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NEOCLASS ICAL TRAMSPORT IN AN ELLIPTIC TOKAMAK'
K. T. Tsang

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

ABSTRACT

Neoclassical transport for an elliptic tokamak in all collisional
regimes is investigated by the technique of rpartitioning the velocity
space. It is found that in a tokamak of moderate elongation, particle
and ion heat confinement times are increased by a factor of 02, where
0 is the ratio of vertical minor radius to horizontal minor radius.
Ripple diffusion in an elliptic tokamak is also studied. Jlon heat

conductivity due to ripples ic reduced by a factor of approximately cz
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1. INTRODUCTION

It is now widely recognized that high beta (= plasma pressure/
magnetic pressure) operation of any magnetically confined fusion device
is a necessary ingredient in the design of an economical fusion system.
High beta tokamak equilibria have characteristics very different from
those usually assumed for low beta equilibria, e.g., the magnetic flux
surfaces are no longer circular but are elongated in the vertical direc-
tion and triangular distortion is also introduced even if the outermost
flux surface is kept circular. Usually, triangularity is not important
except near the edge of the plasma, because it is a higher order flux sur-
face distortion. For simplicity, we ignore triangularity and assume a
system of elliptiz - ux surfaces as our model for the tokamak equilibrium.
This model is fully described in Sec. 2.

The problem of neoclassical transport in an elliptic tokamak is a
difficult one. So far, it has only been studied in various distinct col~
lisional regimes.]-3 Rigorous analysis based on the variational principle
to calculate transport coefficients as smooth functions of collision fre-
quency has not been carried out and is believed to be so complicated that
it is probably not worth the effort. The calculation presented in Sec. 3
is an attempt to avoid this rigorous analysis by applying the technique of
partitioning the velocity spaceh which was recently developed to reproduce
standard neoclassical results. Using this method, the transport coeffi-
cients for all collision frequencies are obtained by solving the drift
kinetic equation in different reqgions of velocity space and then combining

the results. In principle, this technique can be applied with the exact



collision operator. Again, for the sake of simplicity, we assume a Lorentz
collision model which restricts our analysis to high Z (or Zgr > 1)
plasma.

Although cur present treatment is somewhat ohenomenological, it should
be emphasized that the purpose of this work is not to solve the neocla~-
sical transport in high beta equilibria but to bring out the essential
physics of neoclassical transport in elliptic tokamaks. The scaling of
transport with respect to vertical elongation is obtained in Sec. 3. A
physical explanation of this scaling is also given.

Besides the minimum loss neoclassical transport establishes for a
tokamak plasma, another reason for studying neoclassical transport is
that the ion heat conductivity it gives roughly agrees with experimental
observation. However, at low collision frequency, ripple diffusion5
dominates over neoclassical diffusion in a symmetric torus for ions. In
Sec. L4, ripple diffusion in an elliptic tokamak is considered. Modifica-

tion of Stringer's result5 to account for ellipticity is cvaluated.



I§. THE EQUILIBRIUM MODEL

In (¥, X, 9) coordinates, where ¥ is the poluidal flux and ¢ is the

angle about the symmetry axis, the magnetic field can be written as

B = I§¢ + $¢ X $w. I is a function of Yy only. In low beta situations,
I = RB¢ is approximately constant. In a constant ¢ cross section, R repre-

sents the distance from the symmetry axis and z the vertical distance. An
elliptic flux surface can be represented by

2,2 2
/0 =90,

(R - RC.)Z +2z°/
or by

R - R° = 0 COS W,

z = 0p sin w,
where Ro designates the position of the magnetic axis, o is a flux surface
variable, w is a poloidal angle variable, and 0 is the elongation of the
ellipse in the z direction. In the most general case, both Ro and o are
functions of p, which corresponds to a system of nested but nonconcentric
ellipses with varying ellipticity. For reasons of simplicity, we assume
Ro and 0 are independent of p, thus restricting ourselves to a system of
concentric elliptic flux surfaces with a fixed ellipticity. Though this
magnetic field model for finite beta tokaman eguilikrium is pot quite exact,
it is nonetheless useful for our present pcrpose, since the effect of the
shift of the center of the flux surface is small for Vuw beta equilibria.

