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Abstract

The generzl development of a sensitivity theory for non-linear
algebraic equations with constraints is presentia. Adjoint equations
suitable for evaluating derivatives of system response functicns with
respect to input parameters are derived. The role of the solution of
the constrained problem in eliminating non-essential constraints is

highlighted. Two sample problems, one linear and one non-linear, are
solved to jllustrate the theory.



I. Introduction

Sensitivity thsory has been developed to a high state cf sophistica-
tion for applications involving solutions of the linear Boltzmann equation
or approximations to it.175 The success of this theory in the field of
radiation transport has prompted study of possible extensions of the
method to more general systems of non-linear equations. Initial work in
the U.S5.8°7 and in Europe® on the reactor fuel cycle show that the
sensitivity methodology works equally well for those non-linear problems
studied to date. In this paper the general non-linear theory for
algebraic equations is summarized and applied to a class of problems
whose solutions are characterizad by constrained extrema. Stch equations
form the basis of much work on energy systems modelling and the econom-
etrics of power production and distribution. It is valuable to have a
sensitivity theory available for these problem areas since it is diffi-
cult to repeatediy solve complex non-linear equations to find out the
effects of alternative input assumptions or the uncertainties associated
with pradictions of system behavior.

In Section II the sensitivity theory for a linear system of algebraic
equations with constraints which can be solved using linear programming
techniques is discussed. The role of the constraints in simplifying the
problem so that sensitivity methodology can be appiied is highlighted.

In Sections II and IV the general non-linear method is summarized and
applied to a non-linear pirogramming problem in particular. Conclusions
are drawn in Section V about the applicability of the method for
practical problems.

II. A General Linear Programming Problem

A. Theory

To illustrate the sensitivity method for constrained systems, con-
sider first a general linear problem. The aim in such a case is to find
an extremum in a linear objective function U(x) subject to a series of






linear constraints fj(I) on the system state vector X. OUnce the extremum
is known, the extremum state vector Ré can be used to evaluate some
particular system response function R(ié). For this case (generally
called the "forward problem"), the relevant functions can be written as
follows:
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with Tinearly independent constraints of the form

N

fj(x) = Z Cjixi > dJ- J=1,...,d > N (3)
i=1

A unique solution to the resulting equations for ié is known from theory
to be a vertex formed by the intersection of N of the J constraint func-
tions.? This theorem is the basis for the linear programmirg (i.e.,
simplex) algorithms used to solve such problems.

Once the solution to the forward problem has been found and R(ié)
has been evaluated the following general sensitivity question can be
posed: how will the system response change with changes in the system
definition parameters (i.e., the CH bi’ di’ and cji's)? In terms of a
system variable «, on which all the system parameters may depend, the
sensitivity problem reduces to finding the sensitivity coefficient
dR(Ré)/du.' Here, « can take on any number of different definitions

depending on the particular sensitivity question being asked.

By virtue of the nature of the solution to the forward problem
(i.e., Eé being a vertex) the set of equations which describe the
behavior of Xg are simply the N independent constraint equations
intersecting at ié. The extremum ié is therefore a solution to the
following system of N equations:



N
fn(xe) = E; Chi%ei = 9o n=1,....,N (4)
i=1
or alternately
f(xe) = C xe = d (5)

where C is an NxN matrix with elements Chi To get Eq. (4) it has been
assumed for notational simplicity that the N constraint surfaces es-
sential to forming the vertex at ié are the first N constraints of

those given in Eq. (3). The linear programming solution of the forward
equation eliminates the other non-essentiai constraints from considera-
tion. Note also that the equations for Eé are independent cf the param-
eters in the objective function, a general feature of all Tinear prob-
lems. Therefore, once the extremum vertex has been found, variations in
the objective function have no effect on the response (i.e., dR/dai = 0).

With the non-essential constraints eliminated from consideration,
Eqs. {2) and (3) can be differentiated directly and conventional sen-
sitivity methods applied to evaluate dR/dx.3 Direct differentiation yields:

d

of _ 5C = o od

P da xe + e 3 da » (6)
- X

R_3b .7 4 5.8

H&" oa xe tb on (7)

Letting ¢ = [(aié)/(aa)J, Eq. (6) can be rewritten as,

=€~ ,ad
Co = oo Xe * an (8)

Equation (8) can be converted into an adjoint set of equations3 to
evaluate the second term on the right hand side of Eq. (7). Denoting the
adjoint by ¢*, the final result is:

R - ﬂ-?ﬁz) (9)

=0 BE M Y
da da Xog + 9

da Ja e



where ¢* solves the following equation (generally called the "adjoint
preblem")

Cxo* = b (10)

Here ¢* is called the adjoint of &, and the adjoint matrix C*, is defined
in conventional terms as:

)

z*-c3=3-c*s*=z*-(g%-§%§e)=‘6-?- (1)
For this linear system of algebraic equations C* = Ctr (i.e., the trans-

pose of C).

