Journées mothématiques sur les perturbations singu-
lié¢res et lao théorie de lo couche limite. Lyon,
France, 8-10 décembre 1976

CEA-CONF--3889
FRATC VT

" COMPRESSIFIY COURYERCULRINT FLCH
IN A STRQLGLY BOYATILG CYLILNDER
by Pierre LOUVET and Jean DURIVAULT

Division de la Chimie -~ CEN/Saclay
*B.P. n° 2 - 91190 GIF-sur-YVEITE - FRAINCE

Comnunication presented to the'Symposium on singular
perturbation problem and boundary layer theory'

i

LYON 8-9-10 Décembre 1976




COMPRESSIEIE CCULTVERCURRENT FLOW
IN A STRCLCLY RO7 E
by Pierre LOUVET and Jean DURIVAULT

Division de la Chimie - CEl/Saclay
B.P. n® 2 - 91163 GIF-sur-YVETTE - FRANCE

EOUATING CYLILTE

[ A P RN - e abes an

ABSTRACT

The motion of a compressible viscous gas in a rapidly rotating cylinder closed
at both ends is investigated by the linear theory. The rigid rotation state is per-
turbed slightly by source or sinks and by thermal gradiénts. The method of matched
asymptotic expansinns is used to find uniform solutions in powers of the Ekman num-
ber. In the Stewartson 1/3 layer along the side wall, the Ekman number ¢ at power
1/3 is taken of the same order of magnitude as the inverse of the square Mach num-
ber M ; this allows to take correctly into account the radial compressibility effect,
contrary to previous works. This method is also applied to detached layers and to
Stevartson 1/L layers with ¢ 1/HU 220 (1). The pattern of the flow in these layers

is strongly altered as compared to incompressible case.

1, JNTRODUCTION

The study of compressible fluid flow in a.rapidly rotating cylinder is important
in relation to gas centrifuces used for the enrichment of gaseous isotopic mixtures
such as uranium hexafluorigde UF6.

Knowledge of velocity listribution in a gas centrifuge is of essential importan-
ce for the design and performances of the machines, as no attempt to measure velocity
profiles have succeeded, Inside the rotating cylinder, the equilibrium s.ate of rigid
rotation is perturbed weakly so that the motion can be investigated by the linear
theory, according to the classification of Greenspan[ 1] . The rigid rotation can be
perturbed by prescribing a proper temperature distribution on’the bounding walls :
the top cover is maiatained at a slightly higher temperaﬁure than the bottom cover.

For this thermally driven flow, Barcilon and Pedlovski[Z] , Hunter [3] , Homsy
and Hudson[ h] did the pioneering work in the frame of Boussinesq approximation and
nsed matched asymptotic expansions. However, due to the ‘high value of the rotation
speed, the strong radial stratification of pressure and density, associated with the

. predominance of the Coriolis force render this approximation invalid, Compressible
linear analysis have been performed by Sakurai and Matsuda[ﬁ], Nakayama and Usui [6],
Durivault and Louvet[?], but the compressibility is taken imperfectly into account in
the Stewartson 1ayers[8] along the side wall : the assumption [6}1' a linear density
variation does not remain valid for high speeds of rotation. .

In this paper, as previously, we apply boundary layer analysis to seek the axi-

symmetric steady solution in thermally countercurrent centrifuge as well as counter-




current centrifuge rmechanically driven by inlets and outlets. This last scheme has
been already investigated in simpler cases by Matsudz and el. [9] for weak injections
and by Nakayara and Usui [6] for strong injections. The emphasis is set here on the
domain of validity of the linearization especially on transport terms in the flow
and energy equations. We investigate successively all the parts of the flow., The
motion in the inner core is degenerated and leads to a constant axial velocity. In
the most general case, we recall the main results obtained for Ekman layers on top
and bottom plates by various authors:lotz [10] for variable temperature profiles. and
Matsuda [9] with injections and samples. The Stewartson layers, along the side
vall or the injection layers (fig. 1), are of primarily importance because they
remixed the already separated isotopes ; our analysis proposes a new method based on
the choice of an appropriate order of magnitude between the compressibility and vis-
cous forces, in the Stewartson 1/4 and detached layers, the authors have found a solu~

tion by the same method.

