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Abstract 

The general development of a s e n s i t i v i t y theory for non- l inear 

a lgebraic equations with cons tra in t s i s presented. Adjoint equations 

s u i t a b l e for evaluat ing der iva t ives of system response funct ions with 

respect to input parameters are derived. The role of the s o l u t i o n of 

the constrained problem in e l iminat ing non-essent ia l constra ints i s 

h igh l ighted . Two sample problems, one l i n e a r and one non- l inear , are 

solved to i l l u s t r a t e the theory, 
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I. Introduction 

S e n s i t i v i t y theory has been developed to a high s t a t e of s o p h i s t i c a -

t ion for app l i ca t ions involving s o l u t i o n s of the l i n e a r Boltzmann equation 

or approximations to i t . 1 5 The success of t h i s theory in the f i e l d of 

radiat ion transport has prompted study of pos s ib l e extensions of the 

method to more general systems of non- l inear equat ions . I n i t i a l work in 

the U . S . 6 ' 7 and in Europe8 on the reactor fuel c y c l e show that the 

s e n s i t i v i t y methodology works equal ly well for those non- l inear problems 

s tudied to date. In t h i s paper the general non- l inear theory for 

a lgebra ic equations i s summarized and appl ied to a c la s s of problems 

whose s o l u t i o n s are character ized by constrained extrema. Such equations 

form the bas is of much work on energy systems modelling and the econom-

e t r i c s of power production and d i s t r i b u t i o n . I t i s valuable to have a 

s e n s i t i v i t y theory a v a i l a b l e f or these problem areas s i n c e i t i s d i f f i -

c u l t to repeatedly s o l v e complex non- l inear equations to f ind out the 

e f f e c t s of a l t e r n a t i v e input assumptions or the uncerta int ie s a s soc ia ted 

with pred ic t ions of system behavior. 

In Sect ion II the s e n s i t i v i t y theory for a l inear system of alqebraic 

equations with cons tra in t s which can be solved using l i n e a r programming 

techniques i s d i scussed . The role of the c o n s t r a i n t s in s i m p l i f y i n g the 

problem so that s e n s i t i v i t y methodology can be appl ied i s h igh l igh ted . 

In Sect ions II and IV the general non- l inear method i s summarized and 

appl ied t o a non- l inear programming problem in p a r t i c u l a r . Conclusions 

are drawn in Sect ion V about the a p p l i c a b i l i t y of the method for 

prac t i ca l problems. 

I I . A General Linear Programming Problem 

A. Theory 

To i l l u s t r a t e the s e n s i t i v i t y method f o r constrained systems, con-

s i d e r f i r s t a general l i n e a r problem. The aim in such a case i s to f ind 

an extremum in a l i n e a r o b j e c t i v e funct ion U(x) subjec t to a s e r i e s of 
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l i n e a r c o n s t r a i n t s f • (x) on the system s t a t e vector x. Once the extremum 
J 

i s known, the extremum s t a t e vector x g can be used to eva luate some 

p a r t i c u l a r system response funct ion R(x g ) . For t h i s case (genera l ly 

c a l l e d the "forward problem"), the re levant funct ions can be wr i t ten as 

f o l l o w s ; 

N 

U(x) - £ a.Xi = a-x (!) 
1=1 
N 

R(x) = ^T b1-xi = b-x (2) 

i=l 

with l i n e a r l y independent c o n s t r a i n t s of the form 

N 

f j ( x ) = £ c . . x 1 > dj j = l , . . . , j > N ( 3 ) 

i-1 

A unique s o l u t i o n to the r e s u l t i n g equations for x g i s known from theory 

to be a ver tex formed by the i n t e r s e c t i o n of N of the J c o n s t r a i n t func-

t i o n s . 9 This theorem i s the b a s i s f or the l inear programming ( i . e . , 

s implex) algorithms used to so lve such problems. 

