velD- 17529

Nonlinear Saturation of the Trapped;Ion Mode by Mode Coupling in Two Dimensions

Bruce I. Cohen, LLL and
W. M. Tang, Princeton Umiversity, Plasma Physics Laboratery

July 20, 1977

WASTER

This is an informal report intended
primarily for internal or limited
externy) distribution. The opinions
and conclusions statsd are those of
e author and may or may not b2
thase of the Isboratory.

Prepareﬁ for U.S, Enargy Heseorch &
Development Administrarion under
contract No. W-7405-Eng48.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

' ) I L i



Nonlinear Saturation of the Trapped-Ion Mode by Mode

Coupling in Two Dimensions

Bruce i. Cohen
University of California
Lawrence iLivermore Laboratory*
Livermare, CA 94550

and

Princeton University
Placma Physics Laboratory
Princeton, NJ 08540

and

W. M. Tang
Princeton University
Plasma Physics Laboratory
Princeton, NJ 08540

e apnn w
e by

then rmplsrs ner oan i e
Mubaontactn e ther roghovees  Auker ary

3 eAftes Aol s AN am frped
wit trggaanubiling thy sy - oinpletencp

e ainets of atv i W R, PRI, ’
T Shineds o v o e P
anlnnge povaiely omned gy

*Work performed under the auspices of the 4.S. Energy Research and Developmant
Administration under contract No. W-7405-Eng-48.


http://rH.-li.wd

ABSTRACT

A study of the nonlinear saturation by mode coupling of the dissipative
trapped-ion mode is presented in which both radial and poleidal variations are
considered, The saturation mechanism consists of the nonlinear coupling via
E x B convection of energy from linearly unstable modes to stable modes.
Stabilization is provided at short poloidal wavelengths by Landau damping from
trapped and circulating ions, at short radial wavelengths by effects associated
with the finite ion banana excursions and at long wavelengths by ion collisions.
A one-dimensional, nonlinear partial differertial equation for the electro-
static potential derived in earlier work is extended to two dimensions and to
third order in amplitude. Included systematically are kinetic effects, e.g.
Landauy damping and its spatial dependence due to magnetic shear. The stability
and accessibility of equilibria are considered in detail for cases far from
as well as close to marginal stahility. In the first case three-wave inter-
actions are found to be important when the spectrum of unstable modes is
sufficiently narrow. In the Jatter case, it is found that for a single wnstable
mode, & four-wave interaction can provide the dominant saturation mechanism.
Cross-field transport is calculated, and the scaling of results is consiaered

for tokamak parameters.



J. Introduction

It is well known that microinstabilities involving magnetically trapped
particles can pose a potentially serious chstacle to efficient plasma confine-
ment in toroidal systems [1-12]. Present tokamaks, such as T-10 and the
Princeton targe Torus (PLT}, are expected to achieve high enough temperatures

for both electron and ion orbits to be in the “banana" regime, w > v

Be,i LI

where wpe  AYe the trapped-electron and ion bounce frequencies and v 4 are
3 it )

i
the effective electron and ion collision frequencies. For mode frequencies,
w, below msi,it is predicted that electron collisions can drive drift waves
unstable [1-12]. This so-called trapped-ion mode <c¢an lead to anomalously
large transport [11,12] and has motivated theoretical study of its linear [1-8]
and nonlinear [9-16] properties. This paper considers mode coupling as a
saturation mechanism and extends two earlier one-dimensional studies [10,15].
We will make frequent reference to these earlier studies, but will review
some of their contents in an effort to make the present paper reasonably self-
contzined. ‘

The conventional description of the dissipative trapped-ion mode is
that of a low frequency, quasineutral, electrostatic drift wave prapagating
in the electron diamagnetic drift direction. Electren coliisions are destab-
$1izing while ion collisions [1,4] and Landau resonances with both circulating
(3,4] and trapped [5] ions are stabilizing. Most of the thecretical treat-
ments cited do not address the issue of the radial mode structure, i.e. the
mode is assumed to be localized in a region small relative to the plasma .
radius but Targe relative to the banana width. In studies of the nonlocal,
linear radial problem [17,6] it was found that shear exerts a stabilizing

influence. We adopt a point of view similar to that of Gladd and Ross [6],

i.e. all modes are assumed to have flute-like structure along the field lines
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65 k. s &lconnection 1ength)'1]. In treating the two-dimensional nonlinear
mode structure orthogonal to the magnetic field, we allow for the prasence aof
many mode rational surfaces [where k.{r) = 0].

The object of this study is to trace the nonlinear evalution of linearly
unstable modes which undergo wave steepening as the result of E x B convection
[1.,12]. Kadeomtsev and Pogutse have estimated a diffusion coefficient at
saturation which is widely accepted as an upper limit, D = y/k2 (v is the linear
growth rate of the fastest growing mode with wavenumber k). Their physical
arguments give a level of turbulence at saturation equivalent to that sufficient
for Tocal density fluctuations to have gradients cemparable to the background
gradient. LaQuey, Mahajan, Rutherford, and Tang (LMRT)[10] investigated the
Kadomtsev and Pogutse slab mudel [11,12], and demonstrated that the instability
can be saturated by phase-coherent, nonlinear E » B coupling of energy from
unstable long-wavelength modes to short-wavelength modes which are stabilized
by Landau damping arising from trapped-ion bounce resonances for weak temper-
ature gradients: n; = dzn(Ti)/dEn(no) < 2/3. These kinetic effects were
heuristically introduced into the fluid model. In the radially local limit
far from mode rational surfaces, LMRT found coherent saturated states composed
of many Fourier modes. Cohen, Krommes, Tang, and Rosenbluth [15] extended
this study by determining the stability and accessibility of various nonlinear
equilibria admitted by the LMRT mode! and by examining the infiuence of linear
dispersion and fon collisions, Saisson and Wimmel [16] have considered the )
eyolution of the Kadomtsev-Pogutse fluid equations by means of direct nuserij-
cal integration. In the absence pf Landau damping effects and ignoring wave
steepening alony the field line, they observe a saturation which occurs due

to profile modificztion, but at substantially higher levels of turbulence as

compared to the Kadomtsev-Pogutse estimate.



-3

The present study deals with a two-dimensional analysis of mode coupling
as a saturation mechanism for the trapped-ion mode. 1In particular, now we
include the radially nonlocal effects of magnetic shear and hence many mode
rationail surfaces. Nonlinear terms arising from E x B convection and depending
explicitly on radial derivatives are aiso taken into account. We present a
more fundamental derivation of the noniinear equation governing the evolution
of the instability extended to Cy(e¢/T)3. The derivation begins as in Ref. 10
with the Kadomtsev and Pogutse fluid equations. Important kinetic effects
are systematically added to the quasineutrality condition in a perturbative
fashion. When Tinearized, our fundamental equation is consistent with the
results of a more exact kinetic theory describing the two-dimensional Tinear
mode structure of the teapped-ion mode [6].

In the interest of simplicity many potentially important effects are
not considered here, e.g. ellipticity of the torus [5], toroidal gradient
drifts [7,18], impurities [6] and detrapping [9,13,19]. We will establish the
parameter regimes in which approximations within our model are self-consistent
and describe the scaling of our results with tolamak parameters. A more
general analysis with a wider range of appiicabiiity demands & fully kinetic
nonlinear treatment with a realistic collision operatar. This formidabla
calculation remains an outstanding problem,

The ramainder of the paper is organized as follows. In Section 2 a
derivation of the nonlinear model equation is reviewed in which a prescrip-
tion is given for the systematic addition to the Kadomtsev-Pogutse fluid
equations of weakly perturbative kinetic effects. In Section 3 the radially
Tgcal mode] described in Refs. 10 and 15 is extended to include nonlinear
glx<g effects depending on radial derivatives of the potential. These effects

are found to destabilize the radially unifarm equilibria previously found to
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be stable to perturbations pdrallel to the propagation direction of the drift
waves [15]. This motivates construction of new equilibria with hitherto ig-
nored linear and nonlinear, radially dependent physical effects included.

These equilibria are shown to achieve much lower levels of saturated amplitude
provided the waves are not too dispersive. This constraint on dispersion is
necessary for the three-wave interactions to remain effective. Section 4 con-
siders the case very close to linear marginal stability where a single unstable
mode couples with itself by means of a four-wave fnteraction. A noniinear
frequency shift is induced which atiows a balance between linear frequency-
dependent driving and damping forces. In Section § the transport of particle
flux §is calculated and the scalings of the transport coefficient and the satu-
rated amplitude e¢/T with tokamak parameters are examined. Section 5 concludes

with a brief summary of the conditions under which our model is applicable and

the principal results of our analysis.