2., FUNDAMENTAL EGQUATIOHS AND SCALING ANALYSIS

2.1. Fundamental equations

We consider the steady motion of a compressible viscous gas in a cylinder of
radius R and height 2h, rotating about its axis with,a constant angular velocity w

(fig. 1). Our analysis is performed on the basis of the following assumptions :

- the flow is axisymmetric e =0.
- the gas is perfect and its tr-nsport coefficients are constant.
— the gravitatioral acceleration is negligibly small compared to the centrifu-
gal acceleration.
-~ the shape factor B= h/R is of the order unity.
i

The rigid unperturbed rotation state (subscript o) is given by :

Voo =wR,‘ V=0, V _ =0
Po(r) . #ofr) _ .82 r? :
Polo) = (0 * ° ()

vhere r is the dimensionless radial coordinete, p the pressure, P the density,

v 0 R Vr and Vz'the azimuthal, radial and axial components of velocity and S the

speed ratio
R/H M
ga—2 -t . )/ (2)

Y2 R7o —%

vhere R is the gas constant, T the temperature, M the molecular mass, y the heat
specific ratio and M the Mach number. In order to investigate the perturbed motion,
ve procecd to the change of variables :




v = vz v Vr_ v =8 _ L
o
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z a wiR T asR 0 a wR
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p
p = —B -1 5= -1 (3)
npsz) a apo(r) a
P e —— -1
a To a

The dimensionless numver @ analoguous to a Rossby number denotes the importance
of the perturbation. The set of Nevier-Stokes equations including energy equation
supplemented by an equation of state is the basic system of the problem. It is

written here in the rotating frame

>

vel[p, (1+ap)u]) =0 (%)

> -+ -3 - -
a [-15 V(u. u) +( 9x D x"\'x]+(5k xu -Tkx (k xr)

‘[’—1—5 VP+2;v.F] (5)
2s tap
Y _ o [:;.VT] (1 + ap) =a (-:x.vp ) + 2Szrvr (Iﬁp) + 21 F:T ver
Y- ) Ll
+ b4 ac S?ﬁ (6)

wvhere U is the rate of shear tensor, €= ¥ / (2 polr) mRz) the Ekman number,
Pr = p Cp/K the Prandtl number, and uf Vs Vo vz) the velocity in the rota-

ting frame and where the viscous dissipation @ is given by :

’ . ‘w2 2
¢ =2[(°——‘L1)2+< a2, 21 ]+<°—"°—)2+(°"”+ LIS

2z r r2 92 32 or
dvy ‘_'_Q_ 2 o3vy dvyr vrp?2
(= - %) 3G

Typical values are, at very high speed WR = 800 m/s

¢ (R) = 1,6 1070 << i

s 40,7 } so that (y- 1) 52 = 0(1)
Yy -1 = 0,065

Pr o1, B %,a=0 to5 102 << (8)

2,2, linearized equations

When terms of orderd are neglected in front of terms of order unity, the li-
nearization leads to a much simpler system :
ag'v
A 1 et 2 )
lrz+r( 35) +25 rv, =0 (9)




2 2
_L_zg_;>=2c (.!.‘. 3v;+3 f;+;1-_ aVz+_;_3Vr|‘l¥ ?Vr)(lo)
28 % 3 3. o rr araz ¥z
1 ? h azvr 1 3w Vr
T Ty S5 e So-5 ()
25° or r r
2 2
+-!- vz + 2 ; )
3 g9z 32
v = € 32"6+ 3‘3 + 1 ”0--1% ) (12)
9z o r r ¥ r
2 € x| 21 .1 2 2Tl .
sx'Vr"Pr '1-_][312 +r or (r 3')] o (1)
Perfect gas law P =p + T
vhere z = Z is the dimensionless axial coordinate. (1)

R
The domain of validity of linearization is discussed in §2.5.

2.3. Boundary conditions
The usual zero velocity condition is taken at the wall of the centrifuge in

sbsence of inlet or outlet. Otherwise, the axial velocity is equal to the inlet or

outlet velocity ; these inlets and outlets can be approximated by sources and sinks
in first approximation in order to calculate detached layers. The walls are assumed
perfectly conducting. Their temperature is prescribed to be Tw (z) for the side wall

and + Tf(r) for the covers. The boundary conditions reads :

on the side wall : r = 1

T(1,z) = ™w(z), Yo,z

)=v (1,2) =v_(1,2) = 0 (15)
on the top cover.: z = B

P (r, B) = 'rr'zr), vg(r,8 ) =v (r,8) =0 |

0 vall

for the it'h
inlet or outlet (16)
on the bottom cover: z = <8

Va(r,8)

vzw(r, 8) =I

viz (r)