Once the s o l u t i o n to the forward problem has been found and R(xg) 

has been evaluated the fo l lowing general s e n s i t i v i t y quest ion can be 

posed: how w i l l the system response change with changes in the system 

d e f i n i t i o n parameters ( i . e . , the a^, b.., d^, and c ^ . ' s ) ? In terms of a 

system var iab le a , on which a l l the system parameters may depend, the 

s e n s i t i v i t y problem reduces to f i n d i n g the s e n s i t i v i t y c o e f f i c i e n t 

dR(x e ) /da . Here, a can take on any number of d i f f e r e n t d e f i n i t i o n s 

depending on the p a r t i c u l a r s e n s i t i v i t y quest ion being asked. 

By v i r t u e of the nature of the s o l u t i o n to the forward problem 

( i . e . , Xg being a vertex) the s e t of equations which descr ibe the 

behavior of x g are simply the N independent c o n s t r a i n t equations 

i n t e r s e c t i n g a t x e - The extremum x g i s there fore a s o l u t i o n to the 

f o l l o w i n g system of N equat ions: 
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N 

W s I c n i * e i = ' d n ^ N ( 4 > 
i = l 

or a l t e r n a t e l y 

f(xg) = C xe = d (5) 

where C i s an NxN matrix with elements c . . To g e t Eq. (4) i t has been 

assumed for no ta t iona l s i m p l i c i t y that the N c o n s t r a i n t sur faces e s -

s e n t i a l to forming the v e r t e x a t x g are the f i r s t N c o n s t r a i n t s o f 

those g iven in Eq. ( 3 ) . The l i n e a r programming s o l u t i o n of the forward 

equation e l i m i n a t e s the o ther n o n - e s s e n t i a l c o n s t r a i n t s from cons idera-

t i o n . Note a l s o t h a t the equations for x are independent of the param-

e t e r s in the o b j e c t i v e f u n c t i o n , a general f e a t u r e o f a l l l i n e a r prob-

lems. Therefore , once the extremum vertex has been found, v a r i a t i o n s in 

the o b j e c t i v e f u n c t i o n have no e f f e c t on the response ( i . e . , dR/da- = 0 ) . 

With the n o n - e s s e n t i a l c o n s t r a i n t s e l i m i n a t e d from c o n s i d e r a t i o n , 

Eqs. (2) and (3) can be d i f f e r e n t i a t e d d i r e c t l y and conventional sen-

s i t i v i t y methods appl i ed to e v a l u a t e dR/da . 3 D irec t d i f f e r e n t i a t i o n y i e l d s 

| I = | C r (6) 
9a 3a e 3a 9a 

d R = 9b . - + F . ̂ e ( 7 ) 
da 3a e 3a W > 

Lett ing <p = [(3xe)/(3a)], Eq. (6) can be r e w r i t t e n a s , 

= + # < 8 > 

Equation (8 ) can be converted i n t o an a d j o i n t s e t of e q u a t i o n s 3 to 

eva lua te the second term on the r i g h t hand s i d e of Eq. ( 7 ) . Denoting the 

a d j o i n t by f * , the f i n a l r e s u l t i s : 
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where <?>* s o l v e s the f o l l o w i n g equation ( g e n e r a l l y c a l l e d the "adjoint 

problem") 

C V = b (10) 

Here <p* i s c a l l e d the a d j o i n t of and the a d j o i n t matrix C*, i s de f ined 

in convent ional terms as : 

• C* - • • C*?* = • - x e = b- • 

, t r 

( 1 1 ) 

For t h i s l i n e a r system of a l g e b r a i c equat ions C* = C ( i . e . , the t r a n s -

pose of C). 

