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Abstract:

A statistical analysis is made of the random geometry of an

early symmetric matter-antimatter universe model. Such a model

is shown to determine the total number of the largest agglome-

rations in the universe, as veil as of some special configura-

tions. Constraints on the time development of the protoagglo-

merations are also obtained.



1. Introduction

In the early stages of a «at ter-antimat ter symmetric standard

universe, space is occupied by an emulsion composed by randomly

shaped regions, each one of positive (matter) or negative(anti-

matter) baryon number. Anihilation takes place in the contact

layers«which are thin enough, as compared to the dimensions of the

regions, to be taken simply as surfaces for most purposes.

This qualitative description is supposed to be valid up to

the recombination time, when there is a disruption of the sys-

tem and the general expansion takes the regions apart to consti_

tute the largest inhomogeneities in the universe. Although it ari

ses as a result of calculations in Qmnès model , which proposes

detailed mechanisms for the origin and the growth of the regions,

this picture is general enough as to be practically unavoidable

in any symmetric model. A change in it would lead to unacceptable

consequences, generally a too small or too large annihilation ra-

te. In Omnès model the word "emulsion" is justified because (l)

(2)the width of the contact layer is shown to be small so that it

can be considered as an interface; and (2) the pressure gap bet

(3)ween the two sides at a point in the interface is shown to

obey the same Laplace-Kelvin equation as in ordinary emulsions.

The growth of the average dimensions of the regions is not assu-

red by the usual argument (minimization of the surface free-ener-
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gy) of equilibrium thermodynamics because temperature gradients axf>

present and the problem has to be handled in a more sophisticated

way. The maintenance of a thin contact layer is essential because

otherwise there wotild be too much annihilation and no matter would

survive. Interpenetration of matter and antimatter regions would

be fatal to any symmetric model. On the other side, a complete se-

paration would cause much more matter to survive than is found in

the universe today.

In this paper, ve shall ignore any details about mechanisms

for the birth and the development of the regions, and only keep

the geometrical picture of a primaeval emulsion, trying to obtain

some general results which should hold for a very general class of

symmetric models. For want of better, we shall use words like "e-

mulsion" and "maze", however inaccurate they may be in the case.

We present a statistical treatment in principle valid for any

continuous random maze and apply it to the primaeval emulsion. An

important qualitative aspect is that a symmetric model will al-

ways, besides eventually describing the origin and evolution of

the inhomogeneities, fix their number. It will be shown that good

numbers are obtainable for clusters or galaxies, although the tre

atment by itself is not able to decide which of than the regions

will originate. Only the knowledge of their dimensions at recombi

nation time would allow to enlighten this point.
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Some general characteristics of random mazes are worth recai-

(4)ling here. Such systems appear in all branches of science and

have been the object of a large amount of attention since the

pioneering work by Broadbent and Hammersley . Although most of

(6)
the results concern lattice models , some of them are believed

(7)to be valid for general systems» even the continuous ones .

These studies are in general named after the most conspicuous phe

comenon exhibited by such random media, that is, percolation. Su£

pose we have a disordered system formed by two distinct substances.

To fix the ideas, take a homogeneous medium of one material to

which one adds, continuously and at random positions in space,small

quantities of the second material. With growing concentration,this

last will occupy more and more space and constitute larger and lar

ger regions. At a certain value of the relative concentrations of

the two materials percolation occurs : the probability to have an

infinite (i.e., crossing all the system) region of the second mate

rial becomes different of zero. This critical phenomenom, according

to the materials involved, is related to metal-semiconductor transi_

(8) (9)

tions , dilute ferromagnetism , transport through porous media

and many other phenomena ; An important outcome is that the criri

cal concentration does not seem to depend upon the details of the

system: only its dimension is important. For two-dimensional sys-
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terns, it stays around 0.5 and for three-dimensional somewnere bet-

ween 0.2 and 0.35.

In the case of a symmetric emulsion, the concentration is 0.5

and one conclusion is forced upon us: the primaeval maze, having

concentrations above the critical one, will be percolated. There

will be regions (both of matter and antimatter) of infinite exten-

sion . These regions will be submitted to much violence at the

recomb nation time and an extra hypothesis is necessary: that tie

infinite regions, which will forcibly be disrupted at that time,

will break into regions of the same average size of the finite re-

gions. This seems quite reasonable if we characterize this size as

the linear dimension of a volume of matter( or antimatter) which is

"visible" from a point inside it, as will be specified below.

