_XSﬁ(x)Ju/‘\_,‘U_ S’I(()’).

A= Q70

-

We exwect that in the linit A — © only the term Sﬁ in the

exdansion (1.20) of 'jﬁ will give d nonvanishing contrlbutlon,
so that

(5.3) ¢.(0)= ?I(o)»«lmo dG“u/ x‘u,_,rS)I(qr)

whe re

oo

(5.4) K = / dJ.C 'Xﬁo(x).
o .

Davies shows that this is indeed the case under the following
conditions on jCo, 1¢n (n=1,2,...):"

/oodt ]lj%(t)ﬂ(oo,

(5.5) ~
at_...dt, | Sﬁn\toltl..,th)u La(t),
e L L., 4+ Lt L
0 Lt L...L6,Lt Lt
with
(5.6) an(t) < e, tn/z for all t20,

where % cnzn has infinite radius of convergence, and

(5.7) e.n(t) édn s/2-¢ for someé >0, d, and all t20.

Since we are cealing with a spatially confined systen S, the
svectrun of %S is purely discrete and the limit A— 0 in
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(5.3) can be easily performed, to yiecld

‘)
(5.8) §9:(T) = Pgl0) + X | do P.(07)
wheTe
4 _
(5.9) x7 - ;Zedqu
. . . . . gﬂs e
the Qe( s being the spectral projections of ©  corresponding
to distinet eigenvalues W;‘ . Hence equivalently
a
(5.9*) K'= lim %— / dx"u,s x"u,s.
a -X X
a—>»>0 -3

The differential form of (5.8) is the IME -

(5.8') S Pi(T) = &7 ¢ (T)

(now no domein prodlem arises, since X7 1s bounded, as a
consequence of the boundedness of %SR).

The rigorous result in [25] is

1im l' %S r;(alrg)lﬂ/?- exp(K#"C )? lL-.-. o)

A—>0

=T
uniformly on each interval 0<T £ T,- 9,
llore generally, one can release the assumption that % ff

and that the spectrum of % is purely alscrete, “end find L26

(5.10) 1im "m o % )&l, exp(—&t;ee“_-tlzf()"} o...'

a\"O O‘t Lx
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Haoviaver, as Kq is much simpler to use in place of X because
it nanifestly commutes with <he free evolution, we shz2ll resirict
ourselves in the follown.ng to the case in which % %S and
the spectrum of %5 is purely discrete.

Wwe write the coupling between S and R as
(5.11) AR A Z VS @B
o o o

with Vf selfadjoint, V’i selfadjoint, and -wR(Vf)= 0. If
conditions (5.5) -(5.7) are satisfied, the reduced dynamics is
a senigroup whose generator Kq is given by ([25], with

ninor generalization and no tational modificat ions)

? Z., ZJ-:. s, (w)[V{;(w) (w), j’]

WweSp _/ ﬂ{!»

+ B ([l v ) et @), p v 00,

where (2?)-1/2'1\1 (w) is the Fourier transform of h (%)=

dp JP
=W (vRvR(t)) - wR(v;; iHRt vf -:LHR'I;).
oo ‘A
sd,&(w) / dt. e ~fwt hup(t)' - -21- h’u/s(w) =

(5.13)

@f ,,(,\)
= 2'r

ax,

@ denoting the principal part, and

v (W) = Z— P__YoP Z—' (V) ?

=2V %
- . —4 - - (-w}
Em tn—w nn <« “mmn &m én- na na” . o

(2 = [><nl, En) =g ln) (V) =4nl lnd>).
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Sufficient conditions for (5.5)-(5.7) to ke satizfied zare:

4
e c .
(ii) [ }A.d (t)l (1+t) dt a, with a independent of « ,[3

y '
(1ii) the reservoir is cuasi-free,l.e. all truncated correl-
. . . R, R R T
ation funcetions W t.)e.o [
0 io (Vq ( 1) v, (tk)) of order
grzater than two vanish,
Tae dual generator, written explicit ly in terms of the

orerators P_m s 1s given by
da

ST DRP I |
o 61, T a2 m’A]