T (r, -8) = - T(r), vo(r, - P -vr(r, -g) =0

' 0 at the wall
Vz(r, -9 =v'zv(r’ “8) = viz for the it'h port of injection (17)

2.k, Method of resolution

The Ekman number appears as & singular parameter in the Navier-Stokes equa-
tions. A uniform approximate solution is found by matched asymptotic expansion me-

thod. The outer expansion of a quantity g
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1/2 (1 2

glr,z,e ) = g (r,2) + e r,2) ve 6P ... (18)

correspords to the main inner flow. Two inner expansions which corresponds to the
1/2

boundary layers called the Ekman layers, of thickness € , along the top and bot-

tom cover, read

glr,z,e) =g (r, L,e) =¢ (°)(r. T )+ el/2 E“)(r, )+ ... (19

where { is the inner variable & = z : 72 on the cover 2 =;B . .Note that here
€(x)
r
. 2
c1/2 is a fuagiion of r equal to € 1/2(1) e _285(r 1 , that must be small in all of

the flow.

On the side wall (r=1), the existence of two layers one of thickness O[C 1/3(1)]
cl/b (1)] have been proofed by Stewartson [3]
, is of order ofe 1/6(!'1)]
the existence of a detached shear layer parallel to the axis of the cylinder has been

merged into another one of thickness 0 [

When the rate of injecticn or sampling located at radius r

shown experimentally and theoretically B]. These 1/3 layers allow the passage of
the flow rate from one plate to the other one. The Stewartson 1/4 layer ensures the
transition of the azimuthal velocity from the core to the vall ; this layer disap-
pears in the case of an antisymmetiric problem, using Stewartson's terminology [8]
(v (z,r) ==-vg (-2, 1), Y (2, ) =¥ (-2,r),T(z,r) = -T(-2,r),¥ is the stream-
function). This is the case, when the wall temperstufe is symmetric relative to the

midplane z = O. The expansion read, in the Stewartson 1/3 layer located at radius »

"1
(0)

g(rizac) =3.(£' z, €) =§ (E, 2)"’:1{12 6'.(1)(£, z)
X c1/? 5(2)(1: v 2) 4 eues ' (20)
vhere &= !—j—%’ ,‘1 = c(r1)

and, in the Stewartson 1/k layer N =(r = f|)/t}/"
-’ *(1)
g (r, Z,t)‘8(11,Z,c)'=£(°)(n,z)+::/12 g (n, 2)

+ c‘: 6 & (a e, (21)

The corners of size Of ch‘), 0 ( t11/2), called the Fkman extensions, by [h]

are singular : there, the quasi-complete systems must be solved.

2,5, Validity of linearization

On the full set of equation, with 8 = O(1) which represents a more general case
of flov in the rotating frame, a simple scale snalysis shows that the boundary layers
is of thickness O (¢ 1/2) (Classical boundary layer analysis). When the ©rder of
magnitude of & is smaller than unity, its order must be compared vithgin the various
regions of the flow, Whene=0 ( ¢ 1/3 ), the boundary layer analysis leads to usual

results of linearized theory for the Stewartson layers. A more representative solu-




6
tion is found by linking a toe [11 ] . Here the relation ¢ = O c1/3)(resp.q = of ;1/1‘)
involves non-linear terms in the azimuthal equation.

For the Fkman layers, it is obvious that the limit of the solution of the non
linear system as g + O is equal to the solution of the linear system.

In the core, the thermal convection term must be kept, if a c-1/2(r) = 0(1)
according to the analysis of Homsy and Hudson [4] .

In this work, we restrict ourselves to the case of linear Stewartson layers

a=o(e¢ 1/31 ) and to the case where thermal convection can be neglected® = o (;1/3 ).

