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ELECTROSTATIC BOUNCE MODES IN MIRROR PLASMAS

ABSTRACT

Electrostatic bounce modes are standing waves that occur in a mirror
plasma when the relative spread in electron bounce frequencies is small. The
modes can be destabilized by an ion distribution with a peaked perpendicular
energy, and experimental data suggest that this mechanism was the principal
cause of instability in certain low-density mirror experimen .

After a review of theoretical work on electrostatic waves in mirror
plasmas, a general matrix eigenvalue equation for the wave potential is derived
which accounts accurately for electron histories and which includes the ion
response. A computer program for calculating the plasma eigenmodes and the
associated threshold densities for instability and maximum growth rates is
then described.

Strong resonances at harmonics of the electron bounce frequency are found
when that frequency is well defined. These resonances result from phase
correlations between electrons on successive transits through che plasma, and
they are weakened and shifted in frequency when the mirror force and spatial
variation of the ambipolar potential spread the bounce frequencies. The
effects of plasma and field parameters on the eigenmodes are discussed.

The threshold denmsities for unstable bounce modes expected in the
Baseba.l I and Baseball II devices are compared with experimental values. The
good agreement between theoretical and experimental thresholds in Baseball II
makes bounce modes the most likely causte of instabilities in that device. 1In
Baseball I, the most unstable modes exp-cted from the theory have threshold
densities consistently below observed values. The discrepancy probably results

from idealizations in the model that reduce wave damping.
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1. Introduction

DESCKIPTION OF BOUNCE MODES

Electrostatic bounce mades are oscillations of a quasineutral plasma
arising from tihe periodic nature of trapped particle orbits. Whenever the
bounce frequencies of particles in confining electrostatic and magnetostatic
fields have small spread, then the particles retain substantial phase coherence
on succecsive transits and can support standing wave modes. Electrons in
typical hot-ion mirror plasmas meet this coherence requirement because they are
confined principally by an electrostatic potential that is approximately
quadratic. Bounce modes can have wavelengths comparable with scale lengths of
the confining fields, and they are distinguished by the strong plasma response
at frequencies near harmonics of the mean bounce frequency.

In certain low-density mirror plasmas, electron bounce modes can be
destabilized by the ions. 1Ions can couple effectively to waves that have
frequencies near harmouics of the ion gyrofrequency and have wavelengths
perpendicular to the magnetic field that are about twice typical ion gyroradii.
I1f the ion perpendicular energy distribution is peaked, then the free energy
assoclated with this anisotropy can be transferred to the wave, and Instability
occurs when this ion drive exceeds electron Landau damping.

Unstable electron bounce modes are a likely cause of instabilities
observed in low~density mirror experiments. These oscillations occur during
plasma buildup by neutral beams when the electron Debye length becomes less
than typical ion gyroradii. Since they have frequencies near low harmonics of
the ion gyrofrequency, the instabilities have been attributed to electron
plasma waves driven by free energy from the anisotropic ion distribution.

Even though instability threshold measurements in early devices such as
Baseball I (BBI)l and Phaenix 112 seemed to support this model, the validity
of early theoretical work on the modes was questionable because the infinite
medium equations and Wentzel-Krammer~Brillouin (WKB) formalism used were not
generally applicable to these devices. Also, instability threshold densities
in the Raseball II (BBII) experimen. were well below theoretical predictions
and were mcre strongly affected by changes in plasma length and the buildup
procedure than expected from theory.3 The bounce mode mechanism is a more
plausible explanation of the observed iastabilities because it is based on a
more accurate description of electron motion and requires no assumptions about
parallel wavelength or wave reflection.
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The present research studies electrostatic bounce modes in typical low-
density hot-ion mirror plasmas and examines the adequacy of the proposed

instability mechanism as an explanation of BBI and BBII findings.

SURVEY OF PREVIOUS WORK

Plasmas can support a great variety of cooperative electromagneti~
disturbances. Growing disturbances, termed instabilities, are of particular
concern in confined plasmas because they can disrupt a plasma in times that
are short compared with collisional relaxation times. Two broad categories of
instabilitles are normally distinguished: Magnetohydr~dynamic ¢MHD) instabil-
ities4 are bulk plasma disturbances with wavelengths much larger than ion
gyroradii and frequencies well below the electron plasma frequency or typical
ion gyrofrequencies. They gain energy by distorting the plasma as a whole and
are suppressed when the plasma is confined in a magnetostatic field near a
field strength minimum.5 Microinstabilities,6’7 in contrast, gain energy from
anisotropies in the velocity space distributions of particles or from
inhomogeneities in density and temperature. Since micreinstabilities can be
localized and often involve only a small group of resonant particles, they
normally result in turhulence or enhanced diffusion, rather than in movement
of the plasma as a whole. In present mirror experiments using MHD-stable
confining fields, microinstabilities impose the principal limit on plasma
confinement.