2.2 4

1
+dp ST, h o (8- “(vp) (‘{,(),Z j_;jAPlk-{E Pijpck’A}J

Vie renark that -———>Z X, (t)x

is a function of positive
type for =2ll sequences ix } for which the expression conver-
ges, hence { hdp(w)} is a positive matrix for all w , end
itc Hilbert tronsfora {s‘ (w)} is gelfazdjoint.Therefore we

%
recognize that Kl’ is of the general form (3.5)

™ - i[H,A] + 1{/'(:1) - %{Ilf(ﬂ ,A}

vaere H = H* and '\{f is an ultraweakly continous conpletely

positive man of %) (5). lioreover H and W(4) comute
with the free Haniltonian,

If the reference state of the reservoir is KLS at inverse

tamperature (5 then the cenonical state ?f"’ -exp(—(&ﬂ )/Tr[_exp(—fm )].

i3 ¢

"

stationory state for the reduced dynamics, as follows

fron the KMS condition on Fourier transforms

g



22.

(5.15) I}“\l (~w) = e-{!w/ﬁ (w).

o([& fot
"uis is 2 reflection of the ctability proverty of XS states,
in the sense that for each perturted evolution there cxists a

stationary state vhich is KMS with respect to the perturbed

27

snrenics and approaches the KMS state for the wnperturved

(o]

sonrics wihen the nerturbabion is removed [10, 72].

‘e shall see in Section 7 that the reduced dynamiecs (5.12)
satisfies a quantun detailed balence condition as a consequence
of (5.15).

-~

0. I:0DELS OF SINGULAR RESERVOIRS.

The singular reservoir limit corresponds to a limiting

situation in which the correlation functions

: R,.R R
. = W
(6.1) B ) (VV (6)
of the operators V:z appearing in the intcraction tend to
b -
°.zr,5 (+).

Before entering the discussion of specific models, we note

that a correlation function (6.1) cannot tend to a S-function

if W i KUS at come (3 £ 0. In fact, by the continuity

of the Fourier transform, h 5‘(; tends to a 5- function if and
A

only if its Pourier transform h , -tends to a constant

nlmost everyvhere. On the other hand, the KIiS conditi'm on
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A
Pourier transforns (5.15) forhids h to approach a constant

«{

unless (..') = 0. i

Por a sinilar rcason, if “bthe reservoir is chosen to be a
cunsi-frec Bose or Fermi gas and (A.)R is the vacuun state, the
li-it of singular rescrvoir can only be verformed if the one-
werticle energy spectrum is the whole resl line. Tnis is rather
urnhysical, but is necessary if one wants to reconstruct any
dynamiczl serigroup as a reduced dynsmics in the singular
reservoir linit [37] . This feature is also shared by the models
of Henp and Lieb [45].

In [37:] and [34] we have studied models which can account
for all dynsmical senigroups of an N-level systiem. The system
S of interest is coupled to a quasi-free boson or fermion reser-
voir in the vacuum state or in the infinite temperature limit','

by a linear coupling of the form

N2
SR b S..R

wvhere

{Vj‘a( =1,.. .,N2 } can be conveniently chosen as a
complete orthorziormal set in M(N),with v§2='ﬂ/\/'ﬁ';

. N
R ¢ »n
(6.3) vf: -_-l&(fe)= %},[/){”\d a{}(f )+/*,;)dap(fs)*‘] )

where the aP(f )# are independent Bose or Fermi: creation and
annihilation operators, and ~

12

o _,9 o .
(6.4) {T_—i AN = SP'J‘ ,

(5.5) £500) = (2T) M 2exp [~ £200%/8]
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(5.5) £5(w) = T 2T (0o) oxn[- 2% o
(6.7) £P () = (M) V2T () Py Penp [~ 622 /8]

according vo whetvher the reference state of the reservoir is
the Fock vacuum, the infinite temperature fermion state, or
2 1S boson state to be considered in the limit 3 —0.