The safety factor q is then calculated by using q = I(fdl/BpRz)IZW.

Neglecting terms of order 52, we have g = pc/ROO, where O = I_] d¢/dp, and

g = p/Ro.



111, NEOCLASSICTAL TRANSPORT

The gyrophase-averaged distribution function § satisfies

of - - _

st (yn+ V) - Uf = c(f).

Neglecting high beta effects, the drift velocity VD is given by VD =

-V" nx T (V“/Q), where n = §/B and C derotes the collision operator. In

terms of coordinates (p, w, ¢), the drift kinetic equation can be written

as
af EEB_¢£+YLE¢(§_Y1£-8_3£)=C(f) )
at Jp B oSw op B ow R 3p  9p Q w i

where B¢ = I/R. 1f we assume B % B@’ then the integral operator that

annihilates the bounce term in Eq. (1) has the same form as that in the
circular case. Integrating this equation over velocity space and perform-
ing the flux surface average /9w h/27m, we get the continuity equation,

. 19
—_— N = e —— .
N> p d0 OTD

VDo =56 F BT (2)
h =1+ p cos w/R _,
o
and {AD = §dw Ah/2n.

Simiiarly, we have the heat conduction equation

3 3 N N B
'a—f(iNT)‘ DOOQD’
| A
where Q_ = (fdv Voo 37 £). (3)



As in standard neoclassical theory, we assume that the lowest order
solution of Eg. (1) is a Maxwellian distributior F constant on the flux
surface,

2

F = N(gg?)3/2 exp (-<g¥ ),

where N = N{p), T = T{p).

Equation (1) then reduces to

B——B-E)+E—-8—L6h——a—o=-B—OC(f). (L)
Equation (4) has the same form as the corresponding equation for a circu-
tar tokamah zxcept for the extra factor nB/BQ in front of the collision
term. This equation can be zolved asymptotically in three different regions
in the velocity space.

!n the electron equation, we ignore the electron-electron collision
for convenience. This implies that the effective atomic number of the
plasma is so large that electron-ion collisions dominate. The collision
term is then:

of
€

oJu

VW 3
= —'-._.

C(fe) = ve(v) B on v
where u is the magnetic moment, ve(v) = ve(ve/V)3, and Vp is the electron

~]/2V

thermal velocity. |In the trapped region where V Vv ¢ , the collision

term can be neglected if

1/2 3
e ""ve/p > ov  (V /V)7/e
or
3/2 /4 - /b
V/V, >> (Rq v /e v,) 2 Ve (5)

Ia the region where the inequality of Eq. (5) is satisfied, we can

solve Eq. (4) as in Rosenbluth et g£.6 and obtain to lowest order



Fe N 3 mev e T‘i N"
fe= 73 {N -z 7 J vy + RO - [“ TN
e e e
- (l - TEZ_) I_E._ 0.172 I_i] XE.,f ¢ %, (6)
2 2Te R Te 2 AC QV”)
where » = 2..BO/v2 and 1C =1 - o/Ro. We notice that to this lowest order

in collision frequency, ellipticity makes nc difference except in (V“>,
because the collision term can be negiected and in the next order acts as
a constraint to determine the flux surface constant part of fe. When we
invoke the assumption that the polcidal magnetic field can be negiected
comoared with the toroidal field, then even (Vn> is the same for elliptic
and circular tokamaks. This assumption is valid when the poloidal betea
is less than or on the order of unity. However, even with the inclusion
of the poloidal field in the magnitude of B, the result would nct be
changed by a factor of order more than unity.

When the effective collision freguency of a trapped electron is
larger than its bounce frequency but the transit frequency of a circulating

electron is still larger than its collision frequency, i.e.