3. EKMAN LAYERS

In this layer, all the gquantities are of order unity except the first term of the

1/2

expansion of the axial velocity of order € (r). Then, the substitution of expansion

(19) into the linearized equations (10) to (14) leads to

-’"I:a?) g "‘é”—f&)“ 22 r v(® =0 (22)
_:_,,; @ )
’j-".o(O) . r-’-I'.(-d =2 :2:—5(0) - 2;2 QE:O) (2b)
Y, 3:‘;;‘?’ (25)
Prv (), X 1 °:5i‘2”= 0 (26)

The boundary conditions at the top and bottom platesf = O are

-qo (o) = -ar(o) =0

T (o) o at the wall-
s Cv
z iz(r) for the it’h inlet or outlet
7°)(r,0) = T(r) for z = +B
‘T-(o)(r,o) =-Tf(r) for z = -8 (27)

The standard elimiration among (22 )to (26 )gives, with haha 1 + Pr Sl S2r2

2% '
b (o)
L L AT (28)
’t

The integration of equations (28) , (25) and (26) is straightforward, using
the fact that the solutions sre finite as |g]+w




al

2 +
'2806 € sin a ¢

<
1]

06* (1 - e®% cos &)

0
71»'(0) = % [I_;i- 06* (4 al‘ -0 - e®* cos az)] (29)

(30)

sinal

b = 06- [1 -e 8 os a.C]

o) | _5_[_ 1’;_'2- c6'-" (ha.h-1) (1-e2Fcos ac)]

The relation between 0*6 (r) and C—6 (r) is obtained by using the mass
conservation in a cylinder of radius r bounded by the end plates. The algebraic

sum of inlets and outlets mass flow rates I = IIr‘po(r) viglp, *8)ar is equal
io

to the sum of the radial mass flow rate in the two Ekman layers of order ¢ 1/2(r)

and the radial mass flow rate in the core of order ¢(r) ; successively, we obtain

1= J°21 r:;(O) Py () /2 ac + Jo 2n r ;r-r(o) lbc(r)c”2 a

+ 0(¢)
"8
- Sr
ip (o) 8 828.3 e 2
g = - 1 (32)

(31)
2.2

This radial pressure gradient is necessary to transfer the fluid from a port of
injection at the radius r; to another port et the radius r 5

The final expressions of C6+ and 06- are :

~=(o)
+ 1 rTf 1 dp
Cc = —- —_— - (33)
c"._‘_‘[-r_'l‘l-..L _?_z.i__] (34)
6 uet b2 g e

. . . © . . . o s
The expression of the axial velocity .\7(2 )15 obtained by integrating the continuity
equation for the end plate 2z = g




End plate 2 = 8

—(o) 4 2-—(0) al
-;z(o) - ; : r ~ = l‘a )+ 2 ] e (cos a Z- sin ag ) =1
16a”S t or Ba r
! h
(1,3 ; + 252, z)a;sm al j 22 h1 + 2521-2)3; sin ag
h a r ha-
- (82r2 + -% + —z:l' + ;—gg_: ) (cos al- sin a (]e“+ s%rs -l + Zah
S S (35)

Tf dr iz

An analoguous solution is found for z = -8.

The main characteristics of the Ekman layer is the fact.that the influence of injec-
tion leads to a symmetric problem : the pressure gradient which permits the passage
of the flow from a port at radius ry to a port at radius rj is equal in the two
layers and in the core at a given radius r so that the radial mass flow rate is
the same in the two layers. On the contrary, an opposite temperature plate profile
gives rise to opposite flow rates and to an antisymmetric problem in Stewartson's
terminology [8] Note that the solution is valiad only if 1“52 << 3/2(1')

L, MAIN INUER FLOW

Substitution of expansion (1) into Navier-Stokes equations gives the appro-

priaste scaling : T(o) = 0(1), v(eo) = 0(1) V(zo) =0( ¢ 1/2). vr(o) =0 (e) (36)
This yields to
v (o)
~—2=z0 | , , (37)
2 2 .
(o) Z'T(O) 1 aJ(O) .
? (o]
T =0 (39)
2 1 9
vl . m ve , _lve _ v (40)
‘ 92° ar? r or r2
The solution of equation (37 ) and (39 ) reads
v,(r, 2) =¢ 1/2"1.(0) . /2 1(r) (41)

(o) -
p (r’ Z) p(r) (h?)

Thus, in the core, the flow is axial., The function f(r) is computed by matching




the outer expansion with the lkman layers (the axial velocity to the same value, as
¢ +te for the two endplates

v (o)

fr)=lim v, Ofg) (43)

The radial pressure p (r) is constant only in two cases :
a) if there is no injection
b) if there are injections at the same radius the mass flow entrance being ]

equal to the outflow.