The corresponding Fourier transforms of the correlation

n(&)(

functions P (t) are respectively given by [37,34_]

A : :
(6.8)  niE)(w)e ¢ (21 Vexp[- £20?/4]

®
(6.9) (;)( 1 9’( w)+C 3’(w)](27') l/eexp [ ¢ w2/4] J
A ER -1/2_e ' -f
(6.10) h“P (W)= l 9’( w)+C 3’(w)} (2'T) ‘P"" o exp[f_w /4},
where
1\32
(6.11) Cp = _l[/"}} \"' \Er

is the general form of a positive Nzx N2 natrix.

‘As §¢—>0, (6.8) tends to the Fourier transform of C f(t).
This is also the case for (6.9) and (6.10), provided {Cdp}
is chosen 6 be real and symmetric. As regards (6.10), one has
to take at the same time the linit (3-? 0.

The generator of the reduced dynamicaa. ‘semig :noup is g:.ven by

(6. 12) gfy _1[}1 +H ,Y]+—]= 32 13{[ y Vs] [S ?vs]}

M-l
. 1 -1/2
vicra H'= =N / kzl Im Gy o V [_37, 31-] (6.12) was proved

using the Dyson series expansion of (x 80,"&(._: u: (A& 17) 4 .Q)/
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= (] .0Q). The same result has been obtained
in [35] using the mastver ecuation approcach. We give a short
accouant of the latter techm.‘..que.
Pron the expansion (1.20) of the integral kernel and with’ HSR
siven by (6.2), we have

¥ (0)= - orp [%SR( ) %57

-13)
o Z{;i (t)(-s)[v (s), v{?t J (e)(S)[vj(S)’ V:J_}
L¢&)

Hence, in the linit {3 (s) —¢C pS(s), the Born approximation
yields

e gyl g 3o [y gl g peng]

which is (6.12).

As regards the higher order terms, they give no contribution

in the limit. Indeed, the series (1.20) is uniformly convergent
on bounded <& -intervals, and all terms containing Kn’
n=1,2,..., vanish as &—>0. We refer to [35] for the detailed
proof of this statement, and confine ourselves hex"e to the
observation that in the expansion of the multitime correlation
functions wR(Vio(‘bo)...ka(t“k)) appearing in %n(to‘tl”'tn)
one is left only with those products in which some time

arsunents appear in "overlapping order", such as

(%) (&) e
ap (t .3). hd’x (t, t4).

In the linit &-—=0, such products do not yield any contribu-~
tion under integration as in (1.20).
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In bthe vacuwa state casc,(6.12) is the generzal form (3.6)
of the gonexrater for an N-level system. The restriction to
ranl synietrie {Cij} in.tlre infinite temperaturs case implies
that the centrol state ?Ozﬁﬂ/n ig a stationary state for the
roduced dynamics. This state is in thermal equilibrium with
the infinite terperature reservoir, and the structure of the
resulting semigroup is very sinilar to the one obtained in the °
weak coupling linit. Indeed, if we set: HS=-ln.?°= (lnN)iL in
(5.12), in the linit of weak coupling to an infinite temperature
res>rvoir we obtain just (6.12) with '{Cij}.freal and symnetric.:
In particular, (6.12) satisfies the detailed balance condition
to be discussed in Section 7. u

We remark that the singular reservoir linit-at infinite
temperature is equivalent to adding to HS a purely random
stochastic Gaussian Hamiltonian [37,65] .

The forcgoing models of singular coupling can be extended
Y0 system whose underliying Hilbert space is infinite-dimensional.
Howaver, in this case ore needs some technical conditions
wnich restrict the class of dynamical semigroups with bounded
generators which can be obtained in the limit; §-—»0 [34].

e have just received a naper by Palner [Gil, in which the
cuthor points out the mathematical similarity of the weak
coupling and singular coupling limits, the Qistinction of the
two limits depending on which of two possible time scales is
regarded as natural.

7. DETAILED BALANCE.

In this zné the following Section, which contain results

froa [9] and from o work of ours in preparation [éé] s Vie
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»
e

iscuss a guantum condition of detailed bslance for a lLizrkovian
roduead dynunies, and its relation with the assumed invarisnce
of the global dyniscics under an operation of time reversal
(nicrovoversibility). .