To f i n d any s e n s i t i v i t y c o e f f i c i e n t of i n t e r e s t , t h e r e f o r e , • i s 

necessary to s o l v e only a s i n g l e ad jo in t equat ion [ o f the form of 

Eq. ( 1 0 ) ] f o r each response . The s o l u t i o n i s then used in Eq. (9) 

t o g e t h e r with the e x p l i c i t a n a l y t i c d e r i v a t i e s ( a b / 3 a ) , ( a d / 3 a ) , and 

(3C/3a) eva lua ted a t the extremum point s o l u t i o n of the forward problem 

x . Note that the f i r s t term in Eq. (9) i s the "d irec t e f f e c t " on R 

of v a r i a t i o n s in b with r e s p e c t to a. The second term, c a l l e d the 

" i n d i r e c t e f f e c t , " represent s the v a r i a t i o n of R as a r e s u l t of v a r i a -

t i o n s in the extremum s o l u t i o n point x g with r e s p e c t to a. The i n d i r e c t 

e f f e c t a c t s through v a r i a t i o n s in the matrix C ( i . e . , the c o n s t r a i n t s ) . 

Again no change in U(x ) has any e f f e c t on R as was expected from the C 

v e r t e x nature o f the s o l u t i o n f o r x e -

8 . Example 

A s imple example which i l l u s t r a t e s t h i s method f o r a l i n e a r l y 

c o n s t r a i n e d system i s g iven by the f o l l o w i n g : 

U(x) aiX 1*1 82X2 ( 1 2 ) 

R(x) = bjXj + b 2 x 2 (13) 
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where dj = 4, a 2 = 5, bj = 2, b2 = - 1 . The problem i s to maximize 

U(x) subjec t to the fo l lowing constra ints 

f i ( x ) = c u X j + c j 2 x 2 < dj 

fv(X) = C2jX] + C 2 2x 2 < d2 

f3(x) = Xi > 0 

M x ) = x2 > 0 

(14) 

(15) 

( 1 6 ) 

(17) 

with c u = 3, c 1 2 = 7, d2 = 10, c 2 1 = 2, c 2 2 = 1, and d2 = 3. 

The s o l u t i o n to t h i s forward problem i s = x 2 = 1, R(xg) = 1, 

and U(xg) = 9. This i d e n t i f i e s the vertex x g = ( 1 , 1 ) as the extremum 
and the vertex i n t e r s e c t i o n equations as 

c n x i + c 1 2 x 2 = dj 

c 2 1 X i + c 2 2 x 2 = d2 

(18) 

(19) 

The s e n s i t i v i t y c o e f f i c i e n t i s there fore : 

dR 
da 

3b-
da 

3b2 

9CT Xl + X2 + X! 
3dj 3 C n 3C 12 

3a 3a Xl " 3a *2 

* 
+ X2 

ad2 s c 2 1 

3a 3a 
3C 22 

Xl 3a X? 

(20) 

where x 2 = x 2 = 1; Xi = -4 /11 and x2 = 17 /11; and = ( x l s x 2 ) i s ob-

tained by so lv ing the fo l lowing adjo int problem ; 

* * GiiXi + C 2 1 x 2 = bi (21) 

* * 
c 1 2 x l + C22X2 - b2 (22) 
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The r e s u l t s of t h i s sample problem are summarized in Table I where 

ttie values of dR/da are given as a funct ion of a. The d e f i n i t i o n of a i s 

assumed to be a d i f f e r e n t system parameter for each separate evaluation 

of Eq. (20) . 

For t h i s problem, the response i s most s e n s i t i v e to variat ions 

in the value of c 1 2 i with c n and dx fo l lowing c lo se behind in import-

ance. In terms of f i r s t order perturbations given approximately by: 

6 R / R = dR/R . «2L (23) 
da/a a 

a perturbation of '\% iri c 1 2 would r e s u l t in a 4.6% change in R. I f a l l 

the parameters had ur.correlated 1% uncerta int ies assoc ia ted with them, 

an uncertainty of approximately 10.6% in R would be obtained from a sum 

of the squares of the individual uncerta int ies as f o l l ows : 

f 1 = 1 / 1 1=1 (24) 

This response i s c l e a r l y very s e n s i t i v e to var iat ions in the input param-

e t e r s and i s a good i l l u s t r a t i o n of the value of performing a s e n s i t i v i t y 

a n a l y s i s f o r the problem. 

