JNIZ

C-II-2-Réactions (n, xn) et (n, xnf) sur les isotopes 231, 232, 233 Th.

- 126 -

La méthode de calcul des réactions (n,xn) et (n,xnf) par modèle statistique, décrite dans la référence [1], et complétée par un calcul des réactions (n,4n) [2], a été appliquée à plusieurs isotopes du thorium dans le domaine d'énergie de neutrons 1 MeV - 20 MeV.

a) Cible 233 Th.

Les probabilités de fission déduites de mesures de réactions ²³²Th(t,pf) [3] ont été utilisées pour calculer la section efficace de fission induite du ²³³Th jusqu'à 2 MeV, suivant :

$$\sigma_{n,f}(E_n) = \sigma_c(E_n) \times P_f(E_n)$$

où σ_c (E_n) est la section efficace de formation du noyau composé à l'énergie E_n des neutrons incidents et P_f (E_n) sa probabilité de fission [4]. Un ajustement sur la section efficace de fission ainsi calculée a permis d'obtenir les largeurs caractéristiques de fission Γ_f , d'émission de neutrons Γ_n et d'émission de rayonnement Γ_f du noyau composé ²³⁴Th. Les largeurs associées aux autres isotopes (²³³Th et ²³²Th) et qui interviennent respectivement au niveau des deuxième et troisième paliers de fission du ²³³Th ont été déduites de la section efficace de fission totale de ²³²Th.

b) Cible ²³²Th.

L'ajustement sur la section efficace de fission totale du ²³²Th mesurée entre 2 MeV et 20 MeV [5] a fourni les largeurs caractéristiques des différents noyaux apparaissant dans le processus (²³³Th, ²³²Th et ²³¹Th).

La section efficace de réaction (n,2n) calculée est en assez bon accord avec l'expérience [6] (figure 2b) excepté entre 10 MeV et 13 MeV, où elle reste supérieure aux mesures ($\sim 25\%$). Une nouvelle paramétrisation du modèle optique actuellement en cours [7], qui tend à diminuer la section efficace de formation du noyau composé dans ce domaine d'énergie, réduira probablement cet écart. La section efficace (n,3n) calculée est en bon accord avec l'expérience [6]. c) Cible ²³¹Th.

Les largeurs caractéristiques des noyaux 232 Th et 231 Th nécessaires au calcul du premier et deuxième paliers de la fission totale du 231 Th, sont celles déterminées ci-dessus sur la cible 232 Th. Pour calculer le troisième palier de fission du 231 Th, les largeurs du 230 Th ont été obtenues par une simple extrapolation, en fonction du nombre de masse, des rapports $\Gamma_{\rm e}/\Gamma_{\rm m}$ des isotopes voisins déterminés pour E_n = 3 MeV.

Les sections efficaces de fission calculées sont représentées sur la figure 1a, b et c, et celles des réactions (n,2n) et (n,3n) sur la figure 2a, b et c.

(J.JARY)

REFERENCES

- [1] J. JARY, Rapport CEA-R-4647 (1975).
- [2] J. JARY, Note CEA à paraître.
- [3] J.D. CRAMER, H.C. BRITT, Nucl. Sci. Eng. <u>41</u> (1970) 177.
- [4] Ch. LAGRANGE, Communication à la Conférence Soviétique sur la Physique du Neutron, KIEV (1975), CEA-CONF 3300.
- [5] V.M. PANKRATOV, Atom. Energijia 14 (1963) 177.
- [6] Rapport BNL 325, seconde Edition 1966.
- [7] Ch. LAGRANGE, communication privée.

(a)

Section efficace de fission calculée du ²³¹Th.

Section efficace de fi**ss**ion ajustée du ²³²Th.

Í

Section efficace de fission calculée du ²³³Th,

L

100000

C-II-2-FIGURE 2a

Sections efficaces (n,xn) calculées du ²³¹Th.

C-II-2-FIGURE 2b

Comparaison calcul-expérience pour les sections efficaces (n,2n) et (n,3n) du ²³²Th.

C-II-2-FIGURE 2c

Sections efficaces (n,xn) calculées du ²³³Th.