To find any sensitivity coefticient of interest, therefore, * is
necessary to solve only a single adjoint equation [of the form of
Eq. (10)] for each response. The solution is then used in Eq. (9)
together with the explicit analytic derivaties (ab/oa), (2d/3e), and
(3C/2a) evaluated at the extremum point solution of the forward problem
ié. Note that the first term in Eq. (9) is the "direct effect” on R
of variations in b wi*h respect to a. The second term, called the
"indirect effect,” represents the variation of R as a result of varia-
tions in the extremum solution point ié with respect to a. The indirect
effect acts through variations in the matrix C {i.e., the constraints).
Again no change in U(Ré) has any effect on R as was expected from the

vertex nature of the solution for ié.

8. Example

A simple example which illustrates this method for a linearly
constrained system is given by the following:

n

U(X) = a;x; + asxy (12)

R(x) = bixz + baxy {13)



where a; = 4, a, = 5, by =2, by = -1. The problem is to maximize
U(x) subject to the following constraints

fi{x) = cpixy + ¢ipxp < dy (14)
Fa(X) = caixy *+ Conxp 2 dp (15)
f3(x) = x; >0 (16)
fu(x) = x, > 0 (17)

with €11 < 3, Cip < 7. dl =10, Coyp < 2, Coz = 1, and d2 = 3.

The solution to this forward problem is x; = x, = 1, R(Xé) =1,

and U(Eé) = 9. This identifies the vertex o = (1,1) as the extremum
and the vertex intersection equations as

Cr1%1 * C2Xp = d) (18)

11

CoyXy * CoaXp = dp (19)

The sensitivity Coefficient is therefare:

dR _ abl abz * adl BCII aclz
b SR IR S e P S P (20)
* adz 3C21 3C22
+ — - - )
X2 da Ja X1 da X2

* — * x|
where %Xy = xo = 15 %3 = -4/11 and x; = 17/11; and ¢* = (Xy,Xp) iS ub-
tained by solving the following adjoint problem :

* *
C11X1 t Cz1X3 = by : (21)

* *
Cy2Xy + Ca2Xp = by (22)



The results of this sampie problem are summarized in Table I where
the values of dR/du are given as a function of a. The definition of o is
assumed to be a different system parameter for each separate evaluation
of Eq. (20).

For this problem, the response is most sensitive to variations
in the value of c¢;,, with ¢;; and d; following close behind in import-
ance. In terms of first order perturbations given approximately by:

=

1.5 . Sa (23)

o o3

|

sR/R = &

o

a perturbation of 1% in c;o would result in a 4.6% change in R. If all
the parameters had uncorrelated 1% uncertainties associated with them,
an uncertainty of approximately 10.6% in R would be obtained from a sum
of the squares of the individual uncertainties as follows:

o T — I Yo

2

I 2 )
= _GR/R ) 2 - _ 0.01 _dR/R :

R 2: (d“i/“i) W ) 1T E z: (dui/J; 0-106

" ! " (24)

This response is clearly very sensitive to variatinons in the input param-
eters and is a good illustration of the value of performing a sensitivity
analysis for the problem.

III. A General Non-Linear Problem

A. Forward Problem Solution Characteristics

The treatment required for a non-linear problem with general con-
straints varies according to type of solutien fcund for the forward
problem but the methods used follow closely the developments presented
in the last section. Consider first the following problem, with non-
linear objective and response functions U(X) and R(x) respectively, and
J non-linear constraints fj(i) given as:



U(x) = U(xysx25. .. 5xysalad) (25)
R(x) = R(%X15%25. -+ s%ysbla]) (26)
fj(i) = fj(xl,xz,...,xN,c[a]) >0 j=1,...,J (27)

The forward problem is to find an extremum in the objective func-
tion [i.e., U(Eé)] subject to the constraints and then to evaluate the
response at the extremum point, R(Eé). Assuming that a solution to this
proulem exists and methods are available to solve for Ié (i.e., non-
linear programming algorithms exist and work for this case}, it is clear
that the solution need not be a simple vertex. In general, the solution
can be shown to be one of three possibilities:?

1) the objective function has an unconstrained extremum point which
lies inside the region defined by the constraint surfaces, or

2) th2 objective function has an extremum point tangential to a
surface defined by the constraints, or

3) the extremum is a simple vertex.

A separate sensitivity theory has to be developed for each of these
eventualities with the forward solution being used again to identify
the extremum point and constraint equations which are applicable.