" 2. Model Equations

In this section we present a derivation of the nonlinear equations needed
to generalize the analysis of Ref. 15. Once again we use the Kadomtsev-Pogutse
fluid equations [11,12] as a starting point. This model utilizes a four-fluid
description consisting of circulating and trapped jons and electrons. In some
sense an average has been taken over the bounce motion of tne trapped par-
ticles. This is justified because the mode frequency is much smaller than ihe

1/2

where w,,. = (eTSIZmS) /qR, q is the safety

i,e Bs
factor. e = r/R is the inverse aspect ratio, and R is the major radius of the

bounce frequencies w << wg

torus.
Ve cansider the familiar slab coordinate system (Fig. 1) with uniform
magretic field in the z direction, density and temperature gradients in the x

(radial) direction, and the diamagnetic drift therefore in the y direction
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[y = r{e- t/q), where & and ; are the poloidal and toroidal angles]. The in-
trinsic inhomoegeneity of the tokamak magnetic field, which is proportional to

172 of magnetically trapped particles. Be-

e, leads to a relative fraction ¢
cause the phase velocity of thece modes lies below the thermal velocity of

the fons, free streaming along the magnetic field 1ines causes the bulk of

the circulating ions and electrons to respond adiabatically to the wave. The
number densities here are given respectively by the quasi-steady Boltzmann
distributions (1 - e”z)nO exp (+ed/T) for Te = Ti 2 T and singly, charged
species. In evaluating the Boltzmann factors we have made a specific choice
of gauge: fdsy(i) = 0,

The effective collision frequencies are enhanced (v_ = ve/e and v ui/e)
because small-angle collisions are the deminant nrocess for scattering par-
ticles into and out of the loss cone (v, > /2 v,) [12]. Collisions tend to
relax the trapped particle densities to Boltzmann distributions
Ted ..ellznoexp {+es/T) over characteristic times v:] . Using the simplest
Krock model operator to treat collisions, we find th;t the momentum equations
becoma

ngn [(a/0t) + V-9l ¥ = ne (-76 + ¥, x gp'l}-z-gs +nm E:SIvss|(!Sn - ¥ ()

is the charge, n_ is

is the pressure tensor, e s

where 5 denotes the species, B s
the number density, Y, is the fluid velocity, and Veg? is the relative colli-
sion frequency. Temperature perturbations are consistently neglected. The
usual nrd§r1ngs are assumed: vy << w <€V, wpy << 9, 4 where p,y Are the

cyclotron freguencies. Ye take the pressure tensor to be jsotropic perpendic-

ular to the magnetic field, which allows B, + ¥p, g(nST) since 3/5z = 0.
£q. (1) is then solved perturbatively by expanding g and !s in power series

as functions of ¢ = e¢/T << 1.
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The Jowest order solution of Eq. (1) is given dominantly by

(o) - - 1Ay
Vo' = ¥ ches‘Brp where o = [d nn(noT)dx] , and ta first order in ¢ by

+

v < e x [ve fgpfne)in]B'] (2)
The polarization drift is smaller by ¢( w/ns), and the drift due to collisional
drag is smaller hyf7[vq/95)- These as well as the gradient and curvature
drifts are ignored {7]. The most important effect of weak magnetic shear
appears in the untrapped ion response [6,17] and demands a kimetic description
which we discuss Tater in this section. At second order in &,
!éz) ~ €2 X [msys(” ' g\é” + (zp/n)gz) ] (esB)'1 plus smaller terms due to
polarization effects and drag. Hence |3§2)|- Cﬁ(kV§1)/ns)V§]).

PN 3 2 1 3 2 1 3 -1
Similarly, yg )z cz x[ms_\jé ).2 !éz- + msxg ) .g\[ﬁ ) +(!p/n)£ )](esB) ;: and

|V£3)| ~ G’(kvgl)/ns)z Vﬁ”. We have now evaluated the fluid velocities to

3 (o) , (1) (2) (2) ; -
do) » !s -;—.,!5 4 ys + !5 + !s , and can renlace the fluid velocities
appearing in the continuity equations which follow with explicit functions of

¢ and n,-

The trapped particles satisfy continuity equations

Tyl)- - [n".- e1/2noexp (z e®/T)] 3)

5
Mg, if ot 1L+ (ng 5 Yo 4 Vot Lle

Because vw_ »>» w the trapped-electron density s dominantly Boltzmann-1ike

nl = e'/2 n_exp(es/T). This is not the case for the ions for which v, << w . -

Closure of the fluid equations is obtained by invoking quasi-neutrality.

": + (1 - e‘lz)noexp (es/T) = ng + (1 ~e]/2)n°exp (-e¢/T) + sn{e), {4)

where 8n{s) is defined a5 the number density induced by the electrostatic
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patential not included in thé foregoing fluid model. It is at this point that

we systematically add linear kinetic sffects not otherwise contained in the

Kadomtsev-Pogutse mode, e.g. Landau damping, finite banana-width excursions,
and thermal effects which contribute to linear dispersion. In general, the
term &n is the difference of the additional jon and electron contributions,
8V =8Ny - &N,

To determine n we must construct the linear susceptibility xs@n,g) for
species s which is defined by the linear relation between the Fourier-Laplace

transformed number density ﬁ,Qﬂ,k) and electrostatic potential ;(m‘gj:

(1]

P (wk) = K2 (wsk) 6lwek)/dne_. (5)

S S s
Application of Eq. (5) to Poisson's equation and use of a kinetic equation to
evaluate xs(u,g) lead to a linear dispersion relation for an electrostatic mode.
For the trapped-ion mode in simplest approximation this can be expressed as [6]

V20,5 L)
e

R =2
0= clu,k) = 1+ x (w.k} = T+(kA )75 (2 ¢« ——For>
: s7s e w—uDe + iv_ T

81/2(:.:: -a)(1-b) w:.r-u
<3 mupg *ivy > T + <m-k..V.. + ‘iu_i >y } * (6}

where “eji are the diamagnetic frequencies, wpe,§ Are the Doppler shifts
arising from the curvature drifts, b = (kx2 + kyg) ci2q2/c << 1, which gives the
Towest order banana-width effects, CF is the ion gyro-radius, Ae E{T/4nn0e2)]/2
is the Debye length, and the subscripted brackets imply that there is an inte-
gration over the magnetically trapped (T) or untrapped {U} region of velocity
space. In dealing with the ion banana-width correction term (1 - b), the

simplest harmonic tine dependence of the excursions of the trapped ions in the
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x-y plane away from the magnetic field line is assumed {6].

In the usual fluid Timit v >> w >> v -0, b<< 1 and kzaez << T,

+ *“De, i
Eq. (6) gives after the v~locity-space averaging

1/2 * 1/2 *
~ -7 >4 n‘.ue € we
(k) = {ka,) 2+ —; - = 0, (7)

iv_ w + 'iu+

¥ *
where wg = "wy T kycT/eBr'“. r

n
jon and electron collision frequencies. This gives the same dispersion rela-

- [d sa,n(nn)/dx]'T and v, are the effective

tion as produced earlier by the Kadomtsev-Pogutse fluid equations [1,10],

2
o ze”gmgﬂ + i [(a”zmglz )v_'l - Qur prescription for including

w1 -
small kinetic corrections to the linear normal mode frequenty is then to use
for the Fourier-Laplace transform of the number density én the expression

&n (w:k) = —kz:sx(m,y b {wsk)/4ne, where sy is obtained from the difference of
Eqs. (6) and (7). We formally perform the inverse Fourier-Laplace transforms

as follows:

sn(x 3t) = -(Zw]-4ff dud®k kZsx (k) 03 T 'eblusk) exp (-fut + ik . x)

= Vax(ia/at, -17) 320 (x 5t) (8)

To illustrate the prescription for calculating én(x ;t) we consider the
kinetic contributions to the icn response arising from the finjte ion banana-
width excursions, resonant and nonresonant untrapped ions, and resonant
trapped jons. For the banana-width excursion cantribution to the suscepti-

bitity, sxg. we obtain from Eq. (6)
cllzm; (Di 2q2/€)

AezﬂxB(m.E) x kaz + kyz) < > 7

2
k m+'iu+
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Use of Eg. (8), the usuail frequency arderings, and krn >> 1 give

sng(x;t) = -2n(c5%0%7e) (3%ax® wa¥ray)arot)™! (v, Tor0y) @ (x 31),
where V*T = (51/2/2) cT/eBr“ is the electron diamagnetic drift velocity re-
duced by the factor ell2/2. The bounce resonances of the ions lead to dis-

sipation [4,5]:

4, 3
'/ ugy

2 con s
kzle 8x1 {0,k) = 128" (1 - 3n/2) < FEETN > 1

where n = d enT/d 2n o and A'.. ©'(20), from which it follows that

snp(x;t) = 20 A'(1 = 3n/2) wg;™3 (a¥ath) (a706) & (xit).

To insure Landau damping, n< 2/3, We ignore dispersion effects associated with
the trapped ions [5].

Important effects due to magnetic shear arise in the untrapped ion re-
sponse because of the dependence of the resonance w = k,V¥, upon the g-profile,
i.e. effectively k. = [#q - m| /qR, where m is the poloidal mode number and 2
is the torcidal mode number and integer minimizing jeq - m| [6]. The loca-
tions of the mode ratjonal surfaces are determined by k, = 0. Following the
analysis or Eladd and Ross [6], the untrapped ion vesponse is, in the limits
of negligibly small untrapped ion collision frequency and untrapped banana-

width excursion,

1 - wi- w Z w.™n
T e e {Z(z) - =M -w%_'w

x {201 -"?) + (22 - 1/2) 22)-(e2®-1/2) 1 (s”zz)]} (9)

where Z(2) is the plasma dispersion function and z = m/k"(E:Tlmi)]Iz.
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far from mode rational surraces, where to good approximation w<<k“(25T/mi)'/5,

the plasma dispersion function can be approximated by the first few terms of a
pawer series: Z(£) =sinﬂf2(i - £2) - 2&. Then for the usual orderings, the

untrapped ions provide dispersion and Landau damping:

e

w

1/2
K 2onlok)=e v, [2(1 -m) 2+ 4nV2 (1 - 3w2) z:‘],
which for k, ~ 1/2qR and hence z a.zm/wBi leads to
émy(xst) = 20, [—8(1 -nug; (27 at%) + 8017201 - 3w2)ug;? (a3/at3)}

K () WTo/ay) o fast) -
The gquantity én{xst) is simply given by the sum of the individual contributions,
én(xst) = fng + &g * ényy A 1imit on the magnitude of (an/niT] Will be de-
termined as a by-product of the following analysis.