There is all reason to believe that the regions keep something

of their individuality after the general disruption. If the brea -

king preserves them, there will be large inhomogeneities each either

of matter or antimatter. If the breaking divides them into smaller

pieces, there will be sets of neighbouring matter inhomogeneities.

This last case has of course some appeal to the problem of the origin

of galaxies and their tendence to join in clusters.

The statistical approach presented below has not been, to our

knowledge, systematically applied to the problem of percolation.lt



has been used rather laterally to give a lover limit to the ^

(8)tion critical concentration . It cannot really explain percolation,

as it does not consider local density fluctuations. It has been used

(12)more extensively in the analysis of diffusion in porous media , but

only ds a means to obtain bounds for the values of the diffusion coe_f

(13)ficient . For this reason we are forced to review the subject in so

me detail in chapter 2. In chapter 3, we apply it to the calculation

of the number of inhomogeneities. In chapter 4, it is shown that the

approach allows also to estimate the relative concentrations of

some special kinds of inhomogeneities. Some constraints on the avera-

ge size of the regions, coming from general arguments about the anni-

hilation rate, are presented in chapter 5.

2. Random geometry

Let us consider an emulsion found by two different immiscible

substances, forming regions of random shape. The regions of one of

the substances (e.g.,matter) will be simulated by a bed of randomly

overlapping spheres, all of them with one same radius smaller than

the minimum curvature radius of the interface. The random character

of the emulsion is provided by allowing the sphere centres to have

equal probability of being in any point of a large volume V. Let us

take a large number N - R V of spheres of volume Vis %£ Os

The probability that n centres be in a volume Vcontained in V'is given
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by the binomial distribution

Notice that — is the probability for a centre to be inside y

(14)The average number of centres in V is

<-n> = V-X- = & * • (2)

In the limit of large tJ and V , with p constant, the binomial

distribution reduces to the Poisson distribution,

In particular, the probability that no centre be in V (i.e.,

that V is completely in the antimatter) will be

P. Cvj = e

An extremely important parameter is the relation $ between the

volume not covered by any sphere and the total volume V . In our ca-

se, this is the fraction occupied by antimatter. In the case of po-

rous media, our "matter" corresponds to the occupied regions and our

"antimatter" to the empty regions, and this parameter is called the

the void fraction. Obviously, it is the probability of any point in
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the medium to be outside any sphere, that is, to be at a distance lar

ger than <5tof any centre. This is the probability that around it the

re exists an empty region of volume 1£ and so

<p = e (5)

In our symmetric case, d> — •£ •

We can now calculate the probability P&jdé for a point in

the antimatter to be at a distance between 6 and € +d€ from

the nearest interface point or, in other vords, to be at a distance

between (£ +&*J and (étcíétccj from the nearest sphere centre. This

is the product of the probability that no centre is in a sphere of

radius (é*Q-y around the point by the probability that some centre

is in the volume ^JtC^ t&) dé envelopping it :

PU) dé = HlrCéta.) tvdé e (6)

This allows one to measure the area S of the interface as the

probability of a point to be on it,

SsA. x P(o) = HTfoSPt s irrc^ns (7)

in our case.

The probability for a centre to stay at a distance /I of its

nearest centre is, in an analogous way,

(8)
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Two spheres are connected (i.e., they overlap) if their centres

are at a distance smaller than 2a from each other. So. the probabili-

ty that a given sphere is connected to at least another one is

rJ
o

J
o

Hence, the probability ft -for a sphere to be isolated is f* , or,
in our case.

The probability for a straight line vith one end fixed in the

antimatter to cross the interface at a distance in the interval

(X, Xfd\) is

- e

vhere :

a) the first term in the exponent excludes centres around the two ends

of the straight-line;

b) the second excludes them from a cylinder of radius £ all around

the line, which is so entirely in the antimatter;

c) the remaining factor is the probability to have at least one cen-

tre in the interval (a,j&- -t d A c*SOj envelopping the sphere around

the crossing point at the interface (this guarantees that this point
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is on the surface):

d) finally, & is the angle between the line and the normal to the

interface at the meeting point; the average value of <IX c*i& can be

obtained if we remember that only points in the matter are to be

considered here :

So,

The average distance from an antimatter point to the surface is

In terms of X , eq.(ll) becomes

Eq. (12) can also be written

Ô - .

2 « 1.92 a .