I I I . A General Non-Linear Problem 

A. Forward Problem Solut ion Character i s t i c s 

The treatment required for a non- l inear problem with general con-

s t r a i n t s var ies according to type of s o l u t i o n found for the forward 

problem but the methods used fo l low c l o s e l y the developments presented 

in the l a s t s e c t i o n . Consider f i r s t the fo l lowing problem, with non-

l inear o b j e c t i v e and response funct ions U(x) and R(x) r e s p e c t i v e l y , and 

J non- l inear constra ints f - ( x ) given as: 
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U(x) = U ( x ! , x 2 , . • • , x w , a | a ] ) N 
(25) 

R(x) = R ( x 1 , x 2 , . . - , x N , b [ a ] ) 'N 
(26 ) 

f . ( x ) = f , ( x 1 , X 2 , . . . , X N , c [ a ] ) > 0 (27) 

The forward problem i s to f ind an extremum in the o b j e c t i v e func-
t ion [ i . e . , U ( x J ] subject to the cons tra in t s and then to eva luate the 

6 
response at the extremum p o i n t , R(x g ) . Assuming that a s o l u t i o n to t h i s 

problem e x i s t s and methods ere a v a i l a b l e to so lve f o r x g ( i . e . , non-

l i n e a r programming algorithms e x i s t and work for t h i s c a s e ) , i t i s c l e a r 

that the s o l u t i o n need not be a simple vertex . In genera l , the s o l u t i o n 

can be shown to be one of three p o s s i b i l i t i e s : 9 

1) the o b j e c t i v e funct ion has an unconstrained extremum point which 

l i e s in s ide the region def ined by the cons tra in t s u r f a c e s , or 

2) the o b j e c t i v e funct ion has an extremum point tangent ia l to a 

surface def ined by the c o n s t r a i n t s , or 

3) the extremum i s a simple ver tex . 

A separate s e n s i t i v i t y theory has to be developed f o r each of these 

e v e n t u a l i t i e s with the forward so lu t ion being used again to i d e n t i f y 

the extremum point and c o n s t r a i n t equations which are app l i cab le . 

B. Unconstrained Solut ions 

The case where the c o n s t r a i n t s play no ro le in determining the 

extremum [ i . e . , case ( 1 ) ] i s d iscussed f i r s t s ince the general non- l inear 

s e n s i t i v i t y equations can be developed here for l a t e r use in constrained 

problems. For the unconstrained problem the s o l u t i o n to the forward pro-

blem reduces to f inding an extremum in the o b j e c t i v e funct ion i t s e l f . That 

i s , the fo l lowing N s imultaneous, non- l inear equations must be so lved: 



8 

Assuming that a s o l u t i o n to t h i s s e t of equations can be found, the 

s e n s i t i v i t y problem again e n t a i l s f inding the d e r i v a t i v e s of R with 

respect to a evaluated at the extremuin so lu t ion point x e < As in the 

l i n e a r case the f i r s t s tep i s to d i f f e r e n t i a t e R as a funct ion of x e 

d i r e c t l y to ge t : 

dR - IB. i b . 5R_ 
da ~ 3b 9a 3a 

9 

To ge t the needed values o f 3xQ/3a, Eq. (28) i s d i f f e r e n t i a t e d to G 
g ive : 

agn aa 3gn ax 
a r H ^ - a T " 0 n=1 N ( 3 0 ) 

e 

or a l t e r n a t e l y in terms o f <j> = 8x e /3a and the matrix operator G with 

elements 9 9 n / 3 x n «> we can w r i t e : 

Here again i t i s assumed that R and U can be e x p l i c i t l y d i f f e r e n t i a t e d 

with r e s p e c t to a and x £ 

various d e r i v a t i v e s o f R. 

with r e s p e c t to a and x £ to ge t the elements of the matrix G and the 

Since many d i f f e r e n t representat ions of a w i l l be used in a f u l l sen-

s i t i v i t y a n a l y s i s , each new form of which would change only the nature of 

the source term in Eq. ( 3 1 ) , an a d j o i n t formulation of the equation i s 

needed. I t i s p o s s i b l e to develop an equivalent ad jo in t problem s i n c e 