The energy equation reads in the core of the flow : a(l) o a,

4 a,‘( ] 22(0) 2 2‘1‘:’) ), 31t :al'(l) -1 :‘1‘(0)___ ha}; r (_33p;°); 1 321):))
22 ar (o) o 28 A
' g2, o

This equation has been solved for small values of L a“(1) -~ 1 by Mastuda and
covworkers [9 ]
An exact numerical solution of this equation has been found by Durivault and al. 52]

as a particular case of energy equation including thermal convection,

5. STEWARTSON 1/3 - LAYFR

5.1. Basic system

In this layer, the equilibrium density is expressed in function of the inner
r-ry

variable § = - 73 « Then
1
2
polr) .expRS“xgl/3p 452 ¢ 2/3g2
Po r') fl 1 *1 ¢ ] (45)

As 1/S2 appears also as a singular parameter in the continuity equation [1 l;] , its
order of magnitude have to be compared with ¢/3 (Darrozes [13] ). With the order
of megnitude of $2.1. and the help of Eq. (45), it appears that the parameter
¢’ 2 s° r, € :/3 must be taken of order the unity. Thus, the singularity is

tal:en correctly into account. Notice that solutions like Nakayama's one [6] assuging

€<y are invalid if 1/52“ 1. Thus Ddr) /? ¢ ¢
173

1
The local Ekman number ¢ 'is linked to the layer Ekman number € by

0(1'1) can be spproximated by e

1/0).

to a term € smaller, as far as € = O( ¢

e =e(r) R 2 e e 8ol )] (46)

° r,)

Thus, the equations of the flow reads [14] neglecting terms ¢ /3 smaller and using
the expansion (21) (notice that &Y has become regular) !
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~ (i) ~ (i)
- avz . 3\': R c‘ c'r(i) =0 (h”)
. ¢ r, (i) .
CREE AR e
- ~ (i ~or s
207t 22v, " n gW) (1)
aEQ . ct 3;
T.00) o -¢Fa2 Vi) (50)
w .
. 2 i)
s2pr Y -11 r\;;(x) LY '1'2 =0 (51)
L1

_ In this layer, the first term in the expansion of v, is of the order of the

1/3

magnitude ¢ , the other quantities beeing of the order unity included the pres-

sure, contrar} to the incompressible case, for i = 0,

5.2. Wall layer (r1 = 1)

In this case, the boundary conditions are at& =0

';r(i) - ';o(i) gf;z(i) =0, T g T T@)

Ty (52)
~ (i .th . .
Let ¢ e the i order of the stream functicn in the Stewartson 1/3 layer def’ -
ned as 4 .
. i=o0, 1, 2
v T T 0 e LT (53)

Standard elimination in the equation (47) to (51) gives :

P
2s 6=(i) 5 #(i) L g(i)
T G TN Ol R X R M PR S ik

@ e METER g

*y 3513 2 ¢(i) y (1)

-38¢ -’i-—;— v L lgt A . (54)
2 ] 2%

i=0,1,2
To the zero o.x_'der, gsolution of Eq. (54) can be written under the form :

v (¢ ;). :.-71 An fn (9 gn (2) ' (55)
vhere

gn(z) = sin |ER (2 -B) ] | (56)
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*
letting t = ¢ € & | the function fn(t) are the non-zero solution of the

linear differential equation :

* 3 h . 5
L(rn)sba?(g—;)afn-té[zti—%l—i»10t29-f—2-+7t39-?- (57)

dt 6 dt dat

T ﬁh dmi.,
. . ey 6 |~
with two-point toundary conditions : dt ]
dfn dafn 1

t=1, fm= $==0, o2 = (58)

t = 0, fn and its derivatives are equal to zero. The point t = O beeing singular,
the numerical integration starts from a point t = a close to t = O with the boun-

dary conditions, which ensures that the regular solution is damped as IE l"-

amied) _ a®m (@ _ (59)

i) = =7 at

It is nccessary to test that the solution is insensitive to the place of the star-
ting po.nt. A typica) value of a is 10—6. Our solution is checked on-the .incompres-
- .

sible solution[lo ]in the 1limit €0, The use of temperature boundary conditions

allows the computation of coefficients An :

L 3 2 -1
r d 'fn «d°fn *2 d°fn, #3irn
= _ 1!1' —— _h‘ P +5C - 2¢ ] G-O
An h g [d& 4 at 3 dg

2
°l§£'rw cos[g"g(z-ﬁ)]d(%) (60)

The integration of Eq. (50) leais to
~ (o) _ 5 agn(z)
Vol (e = L anmg(e) SEE

n=1
t s (61)
m o(t) = I ,1 f olu) 54
1 £ " s o u
and ,
3
7 (©) o _ prg? l—;—‘ r, '\79 (o), 7, (2) (62)

The influence of the compressibility is shown on ihe figures 2 and 3 or different

values of ¢’ the damping of the velocities is altered even for small values of Pt

The next order soluticn has the same form but the temperature boundary con-

dition is changed.