- 10 -

A good characterization of the average linear dimension of a re

gion will be

^ 3. SZ &> (14)

For a point in the matter, i t is easy to show that the average

distance to the interface will be

Of course, in our case, this coincides with Jl•

Recalling that the volume element for a cone of length \ and an

gle elil is^.? clO. » o n e c a n evaluate the average volume inside a

region which is scanned by straight lines from a point :

•Jo

This "visible" volume gives a lower limit estimate for the volume

of a region. Por the reasons given in the introduction we shall take

it as the typical volume.

The efficient volume of a sphere, tTe , the superpositions diseoun

ted, is defined by

V;

This leads to VI •* ̂ 'J ir

or, in our case,
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V€= '**** S a / - (16)

The comparison bwtween (15) and (16), using (14), allows one to

obtain the relation between the number density of regions f\/c and

the number density of spheres A' :

P - Sf. V Nc (17)

3. The number of agglomerations

During the history of the symmetric universe prior to recombina-

tion, matter and antimatter constitute a system which is precisely a

geometrical emulsion as just described.At any instant t the system

can be simulated by a bed of spheres as above. A model will give tha

average size LO) . As Lit) varies with time, so will vary the minimum

curvature radius and we shall always be able to define spheres with

radius a*(t) satisfying eq.(l4). In this way, it will be possible to

simulate the primaeval emulsion continuously in time. As ^- r- is

of course kept constant , the number density of centres will change

with time according to

, .43 , or

MC*)
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The number density of regions will satisfy

&(+)= °-di (is)

Let us consider now the emulsion at recombination time. Let us

suppose the regions to give origin to clusters of galaxies. The pre

sent day number density of clusters will be

the index R indicating the va

lues of the expansion time t and of the red-shift B at recombination

time. These are ill-defined in the symmetric model, in which recombi

nation takes place in a very long period. Furthermore,using eq.(l8)

the above expression becomes

and no model is known

which gives a faithful value for Lit*) • We shall estimate it from

the mass of the Coma cluster, for wich we take

Mc2i6 x 1048g.

As accrection does not seem to be able to change this order of

(17)
magnitude , we shall take this mass as the one of a region at re- ,.;

combination. At that time the density inside the proto-çluster is the
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(18)
universal honogeneous average matter density

fR - s.s x io'son

where n z

Using (15), eq.(l9) gives finally

J (20

(19)(19) _
a value consistent vith the present estimate of /Vc between

-7 -6 -3
3 x 10 and 1.5 x 10 Mpc . Also the Zvicki scale of maximum

clustering can be estimated :

Li z v* cit*n)L* - 4 2 / hpc (21)

These are, of course, at best order-of-magnitude calculations,

intended only to show that good numbers can be obtained. Furthermore;

these results are not at all unexpected : equation (18) only gives a

correct geometrical factor to an unavoidable consequence of supposing

that at the time of their formation the clusters were packed side-by-

side. The argument only favours symmetric models as far as there is no

reason to suppose such a packing in cluster formation in the usual

non-symmetrical standard model.

The above considerations are not able to decide whether the re-
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dions indeed originate clusters: equation (19) can also be applied

to galaxies. As these are self-bound systems vhose average size Las

probably not changed very much since the epoch of formation, one can

take L^Z 2 x 10" Kpc. As ?^ for a symmetric model is around

C200.

fytt.) Z Z >lÔZ*f>cJ / (22)

a very good number.

Whether clusters or galaxies are formed is to be decided by a dyna-

mical detailed model which fixes /, (fa) • A reason for prefering to

take the regions as protoclusters is simply that galaxies seem sim-

pler to get formed by other mechanisms. If galaxies were originated

by the regions, another way should be found to originate clusters.

In this case, galaxies and antigalaxies would quite probably coabide

in a same cluster. This would not cause much trouble from the obser-

vational point of view, as the usually accepted arguments based on

the non observation of high-energy £* -rays from clusters are to be

revised

4. The number of "quasars"

An interesting exercise is to reconsider an old proposal by

Omnès of a scheme for a quasar model: quasars would come from a re-

gion of matter trapped by antimatter (or vice-versa) which remained

so after the disruption at recombination. Annihilation would be a
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very efficient energy source, but the stability of such a system ii.

(23)
a very complicated problem and the model is not fashionable

nowadays. Nevertheless, it is remarkable that the symmetric model i'±

xes also the number of those proposed configurations.

A first idea is to use the probability J*. of a sphere to be ísolç^

ted, eq.(10).A fraction ̂ 4. x 10 of all the /^spheres are isolate ;;

from equation (17), the number of such system would be N^ ffH Wc .