Eq. (30) i s l i n e a r in The matrix operator G i s not a funct ion of J 

and i s in f a c t a matrix of c o n s t a n t s , each element o f which i s a known 

d e r i v a t i v e of some s o r t evaluated at the extremum point x g . These 

propert ie s of the equation f o r are qui te general r e s u l t s of s e n s i t i v i t y 

theory , whereby non- l inear forward equations g ive r i s e to l i n e a r sen-

s i t i v i t y equations making the l a t t e r problems f a r e a s i e r t o so lve than 

the o r i g i n a l problem. 
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Using an adjo int formulation o f the problem r e s u l t s in a form for 

dR/da which can be wr i t ten a s : 

dR _ 3R 3b -* 
da ~ 3b 3a ~ 

- \ 

13. H 
aa 3a 

\ 

(32) 

where s o l v e s the fo l lowing adjo int equation; 

G*J* = (33) 
j X „ 

and from the d e f i n i t i o n o f the adjo int operator 

">p 
G*(j>*«4> = • <p = - Gtj) = - <p* • 

3 x e \ 

Jfl. \ (34) 
3a 3a 1 v ' 

Note that G* i s an NxN square matrix with elements composed of various 

d e r i v a t i v e s of the form 3 9 n ' / 9 x n -

Again i t i s c l e a r t h a t the s o l u t i o n of a s i n g l e l i n e a r adjo in t equa-

t ion i s a l l that i s needed to evaluate the d e r i v a t i v e o f each response of 

i n t e r e s t with respect to a l l d i f f e r e n t i a l var ia t ions o f t h e ' i n p u t param-

e t e r s . The adjo int equation in f a c t i s an a lgebra ic s e t of coupled l inear 

equations with constant c o e f f i c i e n t s in which only the source term 

depends on the response funct ion R. If i t were p o s s i b l e then to invert 

the G* matrix e x p l i c i t l y , a l l response func t ions o f i n t e r e s t could a l so 

be s tud ied using the s o l u t i o n t o only a s i n g l e adjo in t equation. 

C. Constrained So lut ions 

For the constra ined c a s e , i f the extremum po in t i s a vertex the 

s e n s i t i v i t y problem i s a s imple extens ion o f the developments in the 

previous s e c t i o n . That i s , the equations f o r the ver tex are given by 

the f i r s t N c o n s t r a i n t s . f n ( x f i J = 0 , n=l ,N and the theory in 

Sect ion I I I . B can be appl ied d i r e c t l y s t a r t i n g with Eq. (28) in which 

9 n ( x e ) = f n ( x e ) f o r the present c a s e . For the remaining c a s e , in which 

the extremum i s given by the tangent ia l i n t e r s e c t i o n of the o b j e c t i v e 

funct ion and a s u r f a c e def ined by the c o n s t r a i n t s , some addi t iona l 

developments are needed. 
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This problem i s best posed by using Lagrange m u l t i p l i e r s , k^. The 

i n t e r s e c t i o n of the extremum in U(x) and constra int surfaces f . ( x ) , 

i = l , .1 with I < J , i s described by the extremum in a new objec t ive 
funct ion H(x) given a s : 

I 
H(x) = (J(7) + £ k. f.(x) (35) 

1=1 

where from the d e f i n i t i o n of the constra int extremum vector and the con-

s t r a i n t surfaces 

H(x e) = U(xe) (36) 

s i n c e , 

f - tXg) = 0 i = l ,1 (37) 

Again i t has been assumed that the 1=1, ,J constra ints were ordered in 

such a fashion that those with i > I are non-essent ia l to the par t i cu lar 

s o l u t i o n point x g . 