In the cheoretical study of microinstabilities, a plasma is conveniently
described by time-dependent particla distribution functions E, (x,v,t) that
give the density of particles of each species o at location X having velocity
v. Mazroscopic quantities such as number and current densities and mean
energy can be obtained as appropriate moments of the distribution functionms,
and the resulting plasma fields are given by Maxwell's equations. Wnen wave
growth occurs on a time scale that is short compared with characteristic
collision times, the change in I-“1 due to collisions may be ignored. Particles
then interact only through the macroscopic plasma fields, and Fu can be shown
by Liouville's theorem to be constant along particle trajectories. Mathemat-—
ically, this fact is expressed by the Vlasov ecquation

dv
d = _3_ - _3__ —= . i =
dr Faloyst) = <3t trtwmta av> Falrov,0) = 0. @



£ a magnetostatic field g(x) is the only external field, then the electric
force results entirely from the self-consistent plasma potential ¢(x,t), and

the velocity derivative in Eq. (1) 1is

dy  q ¥ x B(x)
i E{; —Y‘b(l{,t) + < |- (2)

Here notation summarized in Appendix A iIs used, and ¢ is given by Poisson's

equation

oty = 41 T N s, @)
o

with the sum taxen over all species o and the number density of each species

glven by
N (x,t) = N (x3,t) /d v E (%,v,8) . (4)

In Eq. (4), Fa has been normalized so the velocity integral is unlty at an
arbitrary point Xg- Whenever the fields seen by a particie over a gyration
period are nearly constant, total particle energy E = MVt g g and magnetic
moment | = mavl / 2B may be tresated as constants of the motion, where

H IY" H lg,, and v, = l! x §|/B. Any time-independent solution of Eq. (1)
can then be shown to be a function of E and only,5 and a set of such distri-
bution fun:tions for all spzcies together with the corresponding potential ¢
satisfying Poisson's equation, Eq. (3), constitutes a self-consistent plasma
equilibrium state.

Electrostatic waves, characterized by a time-dependent perturbing
potential ¢(x t), are the maln source of m:croirstabllities when plasma
pressure is small compared with the magnetic pressure B i8m. 6 1f the equilib-
rium plasma potential and distribution functions are denoted by ¢ (x) and
F (x v), then a self-conbistent set of equations for ¢ is obtained by substi-
tuting F (x v ,E) = F (x,v) + f (x v, t) and ¢(x t) = ¢ (x) + ¢(x t) into
Egs. (1) through (4) and subtracting off the unperturbed expressions. Assuming
that ¢ is small enough that products of perturbed quantities are negligible,

the following linearized equations result:
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df q, 9F,

& vt = Y Vo (x,v,t) * 5= (x,¥) , )
and

Vtx,0) = ~4n S a0 ®

where the perturbed number demsity for species o is
n (6,t) = N () [av £ Gov,0) '
a~? o ~0 alrerl ot

An expression for fa in £q. (7) is found by formally integrating Eq. (5):

0
q t 9F [x (t';x,v,t),v (t';x,v,t)]
£,00v,0) =25 [ ae! Uolx (t5x,0,001 ¢« 520 o . ®

ry U—co

Here fu(f’X’t) is assumed to vanish as t -+ -, and in the linear approxiwmztion
the unperturbed particle trajectories fa(t';f’f’t) and Yu(t';§{3't) intersect-
ing phase point (f,x) at time t is used in calculating ¢ and F; at t' < t. In
principle, Eq. (6) with Eqe. (7) and (8) describe the development of any
disturbance so long as fu and qaw remain small compared respectively with Fa
and the unperturbed forces.

The initial work.on electrostatic microinstatilities treated waves 1n
unbounded uniform plasmas. The customary approach to examining Vlasov plasmas
was deveioped by Landaul0 and Bemsteinll and was applied specifically to

l2’13: A Fourier-laplace transform is uv~ed to

electrostatic modes by Harris
reduce Eq. (6) to an integral equation, and appropriate approximations tc
electron and ion orbits for t' < t are made to allow the time integral in

Eq. (8) to be evaluated. The dispersior. equation that results is in general
a transcendental relation between the propagation vector k for a particular
plane-wave mode and the frequency w. Since these plane waves have a space-
time dependence exp(ik'f - iwt), they grow in time whenever Y = lm(w) > 0.