Since quantum dynamical semigrouns are the analogues of clas-
~icnl discrate lMarkov processes [47,50], a detailed balance
condition for a liarkovian master equation suggests itself as
a natural. generclization of the corresponding definition in
the classical case. The Chapnan-Kolmogorov ecuation for a '

discrote lizrkov process on 1, ..., N
d - -»
13 . - = -
(7.2) = B(t) & B(t) , 5(.] D, -8, 2 D.

sotisfies detailed balance with respect to a stationary state

-0o_ ] o o > _o_ A

P = {Pi}iﬂ,...,n’ P20, “Fpy=1, U
o] ]

(7.2) Dij Py = Dji,pi .

Phe algebra of ovservables is the set QI, of seouences

T = {fi} o1 g @nd the state 3° defines on YL an inner
. =lyesey
product as

- - > o
(7.3) {f,g7 = I pifigi.
It is straightforward to check that (7.2) is equivalent to

(7.4) Gay=<itg> VEE e A

vl re L--Jf*:ir is the generator of the dual "Heisenberg"

dyaznics.
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Consider 2 strongly continous dynzmical semigroup ’L/\tltém*}
Z_'(S‘f,) with a donsely defined generator < y adnitting

a faithful stationary state 370. We can define, in analogy to
(7.3), an inner product in 03 () as

E ol

o3

(7.5) <A,BY =1Tr fy%"B]

and denote by 532(6, ?o) the (separable) Hilbert space
which is the comnletion of ’E(S‘;‘)) with respect to (7.5) The
N2 (v ) : 0,-1/2
elements of | “({3, ¢ ) are of the form X = B(f ) , B
2 dilbert-Schmidt operator.
*

The Heisonberg semigroup ¢ ---r/\t is not, in generzl,
strongly continous on 29 (§3), but it can be extended %o a
strongly continous contraction sgemigroup on _Ca(fu. ?o).

Indeed, using Kadison's inequality: [48,20]and the invarience of
SJO, vie have

A N> = 7 [g°( A (A“ta)]
£ Tr[9°A’;(A"A)]= Tr[y%ﬂ] = <AAD.

The functions t —= <A, A’;B>= Tr[/\t( .f°A")B] , 4,36 B(H),
are continous. Therefore, since B (5) is dense in Cz(f{z, 90),‘
t —-'P/\i is weakly measurable on .CZ(FS. 90), hence stron-
£ly neasurzble and strongly continous E84] .

-

We denote by 1 the densely defined generator of".tha extensivn
of {A‘tk to 32(6,90). In general @(L)f\fB(E) is not
dense in P(fD) unless & -—’/\"t is strongly continous on
B(H).

‘It would not do to generalize Definition (7.4) by asking

L to be selfadioint with respect to the inner product (7.5)

( g° -selfadjoint), since this would rule nut the case of Hamil-
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tonian dynamics. Indeed, if H i3 a selfadjoint operator on %
commuting with y°. then L“- i[_ﬂ. J is skewadjoint with respect
to (7.5) ( g°-skewadjoint). Hence we propose the following

-

.~ "oy ) . . .
o3 Lnivion }_52}: & cuantun dynonical senirroup sctinfics the

dediiled dbilance condition with respect to n faithful stationary

0 .
cEnbe ? if I con ve written as a sum

(1) L,\: i[ﬁ, .), H selfadjoing, [H,yﬂ: 0 (then I'a is
"o—skewadjoint and goncrates a group of unitaries
r'.
on Ek(sv joo ))9

(1) L is S7°~selfadjoint

Since f)c‘ is o faithiul nor:tl state on %(6 ), the set of
Mfnetionols {\?, y XC 82(6, ?0)},w'nerc

(8 =<5 4> = 2x(( p°xMa]

in danse in the space of nomal functional on B(R) [‘H].
-’ “
Therafore U, and | ¢ defined eos
v - . ® -

Sr{vt( f"x"}:\} = <¥%, exp(Lnt)D ’

o x€ LH8,0%), ae BT
2x [ Cpox9a) = <, oxp(n_£)aY

. . ~ .
ern bo extendud to dynnnieal semigrouss of U (f3) with
gonerstors ‘ia: —-i{il, ] and ‘f 8 such that
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Tr{ia( ?".«:“‘)A] = {-1 4,47,
. AeBR), eI
Tr[g’s( ?°x’)4\] = <I_%AD e ()

ong

(7.7) L =L +of,.