I t i s c l ear then that the extremum point i s a so lu t ion to the N+I 

s e t of simultaneous non-l inear equations given by: 

g n ( x ) = ^HSL = o n = l , . . . . ,N 

gN.,i (x) = ̂  = f 1 ( X ) = 0 i=l ,1 (38) 

Solut ion of the general s e n s i t i v i t y problem now fo l lows d i r e c t l y 

from the developments presented in the l a s t s e c t i o n . In t h i s case , 

however, there are N+I equations as opposed to j u s t N equation before . 

The s o l u t i o n can therefore be wri t ten as: 



where now so lves the l inear adjoint equation 

G*<}>* = (40) 
e 

Here the additional Lagrange variables k̂  and the constraint surface equa-

t ions g n ( x ) , for n > N, imply a new notation of the fol lowing form: 

so that the elements of G form an (N+I)x(N+I) matrix with g(x) def ined in 

Eq. (38) . 

D. Example 

As an i l l u s t r a t i o n of the methods described in the l a s t s e c t i o n s , 

consider the fo l lowing non-l inear problem with response R(x) and objec-

t i v e function U(x) (which i s to be maximized): 

x = x (x j , x 2 , . . . . rX.i, k i , . . . . , kr) N (41) 

U(x) = a i x ^ 2 (43) 

R(x) = biXi + b 2 x 2 (44) 

The system constraints are given by: 

f i ( x ) = c n x ? 1 + c 1 2 4 2 + di < 0 (45) 

f 2 ( x ) = x2 > 0 

f 3 ( x ) = x 2 > 0 
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where a l 5 b i , b 2 , a l s a 2 , c n » ci2 = 1> »02 = a n d d i = 

cons tant response s u r f a c e f o r t h i s case i s a s imple s t r a i g h t l i n e and 

the cons tant f i ( x ) c o n s t r a i n t s u r f a c e i s a c i r c l e . 

The s p e c i f i c va lues of the cons tant s g iven , f o r c e the s o l u t i o n to 

l i e on the c o n s t r a i n t s u r f a c e descr ibed by f i ( x ) = 0 and the Laorangian 
formulat ion o f the problem reduces to f i n d i n g a maximum in H(x) given by: 

H(x) = a ^ ^ 2 + M c n x ? 1 + c 1 2 x | 2 + d j (46) 

The three equat ions which the maximum po in t x"e i s a s o l u t i o n to are 

t h e r e f o r e : 

9 i ( x ) = = a 1 0 1 x ? * - l x S 2 - + k c n S i x ? 1 " 1 = 0 (47) 

g 2 ( x ) = = a ^ x ^ x ^ " 1 + k c 1 2 e 2 x i 2 - 1 - 0 (48) 

g 3 ( x ) = c n x ? 1 + c 1 2 x ^ 2 + dj = 0 (49) 

With the s p e c i f i c cons tant va lues g i v e n , the s o l u t i o n to t h i s equat ion i s 

Xi = x 2 = ft, R(x ) = 2 f t , U(x f i) = 2 , and k = - 1 / 2 . 

Taking the d e r i v a t i v e with respec t to x o f the f u n c t i o n s and parameters 

in Eqs. ( 4 7 ) - ( 4 9 ) and us ing the d e f i n i t i o n of the matrix elements o f G in 

terms of the d e r i v a t i v e s 3 g n / 3 x n , , r e s u l t s in the f o l l o w i n g a d j o i n t equa-

t i o n f o r J* . 

'39! ag2 ag3 
3x7 3x7 9x7 

39l 392 993 
3X2 3X2 3X2 

3 9 l 9 9 2 9 9 3 

3k~ 3k~ W 

* 

X2 w 
(50) 
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which in th i s case reduces to: 

/ 2 k 1 2 x \ I x* 

1 2k 2x2 

2X! 2x2 0 V / 

* 
*2 

w 

A 
l (51) 

A solut ion to t h i s equation can be evaluated e a s i l y using the 

extremum values for x i , x 2 , and k found so lv ing the forward problem. * * 
The r e s u l t i s Xj = x 2 = 0, and k* = 1 / ( 2 / 2 ) . These values al low the 

f ina l expression for the general s e n s i t i v i t y c o e f f i c i e n t to be written 

simply as: 

abj 

3oT + ft 
ab2 

3CT 
1 

2 f t 

393 
3o~ (52) 