He now return to the augmented Kadomtsev-Pogutse fluid equations, Eqs. (1),
(3), and {4). Ye have used the momentum equation (1) to solve for the fluid
velocities !S to third order in ¢ . Substituting these solutions for 15 intop

the continuity equations (3), expanding Eqs. (3) and (4) also te third order

T
e,i

nonlinear equation of evolution for #. As noted in [15] contributions to

in @, and then solving for n in terms of an expansion in 2 will give a

A& (ns!s) in Eq. (3) from the diamagnetic drift vanish to all orders in ¢ :
_].\ ] = ~

_V{ns(cB z x_Vps/nses) cge(2 x _'fgps)/Bes

that
[o. (ns(v)gs(z)l ~ C9]n§°)k2V£])2 /a] << lz.(ngl)!§1))i ~ 571"§°)¢V(])/rnl

0. We also determined in [15]

for parameters tvpical of large tokamaks.



We find that at third order in +

IE' (“g‘l )iéz))/l. (n§2}v!s{] ) \ [ﬂe(l\frnkyv /QSJ<< 1

and lg-(n§°)v_§3))/v-(nﬁz)gs(‘))~£3' 3 2%5 k/n Ye< 1.  Therefore

!l,i ~ cB"] ix_v_¢ for purposes of expanding the continuity Eq. (3) to C‘f¢3),

which become

T _ T 1/2
y " ay-pax)] Ng i =7V 4 ["e,i's noexp(ﬂ)]. (10)

From the quasineutrality condition Eq. (4) we determine that

[(alat) + cB” (a Y

nl -l ean b on (1= 72 o+ s +€16%)] (1)

We subtract Egs.(10)from one another to obtain an expression for D(nT - nT)/Dt,
where D/Dt = (3/3t) + cB ](axqsay - ay¢a ), and use Eq. (11) and the frequency
orderings to calculate ne to Lf(q: )z '

ne =~ Uzn (1+ ¢+ ¢/2 + ¢/6) + oy (D/Dt)[?no(] -e”z) (o +¢3/6) -e,n]

+ (/) [2n°(¢ + 676) -esn]. (12)
We substitute this result into Eq. (3) for n; to obtain

o Moon)? [y 01 - &2 (o 44¥6) - 0] ¢ o) gznon %) o+ Y16)
- 8n+ e”zno(l vet /24 6/6) + (v /v) [—Zno(as + &/6) - an]}

+ v, [2n0(¢ + $/6) -5n] =0 . With the use of D/Dt = {3/ at)

+2e ”'?VTr {2 Wy ay 3, -n%y), £ << 1, and the standard frequency order-



ings, we reduce this expression to

[(a/at) + v} (afay) w7 (%pat?) - (o) (aanpat) +v+] (o + 3%6)

=172 T 2., -1/2 T fa )
+ (1 -n)e » (3/3y)0° + 2¢7 /% u /v ) V*rnr(oy¢3xy ax¢ayy¢)

-2n¥] (3909376 + 267 (1 -n)lwpfo Wirr (2,99, - 209,08, 9% = 0,
(13)
where wy = VI/r. This 1s our fundamental nonlinear equation describing
the evolution of the dissipative trapped-ion mode in the presence of wave
steepening effects,
The validity of Eq. (13) depends upon many approximations, th. most im-
partant of which are € << 1, ¢ << 1, v c<wscv_, wgy € wy,, and w << i
The dependence of the characteristic frequencies and other crucial parameters
which appear here on specific tokamak plasma parameters and profiles has been
considered in some detail in [15]. The neglect here of electrostatic detrap-
ping [9,13,19] determines a more restrictive condition than esfT < 1, namely
e3/cT < 1. We will make comparison with this limit in Tater sections when we
consider approximate steady-state solutions of Eq. (13). In deriving the non-
linear terms in Eq. {13) we have made use of the lowest order linear dispersion
relation, (a/at) ==-VI{3/By). The validity of this approximation and the
accurate correspondence of the linear dispersion relation as determined by our
augmented fluid theory with that as derived by a rigorous kinetic theory
{4,5,6] set a 1imit on the size 5;/2n0 = {asn/atd/2n , viz. )
lensan,| <<|v] (a/2y)e] (14a)
or equivalently

loxglunk) + Bxp (w) + bxylunk)] << ()72 1 2ulstu + duy) w2, (180)
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In other words, the rate of Landau damping and the size of the linear frequency
shifts due to dispersive effects provided by ion kinetics must be small com-
pared to Rew = ky\lI.

The remaining cections of this paper consider approximate solutions of
Eq. (13). Time dependent and steady-state solutions are constructed, and the
stability of nonlinear equilibria is examined where possible. A common feature
of a1l the equilibria found is that noniinearity, whather due to three-wave
or four-wave interactions, creates a balance between & linear saurce term
v:](azfatz) and linear dissipative terms arising from 5;/(2n0¢) and v, for
n < 2/3. As the plasma approaches steady-state the energy flow from the electrons
to unstable modes via electron collisions establishes a dynamic equiiibrium with
Toss processes via mode coupling of unstable to stable modes. Ultimately energy
flows to the jons via Landau damping and ion collisions [Fig. 2]. Considera-
tion of {non)conservation ilaws derived from Eq. (13) by calculating, for ex-
ample, d <% 2 >/dt formally demonstrates the different effects produced by the

linear driving and damping forces and the nonlinear coupling.

3. Equilibria Established by Three-Wave Interactions
3.1 Radial Instability of One Dimensional Equilibria

This section considers the nonlinear dynamics of the trapped-
fon modes when the conditions for effective three-wave interactions prevail,
Three-wave interactions will occur if the frequency mismatch aw, given by
b = wy = wy < wy is 1ess than the characteristic rate for the three-wave
process. Here the frequencies w,, ¢ = 1.2,3, satisfy the linear dispersion
relation, ;(ml, kz) = 0; and the corresponding wave numbers satisfy the con-
dition that k; = k; + k,. Refs. 70 and 15 examine this limit and consider the

one~dimensional case in which radial variations are ignored. In the 1imit
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that three-wave interactions are effective, the(}(es) terms can be discarded,
Far from mode rational surfaces (k, :s]/ZqR),Eq. (13) can then be written in

nondimensional units as

2 4 2 2 3 2
3y 2%y 3y 2 [ 3 2 2y
St ta——J+ vt dp— [+ = {uts W
9t 35;2 354 Bag (apz agz) Uae,§ ag
aldv_ ﬂi‘&. -2 _3.211\ ~ 0 (15)
TP et T3 G2 f R

where 7 = mft/v_, E=(y- VIt)/P, pE X/Tyy 51/2 (1 -n) (u_/mo) ¢,

a 23(40) (1 - 3072} (v_rug) lugfagy)s v = vy fu?s 8y = (v luy) (o %a%er?),

& = 8(1 = n) (v /v ) (w /uw -)2, and 8 = 2(1 - n)”) (w /v N(r /r).
U 0 o’ Bi (¢ n

A similar equation, but without dispersion (BB = § = 0), was the subject of
a preliminary investigation by Lovelace and Tang [14].

In Ref. 15 the stability and accessibility of one-dimensional equilibria
were studied using Eq. (15) with (3/3x) = (3/3p) = 0. In particular, attention
was focused on a class of “two-mode" equilibria in whic~ an unstabie mode with
poloidal mode number L couples to its stable harmonics 2L, 3L, ... These
equilibria were found to be stable to perturbations in the same direction as

2

the wave propagation for 0.6 ¢ oL® £ 0.7. In this section we find that the

inclusion of an x-dependent variation in the perturbation of the one-dimensional
equilibria is always destabilizing for a sufficiently large values of erLB.

It is useful to define the linear operatar W, which is simply related to

the local growth rate and linear oscillation frequency,

W s -VI (a/ay) -v:] (azfatz) + (2n°¢)'] (dsn/at) -v,, (16a)

whose Fourier transform in y and Laplace transform in t gives
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i : . .. . T 2
W (m,ky,1a/ax.x) - 1Ky Vet /v - v, - iw(GxB *oxy *Gxu)/ 2 (16b)

Far from mode ratioral surfaces, the Jacal value of W with 3/3x = 0 is given

4

simply by W = - i, [1- (wolv_) 6m2] + (w02/._) (m2 - am - v}, where to

lowest order w/m0:= m = kyr and § = 8g * &) In Ref. 15 the authors found one-

dimensional equilibria Yy Ef:anL exp [inL{t - ut)] + c.c. with amplitudes and
n

group velocity u given by

8y = - (6L2 +u)/2 + v /2

la1% = - vpv, 7 e+ 04 - vy [a) = -al1 (7)
and

us- 5'.2 (SYL + YZL)/(YZL + ZYL)s
where Y = m2(1 - amz) -y = (v_/moz) Rell.