If o deco:position of the form (7.7) exists, it is clearly
unicue, cond it coincides in the finite-dimensional case with
the one given by formula (3.6) [52]. Therefore it can be zssuzed
in general as a criterion for the decomposition of generators
sotiafying detziled balance inte a Hamiltonian plus a dissipative
nart,

f': is 'Ut- and Ft-—invariant and it can be shown [46,
74,52_ that U'i and [ "t‘ comnute separately with the modular
automorphism group Zt defined by

2o &= (PO acpo) Ae B(R).

This inmplies that ’I(ﬁ'))f'\{?o}' is stable under {/\_A—

In particular, when the spectrum of fo is nondegenerate, all
elements of .§. (5) N {?o}. can be diagonalized simultaneously,
end the restriction of {/\t} to I’ (6)0{?0}' determines a
lassical larxizov process satisfying the detailed balance
condition (7.2).

We note-in pdsying that the foregoing definitions and results
can all be casily extended to weakly*-continous senigroups of
conpletely positive identity preserviggl'f"antaps of a ‘.‘l*—algebra,
adnitting a faithful norwal stationary state. However,we have

restricted ou.selves to B(ﬁ), since we are primarily



ereésted in dyacnmical semigroups of o spatinlly confined
cycten. iorrover, ve shall reouire in the following t — i
50 bo norm consinous, in order to be able to uze thne form
(3.4) of the generator.

vivh the restriction that the dissipcotive psrt t — r; is

i
O
o
[o]
o
cr
|
]
o]
o
U
-

it is pousivle to give the general form of
the generasor LJ of a dynrmical semigroup satisfying detailed

balonce. This is »rovided by the following

]: In order for {/\ } to be a dynanical semigfoup
sctisTying detailed baleonece with respeet to a faith—- *
iul stetionary state ?o and having a norm continous dissipzative
nores, it is necessary and sufficient that its Heisenberg gener-

r L can be written in the form (7.6) with

(7.8) L _A = i[H,4] and
© M
kS Y )
(7.9) LA = wkfitf rrissi=l Cortss! [Prr'APs's 2 FrrParar ]

(7.10) H is selfadjoint and commutes with 9

(7.11) P =]v>{s|, vhere {lr)} is a c.o0.n.s. of eigenvectors
of 90, namely Qolr>= ?;'r>§

(7.12) Pt is positive in the sense.that
rr'ss' arr'crr'ss‘ass'>’0 for all {frr'} i
0 : ,
(7.13) C_.iggr €5 = Cgigprip§gr  OT» equivalently,

Cs'sr'r ?r‘

1t © is N-dimensional, hlicki [9] has proved that L, can be



Gsiven 2 simple dicgonnl form n=a follows
N
» *
T.1: L A= ZE: { .AL X. . [ ]
(7.213%) D xlg \ Xy X Axij ,

a i, d=1 Tij i3

vihiere

- Sk _ )
7.15) Tllxijxke]_ 8ix sz ’

- Q. o-1 o _o-l .
(7.158) P x.'ij 9 = gi 3’3 tlJ :
— O— o L3 * — o o -
(7.17) xij = xij for Qi_ 3’3 : xi:.l = xjjL for gi # gj 3

< s o_ o o 0
(7.18) Dia.>0 for all i, j; Dia. ?J._ Dji gy for ¢, # f';;‘

The profound neaning of the foregoing condition of detailed
balance lics in the fact that it is satisfied with 9°='§$ by
2ll dynamical semigroups obtained in the weak coupling linit
Tor a system coupled to a reservoir in a KIS stave at inverse
temperature 3 , and that this is, in a sense, characteristic
of this situation. Indeed,if the reference state of the reservoir
is I3:S at inverse temperature @ , it is immediately seen by
virtue of the KiS condition (5.15) that the dissipative part
of (5.14) is of the form (7.9),(7.11)-(7.13), with ¢°= @, .
On the other hand, let a given reservoir R be in a reference
svate LDR and let S be a spatially confined systgp with free
Hamiltonian HS interacting with R by a coupling HoBe %vf@vf
~and assuze that

i) for all choices of S, HS and HsR for which Davies' con-
ditions (5.5)-(5.7) are satisfied, there exists a fzithful

stationary state ?0, depending a priori on-HS and HSR and
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co-r-uting with I, with rezpeet te which the reduecnd dynanics
S in the weels counling limit satisfies detniled bulance;
- i,

ii) 'QL is the closure of the vector sran of the union of

.. . R .
she icentity 4]~ with the overators mf for which (5.5)-(5.7)