B. Unconstrained Solutions

The case where the constraints play no role in determining the
extremum [i.e., case (1)] is discussed first since the general non-linear
sensitivity equations can be developed here for later use in constrained
problems. For the unconstrained problem the solution to the forward pro-
blem reduces to finding an extremum in the objective function itself. That
is, the following N simultaneous, non-linear equations must be solved:

gn(ié) = Qgéﬁl =0 n=l,....,N



Assuming that a solution to this set of equations can be found, the
sensitivity problem again entails finding the derivatives of R with
respect to o evaluated at the extremun solution point ié. As in the
linear case the first step is to differentiate R as a function of ié
directly to get:

dR _ aR b, 2R e

d " B = B (29)

[
-~

To get the needed values of aié/aa, Eq. (28) is differentiated to
give:

S - S N R P (30)

or alternately in terms of ¢ = aié/aa and the matrix operator G with
elements agn/axn., we can write:

» — - gg- 2-@—
G¢ od dao (3])

Here again it is assumed that R and U can be explicitly differentiated
with respect to a and ié to get the elements of the mairix G and the
various derivatives of R.

Since many different representations of « will be used in a full sen-
sitivity analysis, each new form of which would change only the nature of
the source term in Eq. (31), an adjoint formulation of the equation is
needed. It is possible to develop an equivalent adjoint problem since
Eq. (30) is linear in 9. The matrix operator G is not a function of ¢
and is in fact a matrix of constants, each element of which is a known
derivative of some sort evaluated at the extremum point ié. These
properties of the eguation for ¢ are quite general results of sensitivity
theory, whereby non-linear forward equations give rise to linear sen-
sitivity equations making the latter problems far easier to solve than
the original problem.



Using an adjoint formulation of the problem results in a form for
dR/da which can be written as:

dr . 2R AQ_;*.(%% .g%) (32)

where o* solves the following adjoint equation:

G*Tg* = .Ni (33)
JXe

and from the definition of the adjoint operator

od da

- I
G*¢*.¢, = 9—5__ vy = ¢,*.G¢ = - ¢* -\-aﬂ- ‘B—a— (34)
e

Note that G* is an NxN square matrix with elements composed of various
derivatives of the form agn./axn.

Again it is clear that the solution of a single linear adjoint equa-
tion is all that is needed to evaluate the derivative of each response of
interest with respact to all differential variations of the input param-
eters. The adjoint equation in fact is an algebraic set of coupled linear
equations with constant coefficients in which only the source term
depends on the response function R. If it were possibie then to invert
the G* matrix explicitly, all response functions of interest could also
be studied using the solution to only a single adjoint equation.

C. Constrained Solutijons

For the constrained case, if the extremum point is a vertex the
sensitivity problem is a simple extension of the deveiopments in the
previous section. That is, the equations for the vertex are given by
the first N constraints, fn(ié) = 0, n=1,....,N and the theory in
Section III.B can be applied directly starting with Eq. (28) in which
gn(ié) = fn(ié) for the present case. For the vemaining case, in which
the extremum is given by the tangential intersection of the objective
function and a surface defined by the constraints, some additional
developments are needed.
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This preblem is best posed by using Lagrange multipliers, ki’ The
intersection of the extremum in U(x) and constraint surfaces f. (x)

i=l,..... I with I < J, is described by the extremum in a new obJect1ve
function H(X) given as:

I

H(X) = Z ' (35)

where from the definition of the constraint extremum vector and the con-
straint surfaces

H(kg) = U(X,) (36)
.S’incea
fi(x,) =0 i=1,....,1 (37)

Again it has been assumed that the i=1,....,J constraints were ordered in
such a fashion that those with i > I are non-essential to the particular
solution point §é.

It is clear then that the extremum point is a solution to the N+I
set of simultaneous non-linear equations given by:

gn(i) = M . g n=l,....,N

axn

guri(® = A= £y =0 =10 (38)
' i
Solution of the general sensitivity problem now follows directly
from the developments presented in the last section. In this case,
however, there are N+I equations as opposed to just N equation before.

The solution can therefore be written as:

g_R_.:.é&.a_b._-—*.gi.a_g.
: L (aa au) (39)
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where ¢* now solves the linear adjoint equation

G*E* = @ (40)

BXe

Here the additional Lagrange variables ki and the constraint surface equa-
tions gn(f), for n > N, imply a new notation of the following form:

—)Z=;(_(XI,XZ,..-.gXN,kl,....,kI) (4])
3xy 90X ak ¢ ak

T - - N [

$=¢ 3o """ %a Y % T ba (42)

so that the elements of G form an (N+I)x(N+I) matrix with g(x) defined in
Eq. (38).