Finite dispersion can give rise to drifting or convecting steady states
with larger saturated amplitudes than for nondispersive two-mode equilibria
which are stationary (u = §= D) in the electron diamagnetic drift frame [15].
For sufficient dispersion the saturated amoiitudes are large erough to make
suspect the negiect of the four-wave processes. The dispersion produces a
freguency mismatch Aw whose phase-mixing influence over the time scale of the
harmonic generation, viz. (ZYL)-1' becomes sufficient to cancel the energy
transfer from e unstable mode to stable modes. Ref. 15 concluded that three-

1/2, and wmade this .

vave interactions would not occur for this reason if &>>q
condition quantitative for the case of ion banana-~-width dominated dispersion.
However, for typical large tokamak parameters and profiles, there is a sub-
stantial fraction of the plasma cross-section for which GB/QTIZ < 1 [15].

For the case where linear dispersion is provided dominantly by untrapped
1/2

ions,one finds that 6Ufc1/2-(u_/wBi) In order 10 guarantee the validity
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of our model equations the inequalities (14) must be satisfied. This together
with the facts that v, ~'{me/mi)]/2v_/2 and for jnstability 1/4a > v tends to
restrict parameter choices to “—’"’Bi"‘g(” [15]. Hence our model is valid
only in a small region of parameter space for which the effectiveness of three-
wave coupling is probably marginal due to the refatively significant degree of
dispersion 6ye As we approach linear marginal stability 1/4c -v+ 0, any dis-
persion whatsoever will render three-wave coupling ineffective since the fre-
quency mismatch dw =« & will greatly exceed ZyL + 0, the characteristic rate of
the harmonic generation. This motivates the detailed consideration of the
&(s%) terms in Eq. (13), which is discussed in Sec. 4.

We point out that in both Refs. 10 and 15 appears the unfortunate use of
the terminology "near marginal stabjlity” to describe plasma parameter choices
for which o is not too small i.e. ]0'2_5_u < 1, which is consistent with

v_/u S(1) and v, << wg << v_. The intent was to indicate that for finijte

3']/2)

Bi ~
rather than infinitesimal o there are not too many unstable modes {~

and that the maximum growth rate is not too large (-m02/4cu_). However, it
was assumed in both [10] and [15] that the maximum growth rate was nevertheless
well above threshold: Im o =« (1/4a =v) ~ 1/4u >> v. A stricter definition
of linear marginal stability is that the linear growth rate of the most un-
stable mode approaches zero (threshold), 1/4a =Cf{v), and is the definition we
use throughout the present discussion,

To demonstrate instability of the one-dimensional equilibria subject to
perturbations with x-dependent variation, it is sufficient to caorsider the -

simpTest case of no dispersion. The equilibrium Y satisfies the equation

(—3-1+1 N + vl +3¢02 =0 {18)
352 ag4 0 3£

with amplitudes e n= 1,2 given by Eq, {17} in the 5 = 0 1limit, The per-
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turbation &3= exp(-ift) exp(ierp)f: a1 ©XP [i{m*n-L)e] + c.c. satisfies
o

the Tirzarized equation

2
2 3 ¢
LI N I ; 3_ (v sy Doy 330 38k _ 0] _
(ar A i s u) 80 + 2 o (byev) + B(BE Yo3msE " 3c asz) 0
We Laplace transform this expression %; + - 1, where || << (u_/mo)!m+n‘L],
and obtadn

. a2 Y .
[-ie - (m+nl +07L)" + afm + L +n0°L)" 0} a0 ey

-155%' 2[m + {n+’ )L] + erﬁ[(nL)E - oL(mtL)) e A )

*
where n = 1, 22, n’ = 0, #1, #2, ... and LT AL -

Eq. (19) constitutes an infinite matrix equation. Following the example
of Ref. 15,we use the fact that modes with large poloidal mode number suffer
severe Landau damping and contribute negligibly to the perturbation eigen-
functions. This justifies truncation of the set of perturbed Fourier modes to
only the m, m:L, m+2L modes. The stability problem is therefore reduced to the
calculation of the eigenvalues of a 5 x 5 matrix whose elements are given by
Eq. (19). Figs. (3a), (3b), and (3c) display the results for ﬂ/LE as function
of erLa with parameter choices L = 8,m = 1, and aL2 = 56, .64, and .72 re-
spectively, For erLB + 0 we recover exactly the quantitative results of the
one dimensional apalysis in [15] and find that the two-mode equilibria are
stable to perturbations with y variation for 0.6 < aLa < 0.7. For |erLB[ > 0.
there is instability. Direct numerical integration of Eg. {15} has quantita-
tively confirmed these results. The numerical integrations employed the tech-
nique described in [15] with the addition of an x grid and difference operator

affax + [f{x +ax) - f(x - ax)]/2ax. The instability of the one-dimensiona)
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two-mode equilibria to perturbations with transverse (radial) variation moti-

vates us to investigate the nonlocal, fully two-dimensionat mode structure of

the trapped-ion instabiiity.

3.2 Two Dimensional Equilibria Established by Three-wave Interactions
Linear calculations of the radial mode structure have shown that,

of the many effects arising from the radial variation of the plasma parameters,
current, and magnetic field, magnetic shear can have the most pronounced in-
fluence [6, 17]. Untrapped ions can provide strong iandau damping if
wf Ky n-(Ti/mi)]/z. Since effectively O<k, =|2q{r)-m|/q(r)R< 1/2qR, there is a
strong variation of the Landau damping of the trapped-ion mode with respect to
the radial separation frem the mode rational surface where k,(r) = 0. The
circulating ions respond adiabatically, w/k, << (Ti/mi)]/z,where ko= 1/2qR
very far from the mode rational surface. There is severe Landau damping in a
layer fairly close to the rational surface, and then again weak damping for
wfky >> (Ti/m].)”2 at the rational surface,where the c¢irculating ions respond
hydrodynamically. For monotonic q profiles the separation between rational
surfaces is given approximately by Ars = 1/2q =~ r/m. Hence, for moderately
large poloidal quantum number m, the characteristic length over which the un-
trapped ion response axu varies dramatically is much shorter than any of the
characteristic radial lengths over which other coefficients in Eq. (13) vary.
This motivates us to discard all radial variation of coefficients in Eq. (13)
except for that arising from &y (w,k3x).

Gladd and Ross [6] have found that the strong dependence of 6xU an radial
separation from the raticnal surface generally produces reflection and strong
dissipation in the vicinity of k., = 0. They also find that otherwise Sxy is

fairty constant in most of the region between ratijonal surfaces, The net
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effect is to cause radial nodes in the waveform fairly close to the mode
rational surfaces for a given mode. As a useful theoretical "ansatz” which
allaws us to make considerable analytic progress in finding relatively simple
nonlocal solutions of Eq. (13), we also take ﬁxu to be incependent of x hy
setting k, = 1/2qR but require the spontaneously excited unstable modes to
have vanishing amplitude at their mode rational surfaces.

We will construct steady-state solutions of

2

?
R 3_2 [__.a-b_avb 3% -
5 W + T3 e\?g J 03 " 30 ;Ez-) g, {20)

where W = u_W/mE [see Eq. {16a)]. As befare, solutions are considered in which
a single iinearly unsteble mode couples with itself to generate linearly stable
modes. The total disturbance y will then vanish at the mode rational surfaces
of the single unstable mode, w(x = 0) = p(x = Ars) = 0, and is periodic in y,
wly + 2ar) =u{y}.
We expand the potential in ascending powers of the wave amplitude of the

unstable mode: ¢ = ¢(1) + ¢(2) + ... where $(l]=sin(kn)[a]]exp(iLg) +c.c.],

(2) 2: a, ,s1n(n kp} exp{inLg) + c.c., and k = nr/nrgz wL. In general,

there can be a poloidal drift at steady state, 3/3v » -ud/3t. To second order

in |a]1|we obtain

2
[-u (3/2g) + W62 = ~(ar3)m{172 _ 6(35 o (1) 230'—( ). :—p-:-m:—sz— 'J=(”) (21a)

and -

[-u (ar05) + W{1) s <[-(a/a£) 2:{1),(2) _ E(ag (1) gw o2 4 2—54-(2)

5% (1) (1) 2 12} (2) 3 TJ( ) (1 (1)
3€ga - 35—__ : g - Bp 2 A (.31§ 115>’

g ag vt

I 2t Arsfr
where we define an inner product <f,g> = (ZﬂArs/r) _}r dﬁjr dp f g. (21b)
0 o
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The orthogonality of sin(2x) and sin{mx), 4# m, on the interval [0,v]
can then be used to Fourier expand the r.h.s. of Eq. (21a} and determine the

Fourier coefficients An- for ¢(2). We find that

2 2 =1
agy = kL sla]]| Ho2
2,y = (16/3n)ila,,2(W,q - i2Lu)”! (22a)
21 1 Uy
8,, = -(16/155)iLa. - 2 (W, T2Lu)"]
23 R F IR

and similarly
. o
(Hu-1lula;; =ia, [(16/3n) ay; = (16/15m)ay,] - ZBkLZaT]aoz P (22b)

where ﬁnn‘ = ﬁ(w,ky = nLr'], k, = n’nAF;]) as defined in Eq. (16b).