S\ (V /V)3 << vO/n << 3 v (V /V)3 5—3/2,
e e e e
or
!
38, VA W o)
e e e
the electrons are in the so-called ''plateau regime.' In this region of

the velocity space, the standard technique for solving Eg. (4) is to

approximate C(f) by (l/2)\)v232f/3v”2 and get7



VHG afe _ sin w (v 2 1 1 ) EE_ 1/2 v, (V)V a fe
o 9w TR I 7Y% = C I
e o i
with a solution
e . p
Fe = 2@9 35 ./( dp exp (- p pov_ % /60) sin {w- le) (8)

In the low energy region of the velocity space, when the collision
frequency is larger than the transit frequency, i.e.

3 -
oV, (Ve/v) >> VB/p

or

V/V << e3/8 v, 1/h
e e

) {9)

we can solve Eq. {b4) Qy‘ordéring C(f) as the dominant terms. The solution

.

in this region is

2
N T m v
— d(e _5
fe—-N Fe + 3 (ZT Z)Fe (10)
e e
where
El 3n op (25 NT +‘% T e) sin W
N 32 G)zTe 8 N VT, /RQ,
Ii_= 3 cpz (3 N1 e) sin w
T 32 2 TN 2 RQ
e 0 Te e o e
and
3m 1/2 T 3/2
T = e e

e u5(2)'7% " zn e A
Finally we have the generalization of the correction due to the
7
boundary layer between trapped and untrapped electrons’, which can be

expressed as



\0

1)

’

— - - - ‘/2
Q, = Qy, = 3.07 [ - 0.92 )2,
where Q]] and Q]2 are defined through
2
1/2 2 -
P -2 }de (%‘) F “Q11(%’ -
ool e €
e
S22 T, 2 3
R s vdv ) F vQ
oo, 2, T, \2 12
v o= V€_3/2/2, and v = ZDOVe(v)/Bv.

After carrying out the velocity integration in Eq.

appropriate f_ from Egs. (6), (8), and

inequalities (5), (7), and (9), we obta

(2) by using th=
(10) in the regions specified by

in an expression for the particle

flux:
-3/2 -2 2 2 -1 N’ 3 T -
' = -Ng o qa p T, lK]! (N—-- E-?——) + Klz T e/Te] (11)
where K‘] and K]2 have the same form as in Ref. 4,
-Xc | 1/2 Xc (2n)‘/ Ve
Kj; = 0.73e \l - 0.9 v, e (X )] E__—___' le {2 + 2y
+ ycz) -e "% (2 + 2Xc + Xc )} %— e3/2 [75 y /2
_e¥e a2 (75 25 3.
RYFERE £ T z*
1/2 -y
- -Xe - . (2m) c 3
Ki, = 0.73e [1 + Xe - 0.90 v, T+ By, { (6 + 6y_+ 3y_+vy.")
- 2372 (5
- ke (6 + 6Xc + 3Xc + Xc> 1 2 L§5 erf vy 12
3z c
_e¥e 1/2 (285 95 5,2
75 e (e - 1)
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_ 1/2
xc = 0'97V*e ,
_ _3/h 1/2
YC = 0975 \)"‘e .
E, (x) z/ e bt de/t .
X

Equation (11) states that if q is held constant before and after
elongation, the particle loss will decrease as 0-2. There is a factor
of ﬂ/ZEl(OZ-])/Gzl difference between Eq. (4) and Refs. 2 and 3 because
of the difference of the flux surface variables used and the definitions
of g. But this presents only a factor of 1 to 1.57 difference as o
varies from one to infinity. Similar calculation shows that the neo-
classical ion heat confinement time also increases by a factor of 02
in an elliptic tokamak as compared to the circular casc if q is kept
constant.