D. Example

As an illustratior of the methods described in the last sections,
consider the following non-linear problem with response R(x) and objec-
tive function U(x) (which is to be maximized):

U(x) = ayx§1x32 : (43)

R(X) = byx; + bpxy (44)

The system constraints are given by:

f1(x) = C11X?1 + Clzxgz +dy <0 (45)
fg(_)_(-) = X3 Z_ 0
fa(x) = x3 >0
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The
constant response surface for this case is a simple straight line and

where d), by, boy a3, apy €115 C12 = 1, B1:82 = 2, and d, = -4.
the constant f;(x) constraint surface is a circle.

The specific values of the constants given, force the solution to
lie on the constraint surface described by fi(x) = 0 and the Lac¢rangian
formulation of the problem reduces to finding a maximum in H(X) given by:

B

HX) = apx§ix32 + k(e xf + cppxb2 + dy) (46)
The three equations which the maximum point ié is a solution to are
therefore:

g1(x) = Xy ay0x311xg2 4 ke118x527" = 0 (47)

g2(x) = Xy aldzx?lxgz_] + kClzﬁzxgz-] =0 (48)

g3(x) = %E‘= cxd! + cpxB2 + dp = 0 (49)

With the specific constant values given, the solution to this equation is
X] = Xp = V2, R(S?e) = 2v2, U(Ie) =2, and k = -1/2.

Taking the derivative with respect to X of the functions and parameters
in Eqs. (47)-(49) and using the definition of the matrix elements of G in

terms of the derivatives agn/axn., results in the following adjoint equa-
tion for ¢*.

991 99, 4993 * 3R

X1 9X; Xy X1 9Xy

99; 09 993 N R

3Xp 98X, 9Xo Xp = %p (50)
] o o

gy 992 993 > aR

oK ok ok ! ]
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which in this case reduces to:

2k 1 2X1 X1 1

*
1 2k 2x2 | | x5 = [ (51)
2Xy 2X» 0 k* 0

A solution to this equation can be evaluated easily using the
extremum values for x;, X5, and k found solving the forward problem.
The result is xT = x§ = 0, and k* = 1/(2/2). These values allow the
final expression for the general sensitivity coefficient to be written
simply as:

4R ab, b, | 393

=" 3t 5 T on (52)

Results of sensitivity coefficient calculations for different defini-
tions of o are given in Table II. The derivatives in Eq. (52) were
evaluated analytically from the defining equations for gn(i) [i.e.,

Eqs. (47)-(49)]. These results make it clear that the response is sen-
sitive to all the system input parameters except those which define

U(x). This is to be expected because of the symmetries imposed on the
problem by the response and the circular constraint surface. The problem
is also much less sensitive to the input parameters than the previous
linear example.

IV. Summary and Conclusions

The developments presented make it clear that sensitivity theory can
be extended successfully to cover a wide class of algebraic non-linear
equations with and without constraints. A solution to the forward prob-
lem under investigation is the starting point for these developments.
Once this solution is available all the derivatives needed to evaluate
sensitivity coefficients can be reduced to a procedure for solving
a single linear adjoint equation for each response of interest. This
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equation is easily solved since it is algebraic and has constant coef-
ficients. In most cases (where the dimensionality of the resulting
system of equations is not too large) the adjoint matrix operator con-
taining the system constants can be inverted directly -and all sen-
sitivities for all responses can be evaluated from a single matrix
inversion.

By analogy with sensitivity work on the radiation transport equa-
tion, the sensitivity coefficients made available by tHe methods
jeveioped here can be put to a number of important practical uses.

For example, Taylor series expansions using the sensitivity coefficients
{i.e., first derivatives) can be used as the basis for a second order
accurate perturbation theory for the non-linear systems under investi-
gation. In addition, a statistical uncertainty analysis of system
responses can also be made if perturbation results are combined with
assumptions about the nature of the uncertainties in the system input
parameters. These results yield information about the level of con-
fidence that can be placed in calculated system responses or projections
of future behavior. Much work needs to be done in this area, especially
for econometric and energy system modelling problems.
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Tabje I. Sensitivity Coefficients of Linear
Problem Response to Input Data

Input Parameter (dR/R)/(da/a) x 11
a=a1=4 0
=a, =5 0
= b, =2 22
= b, =-1 -1
= ¢y = 3 -40
= c1o= 7 5]
= ¢~ 2 12
= Cpo® | 28
=d; =10 -34
=d, = 3 17

Table II. Sensitivity Coefficients of Non-Linear
Problem Response to Input Data

Input Parameter (dR/R)/ (da/a)

a=a; =1 0
= q; =1 0
= ap =1 0
= by =1 0.5
= b, = 1 0.5
= ¢11= 1 -0.25
= Cpp= 1 -0.25
=g =2 ~0.173
= gy =2 -0.173
= d; =-4 0.5
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