As noted earlier the formation of an eguilibrium depends on the nonlinear
stabiljzation of the linearly unstable mode by means of mode coupling. To
justify truncation of v at Gﬂ!a]1| Jall the Fourier modes in Eq, (22a) must be
linearly damped, Rewmn 0. Furthermare, the subsequent couplings of ¢(1)
with w(Z}, etc. generate higher order modes which must also be 1inearly stable.
Examination of the linear mode structure determined by Eq. {16) allows the
jdentification of the relevant energy sinks. At ky = 0 the modes are damped
by ion collisions. At very short poloidal wavelengths, m : kyr >> m—1/2’ the
modes are linearly stabilized by ion Landau damping provided nj < 2/3. For
increasing effective radial wavenumber er,the modes are stabilized in a
monotonically increasing fashion [6]. This effect arises as a consequence of
the finite ion banana~-width reduction of :’2 mode frequency « kzpzqz -1
and its subsequent influence on the grcwth rate, which involves the frequency

dependent electron driving term and the ion Landau damping terms.
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To provide for the Towest order finite ion banana-width effects
(kgpﬁqze—] << 1} in the linear dispersion relation, we perturbatively include
a frequency correction in evaluating the w-dependent terms in ﬁ, i.e.

w a:kyVI 1 - kfb? - kﬁb? where b1.2 = pizqzle in evaluating mZ/v_.SxT, and
x5+ For simplicity in constructing an equilibrium, we hypothesize plasma
paremeters such that the Fourier mode with kyr a-(Zu)'1/2 and k r = mr/fr =
“Kyr is unstable, but the mode with ke = Zwr/Ars and the same ky js stable
{Fig. 4). The studies of Fq. {15) appearing in [14] did not have an energy
sink at short effective radial wavelengths. Therefore the waveforms could
be expected to undergo continued fluid steepening in the radial (x) direction
without saturating.

Reduction of Eqs. {22a} and (22b)} can be made by substitution of the am-

plit.des determined in (22a) into (22b):

(- i) = = 16L/3m) % Jag 1Bl 1200)7) = (36L/15m0 8 gy £y = d2Lu)”?

24.2 25 -1
-ZkLBIa‘I‘llwoz + e « 3

which gives the approximate expression

i . RS
Ja]1lzz - (Hqq- iLu) [(16L/3n)2 (Wyy - izlu)”) # 2k2L4szwa}] (23)

upon truncation of smaller terms.
The real and imaginary parts of Eq. (23) determine two equations for
131112 and uswhose simultaneous solution gives

Wiralsbutcs 0, (24)

-1
- -1 - 2 -1 2
where a = -(I]]+ 12])L , bz [}2](4I]]+ I0) + Ryp - (2R11+ Ry Md } (%) ,

- 2 2 -] - 2 It 2 ._] = m
c;[41112,-n2,11, + (RyqLpy 1 Ry, ) ], d=2(3:/16)° (kLe)®™', R = ReW .
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and Imn = Imﬁmn. From the standard discriminant for cubic equations one can
determine under what circumstances there are one, two, or three real solutions
for u. For a given velocity u satisfying Eq. (24), |a”[2 can be determined
from either the real or the imaginary parts of Eq. (23) and must be positive

definite for an equilibrium to exist. The real part of Eq. (23} gives

2. 2 -1 2,2
[ag11%= (3+/16LY°(T - dRyy) [}R11R21 1T+l -Lu(2l o+ 121)] (25)

We have used the imaginary part of Eq. (23) to provide an alternative deter-
mination of Ia]]faand thus check the consistency of specific numerical evslua-
tions of u and ia11i2.

To make qualitative connection with the one-dimensional two-mode equili-
bria, we compare Eg. {25) to Egs. {17). Rmn corresponds to a linear growth/
damping rate - If we set d « ks = 0 and ignore dispersion, Imn 0, thenu=20
and |a”|2 = -(3n/8)2R11R21/4L2; This aarees with Eqsf17) in the nandispersive
1imit except for the geometrical factor (3n/8)2 which is <'ue to the reduction -
in coupling efficiency caused by the sin(ko) radial mode structure. For
typical Jarge tokamak parameters and choice of modes for which R]] < 0 and
RZ] > 0, dispersive equilibria with single real-valued solution for u as well
as nondispersive equilibria with v = 0 exist. Dispersion tends to increase
the saturated mode amplitude, I171,¢, 2L2u2 > 0; but this is compensated by
the amplitude reduction provided by the increased coupling when g # 0. For
typical paramecers and a choice of modes such that Ryy < 0, then |dR2]! >>1;
and 1311I2 as estimated by Fq.(25) can be significantly smaller than the one-_‘
dimensional result Egs. (17).

The mode amplitudes approach steady state in a manner much the same as
described for the one-dimensignral two-mode configurations [15]. The mode am-

plitude of the fundamental 51). presumed to be thermally excited at an
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at an initially smalil amplitude, grows at an expcnential rate given by Re ﬁ.
By beating with itself it generates the damped modes comprising ¢(2) at an
exponential rate 2Re ﬁ]] until just before saturation.at which time the growth
of both w(]) and w(Z) diminishes rapidly.

Ke observe that the equilibrium we have approximately comstructed in
Fgs. (23), (24), and (25) has no explicit evidence of the energy sink at
large kx. However, impiicit in the amalysis is a truncation of the Fourier
" modes at third order and .igher in |a]1|,which requires that modes at large
kx be linearly stable or damped. There has also been a truncation of the
Fourier expansion of sinz(kg), j.e. sin'z{ka) = (8/3%) sin{ko) - (8/15%)
x sin{3kn).In fact, because in the calculation of |a]]|2the square of these
Fourier coefficients enters, only the first term of the preceding expansion is
actuzlly savec in Eq. (23). These approximations are responsible for small
errors in the equilibrium which fortunately are not tog important for the
overall scaling of the saturated amplitude and associated anomalous transport,
However, a stability analysis of these eguilibria, similar to that described
in Sec. 3.1, may be quite sensitive to these errors and give misleading or
totally erroneous results,

HWe have undertaken a linear stability analysis of the equilibrium
Yo~ a]]sin(k_) exp[il{g- ut}] + aozsin(ka) + a2]sin(kg) expli2l{c - ur)}] +
c.c., where the amplitudes and group velocity u are given by Egqs. (22a), (23),
and (24;. We find frequency eigenvalues giving instability, which are much
larger 1u magnitude than (v_/mo)L. This violates our approximate use of
@ ::kyvf {1 - kibf - kib?) in evaluating ﬁ(m,ky.kx). Hence, the perturbative'
approach used here formally breaks down. However, this should not ncessarily
diminish the value of our approximate equilibria calculation which may never-
theless give an accurate approximation of the correct scaling of the satur-

ated mode amplitudes and transport. For example, in Ref. 15 it was deter-
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mined that even when the simple one-dimensional two-mode equilibria were un-

stable, the epergy and transpori of the numerically obtained asymptotic spectra
were bounded and scaled in agreement with the two-mode theory.

The lack of dependence of our approximate equilibrium solutions upon the

details of the energy sink at short effective wavelengths in the radial dirzc-
tion, although perhaps troublesome for the stability analysis, is an advantage
in other respects. We are able to deduce the approximate scaling of the satu-
rated ampl- cude and transport without demanding a precise calculation of the
linear radial mode structure and its effects upon the linear mode frequency.
Consider the approximate expression for Reﬁ(m,g) given by the Taylor series ex-

pansion.
-~ _ T
aRewo(m = kyv*, k)

dw

ReW(u, k) = Rell (o = kva, k) + Su +. .., (26)

where ﬁo is given by the local 1imit of Eq. (16b) with iy/ox - k, and gy =
—kyVI(kﬁb% + kﬁbf). It is Straightforward to demonsirate that in the model nom-

Tinear equilibria described by Eqs. (21-25), stabilization (Reﬁo < 0) of medes

with ky = L/r and kx = nn/AE, n> 2, requires kxzbiznwcﬁl) for the case that
the single unstable mode (ky = L/r and k, = n/Arge ﬁgy) is well above linear
marginal stability and has nearly maximal linear growth rate. The implicit

T
2bi2 << 1 and that |su| << kyv*

violation (for n > 2) of the conditions that k,
indicates the weakness of the weakly perturbative addition of kimetic effects
to our fluid model. We point out, however, that these conditioms are fairly .
well satisfied by the modes explicitly retained in these eguilibria. The next
section describes a calculation appropriate for plasmas very close tD marginal

stability, =i which the assumptions made by our medel equations are very well

justified.
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4. Two Dimensional Equilibria Near Harginal Stability
4.1 Equilibria Established by Four-wave Insteractions
Near linear marginal stability the electron driving term in
the linear dispersion relation is nearly cancelled by the damping terms pro-
duced by ion collisions and ion Landau damping. We specialize our study to
the case of a single weakly unstable mode and consider the linear dispersion

relation given by Egs. (16} in the local limit:
=~ ~ 2
w = + iy = - Ink+ iRel = kyVI [1-k %, ° - kyzbiz - 8(1-n) (m/mBi}zl
. 2
30 W) - vym vl s (27)

where v = (1~ 30/2)(wlag;)® olA"(w/ugg) + 8172 (k Viluy;) 1, A =C120),

and to good approximation mzkva on the r.h.s. The effective roloical wave-
number of the single marginally stable mode is determined by dyL/dky =0

and by a consistency relation between z ana vy g,(mcz/v;)(mz - um4 -v) = 0,
where m = k r. These give am® = 1/2 and 4ve = 1. He set k, ® vk, for this
mode in the spirit of our earlier arguments and those of Ref. 6.