Results of s e n s i t i v i t y c o e f f i c i e n t ca lcu la t ions for d i f f e r e n t d e f i n i -

t ions of a are given in Table I I . The der ivat ives in Eq. (52) were 

evaluated a n a l y t i c a l l y from the def ining equations for g n ( x ) [ i . e . , 

Eqs. ( 4 7 ) - ( 4 9 ) ] . These r e s u l t s make i t c lear that the response is sen-

s i t i v e to a l l the system input parameters except those which de f ine 

U(x). This i s to be expected because of the synmetries imposed on the 

problem by the response and the c i rcu lar cons tra int surface . The problem 

i s a l so much l e s s s e n s i t i v e to the input parameters than the previous 

l inear example. 

IV. Summary and Conclusions 

The developments presented make i t c l ear that s e n s i t i v i t y theory can 

be extended s u c c e s s f u l l y to cover a wide c l a s s of a lgebraic non- l inear 

equations with and without cons tra int s . A so lu t ion to the forward prob-

lem under i n v e s t i g a t i o n i s the s t a r t i n g point for these developments. 

Once t h i s so lu t ion i s a v a i l a b l e a l l the der ivat ives needed to evaluate 

s e n s i t i v i t y c o e f f i c i e n t s can be reduced to a procedure for so lv ing 

a s i n g l e l i n e a r adjoint equation for each response o f i n t e r e s t . This 
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equation i s e a s i l y so lved s i n c e i t i s a lgebraic and has constant c o e f -

f i c i e n t s . In most cases (where the dimensional i ty of the r e s u l t i n g 

system of equations i s not too large) the adjo int matrix operator con-

t a i n i n g the system constants can be inverted d irec t ly -and a l l sen-

s i t i v i t i e s f o r a l l responses can be evaluated from a s i n g l e matrix 

invers ion . 

By analogy with s e n s i t i v i t y work on the radiat ion transport equa-

t i o n , the s e n s i t i v i t y c o e f f i c i e n t s made ava i lab le by the methods 

developed here can be put to a number of important pract ica l uses . 

For example, Taylor s e r i e s expansions using the s e n s i t i v i t y c o e f f i c i e n t s 

( i . e . , f i r s t d e r i v a t i v e s ) can be used as the bas is for a second order 

accurate perturbation theory for the non- l inear systems under i n v e s t i -

ga t ion . In add i t i on , a s t a t i s t i c a l uncertainty ana lys i s of system 

responses can a l so be made i f perturbation r e s u l t s are combined with 

assumptions about the nature of the uncerta int ie s in the system input 

parameters. These r e s u l t s y i e l d information about the l eve l of con-

f i d e n c e that can be placed in ca l cu la ted system responses or projec t ions 

o f future behavior. Much work needs to be done in t h i s area , e s p e c i a l l y 

f o r econometric and energy system modelling problems. 
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Table I. S e n s i t i v i t y C o e f f i c i e n t s of Linear 
Problem Response to Input Data 

Input Parameter (dR/R)/(da/a) x 11 

= a l = 4 0 
= a 2 = 5 0 

= bi = 2 22 

= b 2 =-! -11 

= c u = 3 -40 

= c 1 2 = 7 51 
= c 2 1 = 2 12 

= c 2 2 = 1 28 
= dx = 10 -34 
= d2 = 3 -17 

Table I I . S e n s i t i v i t y C o e f f i c i e n t s of Non-Linear 
Problem Response to Input Data 

Input Parameter (dR/R)/(da/a) 

a = = 1 0 
= = 1 0 

= a 2 = 1 0 
= bj = 1 0 . 5 

= b2 = 1 0 . 5 

= c n = 1 -0 .25 

= c 1 2 = 1 - 0 . 2 5 
= 6! = 2 - 0 . 1 7 3 

= 02 ~ 2 -0 .173 
= di =-4 0.5 
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