The 1/02 reduction of neoclassical particle and heat fluxes due to
ellipticity has a simple physical explanation. From Egs. (2) and (3),
these fluxes are proportional to the normal component of magnetic drift
velocity to the flux surface, va, and the distortion of the distribution
function due to this drift which is also proportional to va. wWhen the
flux surface changes from a circle to an ellipse with jts major axis in
the vertical direction, VDp is on the average reduced by 1/0 because
the magnetic drift is also in the vertical direction. Thus, there is a
total 1/02 reduction of the neoclassical particlie and heat fluxes if
the flux surface changes from a circle to an ellip-e keeping the same

o, Ro’ and q.



1V. RIPPLE DIFFUSION

In investigating the effect of ripples in an elliptic tokamak,
poloidal field cannot be ignored compared with toroidal field because

the size of ripples is even smaller. Therefore, we write

B=~B |[l-€ cos w + 1 E-Z + EA 052 w - 6(p,w) cos no
" Yo os w75 q 2 € Py ’

"

a
where A (02 -1+ 2q‘)/q2, 8(p,w) is the size of the ripples, and n
is the number of toroidal field coils. Following Stringer,” we find

the =ffective ripple well depth along the field line to be

B x - B
Alw) = 2 . min
)
2 -
= 2§ [vﬁ-uzg - u{g~- sin! (alg‘)}lgl], (12)
where g = sin w (1-A cos w)h and a=¢/ngs.

The drift kinetic equation can be written as

V of oF V 3 af
—_—— —_— —_— —
R 3¢ VDp o0 VE; ou v ou ’
BOG cos w {1-A cos w) 2
where VDp = - 5B (V" + uB).

This equation can be solved in the same way as the previous calculations

to obtain
B.B
_ ) oF mc _E o0 . _
f = S 35 eoR (p 5 ) —— sinw (1-A cos w).
0 max B

Substituting this result in Eq. (2), we get

2 -
_ _6_14__ 603/2 I(OLO) ( CTi ) 271-':2 [_N_: + ec‘p" T i .
ip 9 (2ﬂ)3/2 eBoRO N
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3/2
64 60 | (Cto)

L6 ( T, ) 12,78 [ﬁf S’ L 5 s I;g]
ep 9 (2n)3/2 eBoRo Vei N Te Te

After the radial potential is determined by quasi-neutrality, Eq. (3)

leads to
JEERTCR IR
Qip = - b6.5 V.. (eB Ro) T i (13)
ii o
Iin the above expressions, I(ab) is the generalization of Stringer's
(o) ,°
a3 3/2
I(oao) =-1]?_o/‘dw (To) (z—go—) sin? w (1-A cos m)2 , (14)

where 8(p,w) = 60(p) £{w) and a = E/ano.

In Eq. (14) the poloidal variation of § is also kept. The factor of
(BO/B)IB/2 in the integrand of Eq. (14) is neglected in most calculation
because Bo v B is assumed.

When the w dependence of & is neglected Eq. {14) has been evaluated
numerically for different values of 6 and < = 1/3 (corresponding to the
edge of a tokamak reactor plasma where the effect of ripples is largest).
The result is shown in Fig. 1, from which we notice that 1(a) is not very
sensitive to o. Thus, the effect of ellipticity of ion heat conduction
due to ripples is mainly contained in the factor 0-2 in Eq. (9). Stringer's

result,5 which corresponds to o = 1 and BO ~ B, is shown by the dashed

line in Fig. 1.
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V. CONCLUSIONS

Summarizing the results of this paper, we conclude that (i) neo-
classical transport in an elliptic tokamak will be smaller than in a
circular tokamak by a factor of 0-2, where o is the elongation of the
ellipse in the vertical direction if the safety factor q is kept con-
stant, and (ii) ion heat =onductivity due to toroidal field ripples is

also reduced by a factor of 0—2 provided that the ripple size is constant.
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Fig, 1. 1(a) factor resulting from reduction of ripple
well depth by effects of toroidal variation and eiiiptic flux
surfaces. For comparison, Stringer's result (from Ref. 5)

is shown by the dashed line.