The singTe unstable wave grows at first from some initial value, which is
assumed small, at its linear growth rate R The coupling of the mode with
itself through the nonlinear terms in Eq. (13) drives to finite amplitude its
harmaonics which would otherwise be thermally excited to much smaller ampli-
tudes. Farmonics will be generated at all orders in the amplitude of the fun-
damental and with growth rates given by the corresponding integral multiples |
of the growth rate v, [15].

The preceding argquments concerning nonlinear effects tacitly assume that
phase matching conditions are satisfied, i.e. the sum or difference of the

wavenumbers and corresponding linear normal mode frequencies of the weakly
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coupled modes must nearly equal the wavenumber and frequency of another normal
mode. When there is a mismatch aw in the freguencies, the effectiveness of the
coupling process is reduced; and coupling virtually ceases because of the loss
of phase coherence when Aw greatly exceeds the characteristic rate of the pro-
cess. Because harmonic generation has a characteristic rate scaling as an
integral multiples of Y)» BNy finite frequency >*smatch will be sufficient to
completely inhibit cc.pling as YL is decreased to zerp at marginal stability.
Fer linear normal modes with dispersion relation given by Eq. (27), all three-
wave interactions have a finite mismatch frequency and are therefore ineffec-

tive for systems near marginal stability. Eg. (13} then becomes

[(a/5t) - W] (¢ +s%/6) - 2n,VI(as2y)e%/6

2

-1 T
*2e {1 endugfv Waerr (o002, -3 EMEL {28)

Y
We ignore parametric decays [20],whose characteristic growth rates scale

typically as a positive power of the wave amplitude of the "pump", the wave

undergoing decay into other waves. Since the modes we consider here are assumed .

to grow from an initially small ampTitude, the growth rates for parametric decay

are quite small initially. Meanwhile harmonic generation proceeds at an ampli-

tude-independent rate proportional to e Furthermore, dissipation of the

decay products and frequency mismatch typically reduce the growth rates for

parametric decay, produce an instability threshold condition on the amplitude

of the pump wave, and therefore further decrease the 1ikelihood and efficiency

of parametric decay. The cubic nonlinearity in Eq. (28) regquires us to survey'

all possible four-wave interactions. Because of the dispersion present in the

linear normal mode frequencies, given by Eg. (27), many of the four-wave inter-

actions can be ruled out because of the effects of freguency mismatch. A sub-

class of four-wave interactions possessing identically zero frequency mismatch
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have the irivial phase-matching conditions

Ky +ky, =Ky + k

(29)
nL(L'I} + QL(_k_z) = QL(E]) + QL(LZ)'

We demonstrate in this sub-section that the four-wave interaction of the
unstabie mode with jtself (_lgJ =ky = k) induces a frequency shift which causes
the mode to be nonlinearly stabilized by modification of the linear driving
and damping mechanisms, The self-coupiing of the unstable mode also induces
frequency shifts in the otherwise stable modes, Eq # 52 = k. If this frequency
shift is large enough to nonlinearly destabilize a linearly damped mode, then
the equilibrium established by the selif-coupling of the single linearly unstable
mode is clearly unstable (Sec. 4.2). For k;, k; # k the wavenumber of the
single unstable mode, all four waves are linearly damped; and the four-wave
process is unimportant unless one of the modes has been nonlinearly excited to
finite amplitude by some other pracess. If this should éccur the coupling .
described in Eq. (29) again produces @ frequency shift.

To consider the self-coupling of the single unstable mode we describe its

amplitude by

t
olx,y;t) = 9, sin(kxx) exp[iky - i _}r dt w{t-)] + c.c., (30)
0

-

where in general w(t) = w o+ sult) = o + sn(t) + iyL + isy(t) and b = 9L+iyL

is given by £q. (27) 1In the absence of nenlinear effects, w(t) = w in order
that ¢ satisfy Eq. (28). Hence, Sw(t) is due to nonlinear coupling and is

very small if & is very weakly nonlinear, i.e. |6w/mL| uE?{@z) << 1,
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The nonlinear terms arising from [(5/3t) - W] ¢3/6 are much smaller by
C3(YL/kyVI} than the other nonlinear terms in Eq. (28) and are therefore neglec-
ted consistent with earlier approximations., The nonlinear term in Eq. (28)
containing (ax¢ay - ay°ax) ay¢2 generates modes with x-dependent structure
given by sinz(kxx) cos(kxx) = (1/2) sin(kxx) sin(2kxx] = {1/4) [cos(kxx)

-cos(3kxx)] = ; P, sin(2nkxx), and hence does not contribute to the self-
coupling because no made with variation sin{kxx} appears in the series, The
remaining nonlirear term, which contains (a/ay]¢3/6, generates modes with
structure sin3(kxx) = (3/4) sin(kxx) - {174) sin(3kxx), and therefore provides

for self-coupling. Therefore, from Eq. {28) we obtain

- t
-ty - tsw(t) - Wlw +6w,£) - 3{3/4)n k VII & |2 exp f dt- 2Ime{t-) = 0.
( L Y 0 b
£31}
We Taylor-series expand ﬁ(m,g) avgund ﬁ(mL,g) = iy in the small variabte

Sl . « 1012

3y 32 ¥ sz
~1ou(t) - ENIMLS(» - ;:? wl“’[_ 5 + ...
t
- 1(3/4)n ikva I%.2 exp[f dt 2Imu(t-}] = 0. (32)
0

Saturation can accur if the net growth rate can be nonlinearly reduced to zerg,
Imu(t) = (T sv(t)+ 0. Then at saturation sy(=) = Yy - From the real and

imaginary parts of Eq. (32) we obtain to lowest order in |amImL|-and ]kyVI/v_l'

sa=) = - (3740 k¥] | |7 (332)
and
2
= - E._ Y, @© a F _6-9._ © 2
v = Syle) % - ReWIuLGQ( )+ 2 ReW wa 5 (=) {33b)
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2 _y. 2 © s .
where Jo_|2 =2 |2 exp [f dt-2Ima(t*)].
0

Evaluation of (a/aw)Reﬁ and (aalamZ) Rel completes the solutions of s0(w)
and |¢_| and can be used to justify the approximation that [s&y| << |8g| which
has been used in deriving Eqs. (33). For the most unstable mode, am? = 1/2,
we deduce from £q. (27) that (a/2w) ReW = mu /dv_ and (a2/2u”) Rell = -5/2v _,
where u, = Vljr and o = 9(40) (1 - 30/2) (mozv-/”Bi3)‘ To good approximation
in (wg/v )y (v /ug) << 1 and for n > 0, we find that in Eq. (33b) sv(=)=
[ (a/3u) ReWlsn(~). Hence,

62{=) = -(4v_/mu )y, (34a)
and
o1 % (16/3n) (v,v_ /m%a %) = (32/3n) Gz ~v)e (34b)
For reversed-gradient profiles {n < 0), the frequency shift is positive
in Eq. (33a); totally different values of sp(=) and ]¢m|2 result. However, our
fluid model omits the physical effects of reversed gradieﬁts in the linear .
electron driving term which exerts a significantly stabilizing influence [21].
Therefore, we will only consider equilibria for non-reversed-gradient profiles
(n > 0) for which the frequency shift &q(~) §s negative, propertional to the
linear growth rate MR and considerably larger than &y by a factor 4v_/mwu>>}.
The time-dependent solution of Eq. {32) is straightforward. We use
fsy(t)/8n(t) icc 1 and I(aReﬁ/am)ﬁn (t)] > |(32Reﬁ/am2)59(t)2/2[ to simplify
the mathematics. Solution of Eq. (32) is then obtained by differentiation -
with respect to time, separation of variables, and calcutation of two elemen--

tary integrals. We find that

sv't)/y, = Texp(2yt) [1 - rexp (2y t)]7 (352)
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and

t
salt)/eal=) = { |¢olzll¢,|2 exp[-}r dt” 2Ims(t-)] = -ay(t)/y), (35b})
o]

where Tz -(|°O|2/|°,|2) (% - |@D!2f|¢m!2)'1. Thus the nonlinear complex fre-
quency shift and squared amplitude grow exponentially at rate ZyL until just
before saturation. We emnhasize that saturation of the unstable wave in this
case occurs for reasons much the same as for the equilibria established by
three-wave intaractions: mode coupling again provides for the formation of a

balance between linear driving and damping forces.

4.2 Stability of Equilibria Established by Four-wave Interactions.

In this sub-section we investigate the linear stabiiity of the equilibria
constructed in the immediately preceding discussion. Consider a perturbation
expansion ¢ {x,y:t) = ¢°(x,y;t) + ol(x,y;t), where the equilibrium satisfies

Eq. (28) with solutions described by Egs. (33) and (34)

¢o(x,y;t) = e_| exp[-ig t - fsa(=)t + ikyy] sin(k,x) + c.c.,

and the perturbation satisfies Eq. (28) to first order in ¢]/¢o

[ (a/at) = W] (o +0,%./2) ~ n VL (2/ay) 6 %,
(36)
+ 25'1(1 - Mw, v }VTr r [(a $5 -3 8,3 )5 0 2, 2(3.0.3 =3 ¢ 3, )3 (> 2.} =0
a "t X %y "y 1% %y70 x 0%y “y o xyto’l :

The same choice of boundary conditions is made here as for the equilibrium

- - _ . -t 2
¢](kxx =0m) =0 and ¢](kyy + 2r) = ¢](kyy). whare ky =mr ', om 1/2,

. A .
and k, nky. For o = P °zn(t) exp (ier 'y - 1“gnt) sin {nkxx) + c.c.