There would exist one "quasar" for every 4 or 5 large inhomogenei -

ties. From (20), this would give

-3

7 (24)
The estimate of 10 detectable quasars corresponds to

A more realistic estimate would come from the probability to ha-

ve inside a volume lia number of spheres large enough to constitute

a significant nucleus of matter, while small enough for this matter

to remain surrounded by antimatter. Quasars with too large or too

small nuclei would probably no more exist as such today, as the kind

of particles in minority could have been completely annihilated. Oi

course only a detailed analysis of the lifetime of these systems

could tell the necessary volume for the nucleus, but the statistics.l

approach gives a "spectrum" for its inicial values. If we take a ctn

tral region of volume ranging ij up to (say) J £ (which correspond s
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to about 18 spheres), from equatuin (3)^

where we have used (14), (15) and f/V, - C.63'. This, combined/ith

(20), gives

5. Constraints on mean size

Let us now aply the above geometric statistical scheme to the

discussion of the annihilation. Forgetting any details on how it ta

kes place in the contact layer, we shall suppose simply that every

particle crossing the interface is instantaneously annihilated. The

interface specific surface area is, from (12) and (14),

In the time interval iff , all particles will cross the interfa

ce which are in a volume X S vdt, and so their annihilated frac

tion will be

•

The velocity V will be regulated by different phenomena at

each epoch. During the annihilation period in Omnès model, it will

be fixei most of the time by the neutron diffusion,with a coeffi -

cient(l0)
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O - 1.3 tio* t** c*~* s'1
1 (27

and the diffusion velocity will be

v = jLCéDt)* 2x io t (28)

This is practically constant during the period, which goes fron

bst iO S to fatJ.S t and equation (26) shows that annihilation is

much more intense at its beginning, when L-CtJis smaller,than at V.%

end. Unfortunately, there is no acceptable model for L&)- It is

simple to see from (26) that the once proposed growth by diffusion,

LC+) ~ Lor \J70T (29)

would lead to a very quick extin-

(25)tion of all matter. Nucleosynthesis considerations lead to two

lover bounds for L at £%IS . If the standard He abundance is to

be obtained,

i * * ) £ 3 X JO£

(30)

If, after nucleosynthesis is over, there is still enough annihi-

lation to create deuterium by the disruption of He nuclei, then

Although detailed calculations should be done to allow a definite

statement, one can say that eq.(26) favours the first of the above

lpwer limits, as it shows that annihilation will take place mainly at

the beginning of the period. An interesting condition can be obtained
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for Z.Oy* From (26), the neutron nunber density variation with tir

will be given by

^ - - — . and so

--If *&*"
(32)

The baryon to photon ratio

(18), has a present value

%Ct.) ̂  t*io~ ã t (34)

up to now unexplained. One

of the ambitions of symmetric models is precisely to account for it

Using

w)*i.ixsJ>r' (35)

and the value»=3 for t very small, (32) yelds

where tj is the beginning of the annihilation period. The simple ía-

quirement that git) be a decreasing function at an instant t implies

(37)

orfif (28) is used for

Lit) £ Z.l XlO* t?/* . (38)
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Equation (37) is a quite intuitive result : if tht regions grov

too quickly as compared to V t , no annihilation will take place.

Comparing (38) and (30), one is faced with a puzzle: nucleosynthesis

seems contradictory with the small present value of n . Really,the

only possiblu issue is that LC+) remain close to the diffusion lencht

for som* time (during which strong annihilation brings gftjto near, y

its present value) and afterwards it grows very quickly to surpass

the lower bound at tci sec. This means that the annihilation era m st

shrink to a short period following the separation time and that

already had practically its present value at the nucleosynthesis

epoch.

6. Final comments

There has been much discussion about the up-to-now unexplained

value of the proton to photon 'atio 9j[t,)' The ill-feeling it causer

coJBSsfrom its status of an additional universal constant in the stan

dard model. Much of the appeal of Omnès ' model comes from the pos'a

bility it hints at to calculate it.

On the other side, not much attention has been called upon the

necessity that a cosmological model, besides providing mechanisms

for the origin o£ the large agglomerations, also explain their num-

bers. We believe to have made apparent that the knowledge is not ne-

cessary of the detailed formation process to obtain such numbers. *
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symmetric model will fix their values, and also possibly the concen-

trations of some special inhomogeneities. Furthermore, simple states

tical considerations impose severe constraints on the very history of

the protoagglomerations.
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