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ABSTRACT

By means of the neighbouring equilibrium method the

saturation level of the kink instability of a current carrying

plasma column is investigated. We obtain the helical equilibrium

which is the stationary saturated stage of kink instability.

The analysis is performed for the rounded current profile case

and shows that the shell has very strong suppression effect on

the saturation level.

- 1 -



Kink instabilities, including the resistive one, still

attract much attention in the study of the thermo-nuclear fusion

research. They are considered not only to be the cause of the

whole plasma decontamination but also to give rise to the en-

1 21hanced microscopic cross field transport.' Within the frame

work of the linear theory, the analyses about the unstable region

in the discharge condition ' J give good agreements with the

experimental results. Recently the studies about the inter-

actions between these modes have been in progress in order to

understand the observations in tokamaks. The unstable modes

in an actual plasma are usually observed in their nonlinearly

saturated form because of their rapid growth rates in comparison

with the discharge time. In this paper we obtain the saturation

level of kink instability by using the neighbouring equilibrium

method. In the nonlinearly stationary state, the fluctuation

no longer grows ( at least in the magnetohydrodynamic time scale ) ,

that is, the plasma satisfies the equilibrium equation J x B = Vp.

In other words, the plasma discharge moves from one cylindrical

equilibrium to another neighbouring helical equilibrium. Thus

by finding finite amplitude neighbouring helical equilibrium, we

can obtain the saturation level of kink instabilities. In ref.

[7] we have solved the fixed boundary case by this method. Here

we consider the free boundary case.

In the large aspect ratio limit, a tokamak plasma is

approximated as a current carrying plasma cylinder immersed in a

strong longitudinal magnetic field. The toroidal symmetry is

replaced by the longitudinal periodicity.
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We study the finite amplitude helical equilibrium of a

current carrying plasma column using helical coordinates, r,

f = me + k z, X = ( mz - k r20 )/( m2+ k 2r 2 ) ( r, © , and z arez / z z

the ordinary cylindrical coordinates with r = 0 corresponding to

the axis of the cylinder ) . The considered system is helically

symmetric, i.e., % independent. We define By and A,. ( A is

vector potential) as

Bif = kzrBe - mB z , (1)

The plasma equilibrium equation, J x B = Vp, can be rewritten in
81the form as follows J,

rcml+k|rl)

B = B ( V ) , p = p(t )• (4)

The longitudinal component of the current density is given by

Jz = $

We consider that the plasma ( radius a ) is located in the

conducting cylinder ( radius b )• The boundary condition is

that B vanishes at the conducting wall, and the normal component

of the magnetic field vanishes on the perturbed plasma boundary.

We are interested in the neighbouring equilibrium, so that we
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expand if- as

<x +• V ^ i O + • • • (5)

inside of the plasma.

in the vacuum,

where « and fi are small expanding parameters which denote the

amplitude of the helical perturbation. The boundary condition

gives

and

: f (a) = fl'f (a)

:^'(a) = p:f'(a)

( i = 0,1,2 ) ,

( i = 0,1,2 ),

= 0 ,

(7)

(8)

(9)

where ' stands for d/dr.

Being given Buflp) and pCp) , we can solve Egs. (4) to (9).

The linear solution ( up to the 1st order of c( ) of Egs.(4) to

(9) have been obtained for various kind of current profiles
41numerically. Now we consider the rounded current profile case

where

B = Bn +
2B

(10)

- 4 -



holds with }tf«. B_ . This constraint is rather different from

the ordinary flux conservation condition Df/Dt = 0, but says

that the current profile does not change. The reason why we take

this constraint is that from the experimental observations we

know that the current profile changes l&uch more slowly than the

evolution of MHD activities. The constant k is related to the

safety factor q-value as shown later. We expand Eq.(4) using
2

Eqs.(5) and (6) with (ak ) « 1 and the zero plasma pressure limit
z

for simplicity. Retaining the terms up to the 2nd order of <X,

we obtain

JLr: T P I "̂  K. T t>i

^ .2

We get Hi, which gives the diffused current profile ( the

current density smoothly goes to zero at the plasma boundary ) ,

that is,

2k Bft
K = 5-^ t 1 - JQ(kr)/J (ka) ], (14)

km

where J.(x) is the i-th order bessel function. It is convenient

to use the normalized form 5" instead of fas

2k Bn

Y i k2m T i
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The first order solutions are

Jm ( k r )'

(r/b)m - (b/r)m . (15)

The boundary condition (8) gives

J(ka) l-(b/a)2m

m

kaJ .(ka) 2mm—1

(16)

from which we determine k ( i.e., q-value )/ that permits the

existence of helical equilibrium of an infinitesimal amplitude.'

This condition gives the linear stability criterion. We obtain

the 2nd order solution noting the toroidal flux conservation

condition I B r dr = const, as

(17)

By definition of the safety factor q(r) = k rB /Bft, we finally
Z Z v

obtain

If we consider the infinitesimal perturbation, taking ot to be

zero, Eg.(18) turns out to be

q(r) = m [ 1 - 2^(kr)/krJo(ka) l"1 , (18«)
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and Eqs.(16) and (181) determines the criterion of the linear

stability q*. This result is the same as that in [8], Proceeding

to the nonlinear solution, from Eqs.(17) and (18) we solve the

amplitude of t

function of q

"••I 2 2
amplitude of the perturbation B /B = 2J (ka)q*(a)oc/k a as ar eift m

! . j jB e fea J a

where tilde "" stands for the helical perturbation component.

Equation (19) gives the saturation amplitude of the kink

instability. For instance let us consider the case of m = 1

mode. Equation (16) gives the well known criterion of the

linear stability as

q*(a) = (a/b)2 . ' (20)

3 41This value does not depends on the current profile.' From Eq.

(18) we solve B /B which is shown in Fig.l for various values

2 r U

of (a. ID) . At a q-value which slightly exceeds q* for a given

value of a/b, the fluctuation amplitude grows until it reaches

the saturation according to the curve shown in Fig.l. The tran-

sition from a cylindrical equilibrium to a helical one takes

place in the time scale of T^ = Be/ajup which is usually much

shorter than the time required for the q-value to change experi-

mentally. So that the observed saturation level changes

according to the change of q-value. If T^ is comparable to the

time of q-value change, we must use the constraint of the flux
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conservation D^/Dt = 0 as discussed before. If q-value becomes

larger than unity, the perturbation connects with the tearing

mode.

The nonlinear saturation level strongly depends on the

finite a/b effect as in the case of the linear growth rate and

the linear stability region. The shell effect indicated in Fig.

1 has a very large stabilizing and suppressing power to the

kink instability of the tokamak plasma. It seems that the mag-

91
netic limiter which naturally comes to give the smaller value

of a/b has a disadvantage from the view point of MHD instabilities.

As shown above, using the method of neighbouring equilib-

rium we obtained the nonlinear saturation amplitude of the kink

instability of the cylindrical tokamak. This analysis is

performed for the special case of the current profile. The

study about the fixed boundary mode has shown that the saturation

amplitude strongly depends on the current profile. More

general cases have to be analyzed by means of numerical calcula-

tions .

The authors wish to thank Prof. H.Toyama for his encourage-

ments .
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FIGURE CAPTION

Fig.l The saturation amplitude |Br(a)/Be(a) | is shown as a

function of q(a) for various values of (a/b) . As a/b

approaches to unity, the unstable region becomes narrower

and the saturation level becomes lower.
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