LN
where On T (k'y = Lr'], k; = nkx), Eq. {36) leads to an infinite matrix
equation describing the coupling of the Tinear mode amplitudes ®n via the

equilibrium ¢°.
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We recall that all modeS other than the principal mode of the equilibrium
are assumed to be linearly damped and are consequently not spontaneously ex-
cited to sigaificant amplitudes. We apply the arguments of Sec. 4.7 and there-
forerestrict our investigation of Eg. {36) to the consideration of only the
nonlinear coupiings which exactly satisfy the phase matching conditions Egs.
(29). This reduces the infinite matrix to diagonal form, viz.

[ - fugy = 1607 = W (wser™', nk) = §(30/2)8ay [0 (14, =0,  (37)

g
where = w0 + §w” and we have lLaplace-transformed in time 3/5t+ - iéw. Recog-
nizing that this equation has the same structure as Eg. (31), we conclude that
the finite amplitude of the equilibrium ¢_ evidently induces a frequency shift
in all the modes of the system. If this frequency shift is sufficient to non-
1inearly destabilize any linearly stable mode in the system, then the equilib-
rium is unstable.

In order that there be only a single linearly unstable mode,
yL(m + 1) = EmDZ/u_ <0 or

"L 1
0 i-EIT;ZTEr_ Ay Tt = 2. (38)
o 'V-

Because the mode freguency has been assumed to satisfy v, << mw << v_, where
v S v+u_/moz and v, & (1/2) (me/mi)]/z“- =G?IIO'2)vh for a deuterium plasma, we
find that '3.1)< v <@{10). Then Eq. (38) allows us to establish a condition
on a, viz. @(1072)< u < 13 and hence m <7.

A slightly more severe condition on o is obtained from a consideration of
the nonlinear shift of the sideband frequencies. We Tayler-series expand W A
in Eq. (37) and employ the standard frequency orderings (Qolu), (v fugi<< |
to obtain &0” = 2{e/m}sn {=) {39%)
and

2

] y 32 Y Z
8y" = 3— Rell| 827 + == Rell] 0" °/2, (39b)
w “in w “on
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where sn{=) is given by Eq. (34a). The most stringent condition on stability
is obtained by considering the perturbed modes which are nearest sidebands of
the equilibrium and which might sustain sy~ > 0, viz. 2 =m=+tandn=1. From
Eq. (27) we determine that ( ReW/auw) = (uo/v_) (4 - m/4) and (azReﬁ!awz) =
(17v_) [ z(4/m) + (5/2)] for ¢« =m + 1. Then Egs, (39) give sg° = 2(m = 1}
x al)/m -8y v /My, for m >> 1 and 6y* = [-2 & (32/m]v -
From Im“zn =y (2=ms 1) =y - Zmoz/u_, the net growth rate for two side-
bands becomes for m »» 1

T = -20/v_+ [ 2(32/m) -1] v, (40)
which must be negative for stability.

The lower sideband is evidently further stabilized by the nonlinear
frequency shift. However, for m < 32 the upper sideband can be destabilized
for 1inear growth rates v, sufficiently large. We recall that y = (wozlu_)

x[ (4&)—] -v], which using Eq. {40) allows us to express the cendition Imw < 0

equivalently as

YL _ me ’m
——(m 2, ) TTE TV i3RSm (a1)
O -

where 1 << m < 32 and um2 = 1/2. Of course, the linear stability of the side-
bands already demands that m ¢ 7. For ©10.1) < v < &(10), as conseqrance of
Eq. (41) we determine that m < 5, « > 0.02, and YL(mozfv_)'1 <« G11/2) to
guarantee the nonlinear stability of the upper sideband.
5. Cross-field Transport and Scaling for Tokamak Plasmas

5.7 Transport Coefficient for Radial Flux

This section presents a calculation of the anomalous transport

arising from the trapped-ion mode. We compare the transport levels for satura-
tion due to coherent mode coupling in two dimensions, due either to three-wave
or four-wave interactions, with the transport levels predicted by Kadomtsev

and Pogutse [11,12].
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-

The coherent radial transport of particles is given by the flux <nsys'x>,
where the brackets indicate an average over the poloidal angle. Quasineutral-
ity and the dominance of the ExB contribution to the velocity of each species
account {ar the equality of <ni!§' X >R < "e!e' X > to lowest significant
order, The poloidally averaged electron flux is given by

V- X >= (20r) Jzﬁrdy(n V_r x) = (2er)] fg"r dy(n Tv.T . %)s

ee ee o e -e
the circulating electrons do not contribute to the average radial flux because
they respond adiabaticaliy. The poloidal average is equivalent to a time aver-
age gver many oscillation periods. Because of paloidal periodicity, the dia-
magnetic fluid velocity produces no average flux to all orders in o.

Eq. {12) gives an expression for neT accurate to Eﬂ¢3). As argued in
deriving Eq. {10), for purposes of calculating the particie fluxes the fluid
velacities can be replaced by the EXB drift: ys+ cExg¢/B. The nonlinear con=-
tributions to ng were found to be much more important than the ponderomotive
contributions to ¥ . The transport coefficient is defined by D = -< n/V - x>

X (dnoldx)'], which Teads to

D = -r, (c7/eB) < In-l(Dsu Bt) [2n (1 - ¢M2) (5 + 6%6) - n]

+ (v /v) [26 - (én/n)) + /3] I /3y > - (42)
To lowest order (D/Dt} +{a/3t} and s¢/5t ::-Vzaajay, where use has been made
of the frequency ordering, € << 1, and @ << 1. Hence, Eq. (42) gives

T2
2 /2 2 4V, ‘r2 L\ 2
. fel c 3% A N 2
n..(—es) L <(ay) P (—a B (43)
- s ¥

’

The next higher order terms in ¢ are smaller by relative order |¢/c1/2|

if three-wave interactions are effective; otherwise the next higher
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order terms are (¢4), or of-relative order folz campared to thase retained.
Kadomtsev and Pogutse have estimated a transport coefficient when satura-

tion is provided by incoherent, turbulent praocesses, which is given by

T?2
b~ 52 Y1 W g
KR ‘€ eBI"rI 4ue v_ €

Their calculation assumes that there are many unstable modes, i.e. the plasma
is far from marginal stability.

In order to compare the Kadomtsev-Pogutse estimate with our general ex-
pression, Eq. (43), the quantity < (awlay)z > must be evaluated. In the pre-
ceding sections appear calculations of the nonlinear saturation of the trapped-

2 < a < 1, either well

ion mode for plasmas having moderate-sized u, viz. 10°
above marginal stability or so close to marginal stability that only a single
mode is unstable. Appropriate for the case far from marginal stability (v++ 0)
in which three-wave interactions are dominant, it was previously calculated [15]
that nondispersive, one-dimensional two-mode equilibria have a transport coef-
ficient given by

szrf [ ) wz ]

D~ i 2 {(23)
I 2 I.“ a12e 2 2l

The quantity in the square brackets in Eq. {44) is the taturated value of

r2 < (acb/ay)2 >3 values of this quantity for dispersive equilibria including

two-dimensional effects can be calculated from Egs. (22-25) and scale quite

differently. Numberical examples of the prediction of rz < (3¢/ay)2> made by

our medel in various parameter regimes are presented in the final sub-section.
Near marginal stability we have demonstrated that a singie unstable mode

can saturate its own growth by producing a frequency shift which a'lows a bal-

ance to be established between electron driving and icn damping forces. That
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these forces are separately Finite is responsible for there being energy flow
and particle transport in the system even at saturation. From Eqs. (34b) and
{43), the transport coefficient for the saturation due to the self-coupling of

a single marginally unstable mode is given by

g2 .2
~ 2 _* nm |32
bt [3 (7 ")] (45)

In Ref. 15 a fairly detailed zomparison of the Kadomtsev-Pogutse trans-
port coefficient and that for one-dimensional, rondispersive two-mode equili-
bria [ £q. (44) Jwas presented. Profiles typical of the Princeton Large Torus
(PLT) were considered. It was found that the transport accompanying coherent
three-wave coupling could be substantially smaller than the Kadomtsev-Pogutse
estimate over much of the plasma cross-section. Very roughly, for (rn/r) =C311).
moderate values of o, and 4av < 1. Ref. 15 determined that

-1
D/0yp ~ [2/(1 -n)D (w0 B/u ) (462) < 1.

The inclusion here of radial effects and especialiy the increased coupling
provided by 2 # 0 in Eq. (15) reduces the saturated amplitudes and consequent-

1y improves the transport picture by reducing D/Dyp-

5.2 Scaling and Summary

In this section we conclude our discussion with a few remarks on
the scaling of the values of the saturated amplitudes, a review of the more
important assumptions made by our model and its limitations, and a brief sum- :
mary of the important results. A detailed consideration of the dependence of
crucial parameters on the experimental conditions typical of a large tokamak,
e.g. PLT, appears in Ref. 15 and shall not be duplicated here.