™ (0, 2)= 0 (63)

~ Then, the solution for '\7’(1) ,7 z(” and 70(1) reads
AT R L AL NI P '
7(1) =cf+d | (6

vhere ¢ and d can be obtained by matching with the Stewartson 1/ lsyer. In the
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case of an antisymmetric problem, ¢ = d = O,

The second order solution allows the passage of the mass flow rate from

one plate to the other one. This part is limited to the antisymmetric case. Althouth

v (2) does not vanish now at z =+8 | ¥ (2) _ F(E ) does ; F (&) is determined

-/
from the Fkman extansions § 7 . Thus,Y 2) is searched in the form

¥2)(g 2 =rg) s L omn (o) o B - (s )] (65)

The equation (54) for i = 2 requires that the functions hn(E) satisfy the equation

Ly )]=_-ﬁ—_-{»ﬁr(z) -u"(?-“——*—‘—-')2F(€)}
[ ot (2n + 1) ¢ [ ] hTes (e

The boundary conditions for ;(2)

v (g, =F (0
oy f2) ay (2)
E = 0’ 2 = -—a..i.-—.-

Y (2)younded as Er-w A (61)

€ooyesponds to the boundary conditions for hn(f)

| h €) bounded as 1] +=

h, (o) =0
dn (o) _ b F*(0) (68)
at (2n +1) ¥

The last boundary condition is obtained after derivation of the axial and radial
momentum equation '

a'hn b, ;c-e 9_2%_;1 b [ab _h:d3l;‘ og#2 8F
aé ag ac?) pao (2nen)g a8 &3 aé £20

{69)
The numerical solution is shown on the figure b with the data previously
used in [7 ]. It can be seen that the velocities to this order are small in front
of those of the recirculation layers.,

9.3. Detached layer

When the injection velocity is great enough of the order € '1/6, the viscous

stresses are predominant and, thus, a detached Stewartson layer exists [6] , With °
the following orders of magnitude '




“v'z(O) =0(c :/6 ~ (o) = 0(c :/2). ‘;(O) = O(C 1/6)

' Ve 1
7o) = o(e :/6). 5:°) = 0 (e 1/6),¥(0) L o /2 (70)
1 1.

The system to solve is the same as in 55.2 but the boundary conditions are
different [15]

lin ‘3r(°) ='§;z(°) =0
(Epre
‘#(: ) ana T boundea.
vV, lim ?(o)(ﬁ,z)- lim;(o)(ﬁ, 2) = Q (11)
2 {-) - o
~ (o) -3 for <0
z2=4+8, Yz, = (12)
% for £>0

This last condition expresses that a mass flow rate Q of the order cl’z at the
. . 1/3 .
radius r, goes through an annular space of thickness Cll, so that the function of the

radial coordinate r can be approximated by a Dirac distribution.

like in 5.2, the integx;ation is staighforward’but the two cases <0 and>0
due to the discontinuity of Y(O)at £ =0, are to be distinguished. For numerical
reasons of precision, it is convenient to make the change of variables
ol 3 - g
t= e for £<0 and u= e for £> 0, So, we must solve the

two differential equations : for &0, equation (54) and for £°0, the sixth order
equation

: 2 3 b
bt prn ff (w) - €63 [108 424 ugg WIL 4 179 2410 4 40 3 400
—|'n : du 2 3 b
28 ou ¢ du du
. L a’m 5 a°m ]
+.23 u + u <= 0 (73)
au au

For each n, the solutions of the two equations must satisfy the boundary
conditions at £ * £ ® (u=+t = 0) and match at €= O, that is the derivatives
of the functions fn (5) equal at £ = 0., In each half space, the solution of the
Gth order linear differential equation is & linear combination of three independant
particular solutions bounded at & + t » (this is equivalent to three condi~
tions).