Then there exists a  B>0 for which (5.15) holds. ience QJR

is KiiS for such [ and %= exp(-Bu°)/2r(exp(-p1°)) [52].
In the case of an N-level system, it is 2130 rossible to
write all matrices {Crr'ss’} satisfying the conditions

: : A
(7.12)-(7.13) in the form C =£h“ﬁ(sr-sr.)(v@)rr.(vu)s.s;

rr'ss'

for exomple, this can be done by applying the weal coupling
linit to o fermion model like the one in Section 6 [52].

Finally, we renark that the senigroups satisfying detailed
baleonce with respect to the central state are precicely those
whose generztor admnits a diagonzal expression in terms of
selfadjoint operntors. Such senigroups are exactly the ones
witich cen be obtained by a singuler coupling to a reservoir

at infinite temozrv.ture.

8. I:TCROREVERSIBILITY.

Recently, som2 interest has been devoted to the study of
the conditions implied by time reversal inveriance on the
reduced dynenics of an open quentur system in thé Markovian
apuroximation and of their relations to detailed balance [6,
7,18]. In this Section,we derive 2 condition on the gzner~tor

~

of ¢ dynaniesl gsenigroup vhich follows from the invariance
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wider tine reversal of the global dynunics ‘%t of S4R nnad
witich holds in the weak coupling as well in bthe sirjular coup-
ling linit. This condition haits a clenr interpretation in terns
of sicroreversibility, but it does not depend on and nulies no
reference to any varticular strationafry ctate, and therefore

it benrs no relation in gencral to detailed belance. On the
othar hend, the condition introduced by Agarwal in Ref. 6

(for loter developments aud applications, see [’?,18] ) is for-
nulated in terms of & tine reversal invariocnt stationary state
?o

titutes sctuzlly a form of detailed balance.

(essuned to exist) of the reduced dymamics of S and cons-

o show that in the weak counling linit Agarwal's condition
is a2 consequence of microreversibility if the reference
state u)R of the reservoir is invexriant under time reversal
and if ?°®wR is stationary under the globel dynamics in
the 1init A~ 0. This can be ensured if 9"@«3‘ has a
stability property which seems to be cheracteristic of K'S
states. Hoviever, in this case detailed balance is already im-
pliesd by weack coupling indipendently of Jire reversal invar-
iance. Similar conclusions have been dravm by Hepp [__MJ in
connection with the derivation of the Onsager relations.
Vle define a time reversal operation °C on S+R as the tensor

product of the corresponding operations on S and R

T (159:R) = TIS@TMR = aSg At
where v

B5pS = TSAS*TS*~=F, with T° an antilinear

unitary operator on Ejsg '
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H, it i ce R : - . : '
G 2 A witn 6 & linear -artizsutonorphism of 'QI,R.

. . 5,2
Jo roruant further that (17) =.
we asowar that the global and respectively the free evolution
7190 : R . ..
‘"LL and 'H,t , as w2ll as the refercnce state W~ of the

re:n.moir, are G =invariany, namely

a) there exists a c.o.n.s. {_ln)} i ;)-S with
TS} n» =in> and HSln> In,> Vn;
I R%
o) WFTH) = TRUR(a) VAé 2%, where U —uy[..%e %]

~
¢) poR. yS® ;
Write the form (5.14) of the generator of 2 (Heisenberg)

dynanical semigroup in the weak coupling limit as

TA = i [égk Bik?ik‘A]
(8.1) S

_ 0.. P.. - { ,A})
ii—ij-Ek-ee ijke “ij ek 20°4ij 2k

vinere
(8.3) cijkf%- h( E5= 807 5Ty, -
Neting that o
+ oo
(8.4) C 1™ J at” 158 (e, @RS 4@ 125 5)]
~ 00

and using the time reversal invariance of the trace and the
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asswiption ¢), we have

Cip™ [ at pro R [‘Z’((Pkizzawﬂ)HSR(le@ﬂR)HSR(t))}
(8.5) oo |

- j at TrS+R[HSR(—t)(PZjQ‘ﬂ.R)HSR(Pik®wR)] =0

k2ij °
bl = -
Similarly, using (5.13), we find

(8.6) B., =B. . .