A simple figure of merit in calibrating the value of the saturated mode

amplitude(s) is the value of es/cT. When for a single wave this exceeds unity
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a trapped ion resonantly interacting with a wave can be electrostatically de-
trapped by simple coherent acceleration due to the parallel electric field, if
jts bounce length is appreciable compared to 2n/k, ~ connection length = gR.
Investigations of electrostatic detrapping in the presence of turbulence [9,13]
or for a single wave with stochastic effects included [19] have lead to con-
siderably lower estimates of e4/eT at saturation by factors typically of order
ten to twenty.
The analysis in Ref. 15 of one-dimensional, non-dispersive equilibria

established by three-wave interactions gives a result

eo/eT ~ e V200 )T (up /v a2, (46)

where for validity of the model (uo/v_),s << 1; n < 2/3; and G(]D—Z) <qel,
For typical tokamak parameters admitting the trapped-ion instability, the ex-
pression for es/eT in Eq. (46} could possibly be of order unity. We now
numerically demonstrate how the inclusion of radial effects can dramatically
alter this estimate.

Far purposes of numerical evaluation of Eqs. (22 - 25) we choose the
following basic parameters: v_/mD = 20.4, n = 172, € = 0.1, ”o/”Bi = (0.0612,
m;/m, = 3600 and &g = (v_/ug) (pizqzlerz) = 0.04. This gives o« = A*(1 - 3n/2)
xlaglugs)? (v_/ug;) = 0.04 for A° = 40 [4,5] and & = 8(1 - n) (v_ug)

x(molmBilz = 0.306. The important parameter o scales according to

a = 5.5 % 10700 - 30/2) 37/ BR(emr () Z 010 en™3 )8 (50k6) PT(ke) T (47)

In Table I we consider the influence on the equilibrium amplitudes of various
parameter choices for 8 = 2(1 - n)'] (w/v_) (ry/r) and the level of disper-
sion. Our choice of parémeters is meant only to be f1Tustrative, but is con-
sistent with th: usual orderings, and ensures that Reﬁ" > 0, but that Reﬁoz,

Reﬁ21, Rel., < 0.

12
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E1/2(] _n)-1

The complex values of the Fourier amplitudes eémn/eT
{wg/v.) (eamn/eTJ and the group velocity Vg/ VI = (wy/v_Ju are tabulated in
Table I. The cases for which g = 10'6 correspond closely to the one-dimen-
sional two-mode equilibria {8 = 0) except for geometrical correction factors
of order unity arising from the simusoidal variation in x. Dispersion tends
to inhibit effective coupling of the fundamental mode ;1] to the ;2] mode and
hence force the saturated amplitudes from e¢]]/eT'5.i to e¢11/eT 2 1. For the
g-dominated cases, g = 0.1, the coupling of the fundamental to g2 is more
iwportant than the coupling to ;2] and is much less influenced by dispersion
for these parameter cheoices. fhe table makes obvious the dramatic reduction
in saturated amplitudes, e511/5f~ (.02 for these parameters, produced by the
enhanced coupling when g8 # 0.

Table I. Two-dimensional equilibrium amplitudes and group velocity vg estab-
lished by three-wave interactions for ¢ = 0.1, n = 1/2, v /u, = 20.4,

u,/ugy = 0.0612, and pya/e'/?r = 0,024
- - | . T
e 3p 8y | eon/eT | eoy /et er%z/cr Vg/Va
108} 0 -1.062 -0.835 x 1074 | 0
10751 0.04 { 0.306 | 1.44 0.149  -i.0416 -0.775 x 1073 | 0.342
0.1 [0 |o 0.0237 -i.155x1072 | -0.0209 0
0.1 | 0.01]0.306] 0.0237 | 0.403x10%-1.113x10°% | -0.0210 0.389

for plasmas very close to marginal stability we have calculated equilibria
established by the self-ccupling of a single, marginally unstable wave via a
four-wave interaction. Using Eq. (34b) we calculate that at saturation

1172

ey/eT “’85-] (u/3n)]/2 ( 7 » where n » .0,
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We recall that the simple nomlinear stability arguments presented in Sec. 4.2
concluded that for stability YLv_ﬁnuz = (Qu)'] -y <®(1) and « >0.02. Near
linear marginal stability the value of e¢/cT can evidently be very small, i.e.
epfeT c(yLu_/woz )”2-0- 0 as W a.

We caution the reader not to take the exact numerical predictions of our
model too seriously in view of the many approximations made. The augmented
Kadomtsev-Pogutse fluid equations give only a simple semi-guantitavive model
of the trapped-ion mode. A more rigorous kinetic treatment of the nonlinear
evalution of the mode and accompanying computer simulations are needed in
our opinion.

The scaling with tokamak parameters of most of the important assumptions
in our model has been previously discussed [15]. However, we emphasize
that validity of the model demands that wy << wpys << k"(TS/mS)]IZ,
¢ <<1, and vy Sy <<y to justify the Kadomtsev-Pogutse fluid equations,
|6xB + 8xp + exUI << 2 to guarantee that the kinetic effects added are only
wéakly perturbative, and ¢ = e¢/T << 1 to ensure convergence of the perturba-
tion expansion in powers of . These conditions conspire to make the model in
which three-wave interactions are effective valid only in a narrow regime of param-
eter space: v_/mBiﬁ-Ei(l) and of the parameter o, evaluated algebraically in
£q. (47) and numerically in [15], 1073 < a < 1. This is based on a calcula-
tion of the effects of dispersion arising from untrapped ions which is referred
to in Sec. 3.1. The wodel calculations in which four-wave interactions are
dominant are valid near marginal stability, i.e. when (1/8a)-v < @1} and s
1072 <a< 1.

We have made no estimates of the Timits determined by use of linear
kinetic theory in describing the effects of finite ion banana-width excursions,
thermal and resonant corrections t0 the circulating ion response, and trapped-

jon Landau damping. Nonlinear calculations of electrostatic detrapping
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{9,13,18] nresumably offer estimates of what levels of electrostatic potential
are necessary to produce significant nonlinear orbit modifications. However,
in view of the Tack of consensus among the theories of electrostatic detrap-
ping and the approximate nature of these thecries and of our own mode-coupling
theory, precise quantitative comparison is premature. Nevertheless we can
conclude that the estimates of saturation by mode coupling seem to be quite
competitive with the lowest sstimates made by the theories of electrostatic
detrapping.

We have thus extended a mode-coupling theory of the saturation of the
trapped-ion mode based on the augmented Kadomtsev-Pogutse fluid equations to
include variations in the two dimensions corresponding to the plane perpendi-
cular to the magnetic field. Important linear kinetic effects have been
systematically added. The nonlocal effect that magnetic shear has on c¢ircu-
lating-ion Landay damping has been very simply incorporated in the 1imit that
the spating between mode rational surfaces of .e most linearly unstable mode
is much shorter than any characteristic scale length of the basic plasma
parameters. We have offered a more general derivaticn of a fundamental equa-
tion of evolution for the electrostatic potential Eq. (13) than has previously
appeared [10,15]. Simple time-dependent and steady-state approximate selutions
of this equation have been obtained analytically.

. Equilibria established by three-wave interactions have been shown to poten-
tially result in significently smaller saturated amnlitudes and weaker concomit-
ant particle transport as compared with the predictions of previous one- -
dimensional theory [15]. The transport coefficient can therefore be substan-
tially reduced below the Kadomtsev-Pogutse estimate. Our two-dimensional
equilibria illustrate the need for an energy sink at short radial wavelengths
to counterbalance the effects of fluid steepening. Following the analysis of

Gladd and Ross, we have suggested that inclusion of the linear effects due to



-40-
finite ion banana-width excursions provides the necessary stabilization. We
have found that a stability analysis of these equilibria is inconclusive and
speculate that this might be due to the approximate nature of the equilibria.

Near 1inear marginal stability three-wave interactions cease to be effec-
tive and the 6K¢3) terms in the fundamental equation must be considered. The
time-dependent approach toward an equilibrium produced by the seif-coupling of
a single linearly unstable mode via a resonant four-wave interaction has been
analytically calculated. We have also determined for what plasma parameters
these equilibria are stable. The particile transport at saturation is found to
scale as the linear growth rate,and ed/eT scales as the square root of the
growth rate, both of which become vanishingly small as Tinear marginal stabii-

ity is approached.
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Fig. 1 Slab coordinates showing mutually erthogonal densily and Lemp-
erature gradients vno(x) and vT(x)}, magnetic field B, and diamagnetic
drift velocity V. .

Fig. 2 Diagram of the non-dimensional 1inear growth rate Y =M

2

\)+\)_ij.

- am4 -v as function of mode number m, ky = m/r, with parameter v
The flow of wave energy is schematically presented.
Fig. 3 Frequency eigenvalues @ in the drift-wave frame for linearly perturbed
nondispersive two-mode equilibria as function of erLa. The perturbation
&y = exp({-igr) exp(ierp) %; Anin-L expfi(m + n“L)e ] + c.c. is character-
ized by m = 1, and the equilibrium y, = a, exp(iLE) + ag exp(i2lg) + c.c.
is parameterized by L = 8 and {a) aL2 = .56, (b) aLZ = .64, and (c) uL2 = 72.
Fig. 4 Schematic of the flow of enerqy due to mode coupling in two-
dimensional Fourier space (kx'ky} from unstable modes to modes stabilized
by ion collisions, jon Landau damping, and effects asscciated with ion
banana-width excursions. The quantity ar, = (kyr d n q/dr)'1 is

assocfated with the value of ky for the principal unstable mode.
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