g< 0 m(Erg £ (6 i=s1,2,3 ,
>0 m*(grfxi r.;(g) i=4,5 6 _ (74)
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The coefficients 1; are determined by the linear system

m' - = i ,
i+ i -
d :‘Egm = 4 ‘:éO) ic[1,5) (75)

expressing the matching conditions. Since the mass flow rate Q is constant in the

detached layer slong z, An 1is derived from the expression

I m[m(0) -m'0)] en(2) =0 (76)
n=1 :
One obtain
An =---’-'— for n odd
n¥

An =0 ‘ for n even (77)

0) MO0)

The expressions of the azimuthal velocity ‘w‘/‘e and of the temperature T are

obtained by the integration of equation (50) and (51)

,’1.‘(0) Yy -1 2N (o)

= - Prs” v o r, . (78)
«~ (o) E :
v e An (-B% [.L'.(z-'ﬁ)] (79)
g Jees | g Tng

vhere fng satisfy

™y (% + 9-2-2)31, (u) = (u) (80)

du
The detached layer have been computed with a peripherical speed of 600 m/s for inlets
and outlets located at r, = 0.895 and r, = 0,985 fig. 5). For the detached layers
near the side wall, the compressibility effects are small since ¢*= 0.12. In this ca-
se, our computation has been compared with Nakayama's solution and is in very good

agreement with it. Notice that, in both solutions, the maximum of axial mass velocity

Po (r) c; o) is slightly remove on the direction of the side wall, contrary to the
incompressible case where the maximum is located at the radius of injections For the
inner layer, the value of ¢*is 0,64, our solution gives a very fast damping
vith increasing densities, and allows two separate detached layers, while the solu-
tion of Nakayama covers the outer radius and is out of its range of validity (Fig.s).

" The convergence of the series is not fast : thirty terms are needed to obtain
a precision of 5 %. The precision can t: improved by a factor greater than ten by
use of extrapolations [16] ,
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6. STEWARTSON 1/h4 LAYFR

6.1. Basic system :

The same reasoning as for the 1/3 layer shows that & good approximation of the
solution can be found if 2 82 r, Cl/" (r.) = ¢ * ,J = 0(1). In this layer, the
1

orders of magnitude of the first non-zero terms are

.( ) B ~ P
Veoz: o(1) . T(o) =o(1) , ¥ (o) =0 ( c1l/2)
v ole :/h)’ :'(x-o)= of e 11/2) | (81)
That implies
, ) .
aVz(o 3"1-(0) ® A (o) _
2z 7 Tom +ao v =0 (82)
r a; (0)
o =0 (83)
o o2
*(o)
r ] " (0) -
-;1' anp - 2v o T Ty T () . Y (8%)
v (o) e M 22%e(®) ' 8
2 r = 2 anz 32; (0) ( 5)
2 2 (o) )\ 1 -a%n _
S — =0 86
STV, matmaliey e - (86)

n
where = c—ll']—“"'—-——-

The solution of this system is obvious

v e ' (87)
® . |
-g'n
Vr(oz e g"(m) ‘ ' ) (88)
v tn)zsea(n) (89)

The functions d( § and g(n) are determined by matching with Ekman layers,
the Stevartson 1/3 layer and the core. The Stewartson 1/b is created by a symmetric

problem, Y (r,z) s~ Y (r, -z) vhen injections and samples occur at different
redii with different mass flow rates. )

. 6.2, Resolution

The free stream function and azimuthal velocity at the outlet of the Exman

layer must match with the Stewartson 1/b layer, so that the solution can be read
in the form of Ekman extensions :
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|

v =F" (n) 1 - e%%cos
Ve n [ 11ﬂc° *"F*] c (50)
y =2vr, p (r)) e (r,) G (n) [1+ (sin - costa) e & ]
' (91)
in the corner 0 ( c1{2). o( c‘{h) along the top plate and
Ve = F (™) [1-&3-&'1c cos af ] (92)

Y =24 r, P, (r1) c1/2(r1) G (n) [-—1 + (sin a1; + cosa‘( \e—a]c] (93)

along the bottom plate.