For the singular reservoir limit, the Heisenberg generator

(6.12) can be given a form similar to (8.1)

(8.7) IaA=1 Z Blkplk’A] ) iakﬂ[ P 2{ 11’21:"‘}]

where
(8.8) B = & %o
(8.9) C, 110 =; 0 ) 15T i

(8.24) and (8.5) still hold true, once the singular coupling
1lixit is taken, and (8.6) is trivially satisfied. Then, in both

ceces, if we define the time reversed generator
(8.10)

(8.5) and (8.6) can be e:guivalently written as

~
(8.11) L= —LH + I'D

viners



37.

is respectively docomposition (6.1) or (8.7). Hence,as expected,

tine reversal invariance tells us that the time reversed gener-
ator identifies with the generator of the reduced dynemices
for negative tines. .

If a dynonics satisfying (8.11) admits a stationary state

0 . . S . . 1 . cas
¢° which is %G -invariant T, we can rewrite the condition

(8.13) CePT A, BY =<ePT FE*
of Ref. 6 as
(8.13') {L4,B) = <A,LB>

where the inner product is defined by (7.5). It is then easy
to see that (8.11) implies the equivalence of (8.13') to
detailed balance (7.6), with L =1L, and I = LD'.

However, if one tries to derive (8.13) in the weak coupling
1imit from microreversibility, e further condition is needed
which seenms 40 be zlready an independent statement of detailed
balance. To sce this, note first that ¢° can be chosen to be
invariant under the free dynamics of S. Then, if we rewrite
(8.13) as

o~
(8.13") {eI”' A,B> = (A,eLt B>

we ovserve that it is eguivalent to

1) Note that this is by no means the case in general, as can

pe showm by 2xnlicit counterexamples.
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- ) . S ~ Q )
(8.124) lin f( W ~I’° ABY> - <A, W 2 el B>} =0
/\"'O ~ -t//\
. , . Sx .
since the spectrum of ‘Ul,t is purely discrete and since

[’(Azi ,L}: 0. I'orcover, by thms. 1.2 and 1.4 of Ref. 26, ve have

v

) ou LT L SHR{, O0m , By[1A (N)X, x_ R R
(8.15) ,3.,12 U pe MB) - Ir {(3’@‘0 )[W%L (A'of )] (B@1 )}l=o

and similarly, using time reversal invariance,

. i | catS* Ty 0 SHR[ 00 o R (A% R] l:
(8.16) }\J;nél A _/z B>-Tr {(g’@cdR)(A@:!l )f%_m\2 (B®14)j/|=0.

By (8.15) a2nd (§.16), (8.14) is eguivalent to

(8.17)

25 [P0 [‘u,fb\/”\"‘ (o 41.3)] (0 10}

A+ 0O .
- RrS+R{(?OQWR)(A*®11R)[%(;\,),’,_ (B® ﬂnﬂ}, =0
‘ =T/

wrich is satisfied if y°®wR is invariant under %1(;'\) in the
linit A= 0.2 ?his con be ensured if for each A>0 there
exists a state V), vhich is stationary for %('\) and
approaches P @‘-UR unifornly as A—=0. Such a stab:.l:.ty
proverty is possessed by KiiS states [10 72] and seens to be
characteristic thereof [40], and we know from the previous
Section that the KMS condit-ion already implies detailed balance,
regardless of any property of invariance under time reversal.

‘er ®

2) ZEven though it is not entirely clear from the context of
their paper, it seems that this fact was also recognized by
Carmichazl angd Wwalls in Ref. 18.
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