The matching of the azinuthal velocity involves

F+(n) =F-(n) =F @) (9b)
2 2
-8 r

L e 2 I ,hl""

2ar

with Fh) -+ -

The functions F (M) and G (n ) are linked by

h(r) :za =0 ° (95)

) vy L
2..rp°(x,)cllz 3{5‘ + a

in the extensions to match with Ekman layers, so that

_ p (r) ,1/2
¢*(m = ¢ ) =o% °(r Fe—x) i o) (96)
¥ oolly c1/2(r)

The matching of the extensions (Eq. (90) to (93) ) with the 1/l layer
(Eg. (87) to (89) ), leads to

)

a(n)=o0 ' ' (97)
and requires to solve the homogeneous eguation
*
. a
g M) - § e g(n) =0 (98)

with the following boundary conditions
g (0) =1

lin g(n =0
[
where g is found in unit of radial mass flow rate.
The numerical integration of this differential equation with two-point boun~

dary condition is performed by the same method as for the 1/3 layer and compared
with the exact solution [l 7 ]for wvall layers
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, 2 * W /=
g () = Io<[_£‘{_ V__BJ e ‘_L“_D]/IO [_' :1] nso (100)
L @ x a ]
an _ ,
s(n)f'KO[j;. \/_:.‘eT]/x, [;",/_%1] n20  (101)
a .

vhere Io and Xo are the modified Bessel functions of the first and second kind.

In Eq. (100), g 0) ( i.e the azimuthal velocity)does not go to 0 as N 4-e

(contrary to the solution (101) for n>0). This is due to the too small damping of the
density : even with the exact value of the density in the layer lim gn)# o,

Nr-=

(Fig. 6). For detached 1/l layers, the solution is found in the form
(¢ = /31 220 _ D

e B N
o <[ Ea ], W
Ko I'o - K'oIo (o)
I' Ky, (e) + 1 nz o
. (n) = 0 (102)
& n) [ KOI'O - K'O IO ] ’ '0(0)

Though it gives the incompressible solution as 0t+0, in the case of decreasing
densities, one cannot obtain a solution which makes that the initially prescribead

Jump of velocity is cancelled.

The flow in the 1/l layer induces a recirculation flow from the 1/4 layer in
the 1/3 layer : its expression is obteined by matching the 1/4 and 1/3 layer. So,

en antisymmetric stream function is found in the form

A(0) = :
Y « Jan f“(E)Sin[Fﬂl(z - 8y ] (103)
ns= 1 B

vith the boundary conditions

N
. , ~ 2
E+-=, fn(f), d fn(E) d fn(E) ., o

1
[
¥

2.,
E=0 -, d fn(E).1; d fn(E) fn(E), ’

1. ERMAN EXTENSIONS

In the corner of dimensions O( ¢ 11/2), 0(¢ :/3) the solutions in the
Stewartson and Ekmen layers are non uniformly valid. So, it is convenient to seek
an approached solution near the end plate z = 8 in the form ’

. a c

Y ook rj. p (r)) c1/2(r1) Fe[1-e 7 (cos 8, ¢- sina, ) ]

E
YopEk " a. [ 1-e 818 cos 8, g ) ' (105)

When L#-= | the Ekman extensions must give the solutions in the Stewartson 1/3
layer
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lim =1l e o)+ M) D g8 Moy P s

+ seessoe

= M3y O, me 312 o, 8)

lim ¥ gy =
s 20y WA (e s (106)
This matching involves

;(0)(51’) =0
Y (1)(5”) =0 * .
- (2) e §
y ““E,B)=e 2 E(g)=F(p
Yol e,8) -—E%l— - n£1 (1" 2o gl g ) (107)

8. CONCLUSION

The calculation of the flow in a rotating cylinder up to a peripherical
speed equal to 1000 m/s have been performed by the use of matched asymptotic
expansions and by setting the relative order of magnitude of the small parameters
Exman number,Rossby number and Mach number, *
The flow in the Stewartson layers is deduced by matching the flow in the core and
in the Ekman layers. The thickness of the detached and wall 1/3 layers and the
amplitude of the oscillations iiicrease (resp. decrease) with decreasing (resp.
increasing)density.The pattern of the flow is strongly altered compared to incom-
pressible case. For Stewartson 1/b layer, a satisfactory solution can be found
for increasing densities : on the contrary, no boundary iayer solution can be
found for decreasing densities.

;

In this type of flow dominated by Coriolis force and density stratification,
the control of boundary conditions is of primarily importance for the suppression
of recirculation flows disastrous in the case of isotope separation by centrifuges,
These layers cannot be avoided in the case of detached layers 1/3 but in the case
of side wall 1/3 layer,an isothermal wall or an insulated wall suppresses the recir-
-eulation., The 1/4 layer disappears either with thermal convection or if there are

ports of injection so that there is no radial transport.
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