So long as the fields seen by a particle over a gyroperiod vary slowly enough
that E and P may be ronsidered constant, the orbit in a magnetized plasua is
well described by a guiding center approximation. The time-averaged position

<~ gulding center moves mainly along a flux line with in general scre
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crossfield drift, while the particle gyrates about this center with an angular

frequency Qu = an/muc and a gyrovedius a = /S},a. In a uniformly magnetized .
plasma, electron and ion guiding centers move -sith constant velocity along flux

lines and have constant gyrofrequencies. The orbit integration fn Eq. () is

readily performed in this case and leads to a dispersion relationl3

YL
wz © ) JjQ
ey f 3y ——\ 2

iR
a o 3 0
PSR, _E (—— = + ky ‘——‘) Fu(l'l WV, =0, (9

v, 3V, v,

where Jj is a Bessel function of the first kind, and wpa = (énNaqilma)llz is
the plasma frequency for species a. Hereafter, subscripts y and , denote
vector components respectively along and perpendicular to the local magneto-—
static field.

In plasmas confined by magnetic fields with open field lines, end losses
cause a depletion of regions of velocity space, referred to as loss cones,
where for a mirror ratio R, vﬁ/vf > R - 1. The rusulting anisotropy in the
vrlocity distributions, along with the unavoidable spatial inhomogeneities due
to confinement, acts as sources of free energy for the class of instabilities
called logs-cone modes. A review of electrostatic microinstabilities by Hall
55_21.14 showed that ions could couple effectively with an electrostatic wave
provided that the perpendicular wavelength 1s comparable with ay and the wave
frequency is near some gyrofrequency harmonic jﬂi. In this case, ions drift
in phase relative to the wave toward a phase stable point, and near this phase

point, ions on average lose energy to the wave when

0
o dy, 9F.(v;,v ) kv
f _.i._l " JZ- Lt >0 . <10)
b Vi v, 3 Qi

This condition indicates that the perpendicular ion velocity distribution must
be nonmonotonic for instability to occur and gives the requirement for a
sharply peaked distribution that klai > 1.85. In addition, Post and
Rosenbluth15 and othetsl6’17 chowed that systems with loss-cone distributions
could support instabilities with |k,] >> |kn| and w = i9; even vhen k, a, >>1.

Although accurate analytic expressions for the plasma densities at which these

ion~driven modes should become unstable are somewhat complicated, a simple

.



estimate based on Eq. (9) was given by Damm et al.1 For effectively station-

ary ions, the real part of Eq. (9) reduces in the case |k1,>>ik"] and w << Qe to

2 wz
&:_EZE, 1)
ky kj

Electron Landau damping is accounted for in Ey. (2) by the imaginairy contribu-
tion from the singularity at vy, = w/k, in the electron velocity integral.
Because Fe drops off exponentially with velocity, this damping becomes inef-
fective when w/k, 1is significantly greater than the electron thermal velocity

Ve. The phase velocity conditinn

le

12)

3
v
<

15 therefore taken as an approximate reguirement for instability, and from

Eq. (11) instability occurs at the lowest density when the equality in Eq. (12)
holds. 3Since electrons in a hot-ion mirror plasma are principally confined by
the plasma potential ¢, the maximum potential energy barrier along a flux line

is comparable to the electron energy He = mevz:

= _ = ’
Yoo S0 T WL (13)
Combining Egs. (11), (12), and (13) gives an approximate plasma density at the
onset of instability. In terws of the dimensioniess density parameter

€ = (mpi/Qi)z, the minimum density at which instability can occur is
~ 2 wmax N
€y - iy ai) ot (145
i
To test this model Damm et al. observed that the azimuthal component of .
can have only discrete values because an integral number of wavelengths must
fit around a flux surface. For a flux surface with radius r, k, is thea given
2

by k% = kr + (n/r)z, where kr is the radial k component and n is a perpendicular
mode number., The values of k, inferred from measured instability thresholds

in the low-density Baseball I experiment were found to have a clear k, mode

structure, and when optimum kr and r were chrsen for the data, Eth for each
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mode number showed the approximate lirear dependence on wmax/wi expected from 0
Eq. (14).

Despite the qualitative agreement between theoretical iastability
predictions snd BRI findings, the infinite medium formalism gives an incomplete
description of electron-ion microinstabilities in confined plasmas. For a
wave wi:h finite k, to affect plasma stability, it must elther grow to
appreciable strength during ome transit of the plasma or reflect coherently
enough at the ends that there is net growth during each transit. To treat
suca finite plasma effects as reflection, irfinite~medium theory is commonly
extended by adopting a WKB wave model.18 When the bulk plasma properties have
characteristic lengths that are long compared with a wavelength, a wave

potential spatial dependence along a field line of the form

‘s
#(s) expli [ ds" ku(s')] s)

may be used, with k, determined at each point by an infinite-medium dispersion
equation. Wave :ttenuation in this model is given by the factor
exp{-/%ds! Im{k"(s')]}, and for reflection to occur the validity condition

for a WKB representationl9

2
1 dk,, 1 a7k,
max {5 —— , % <« 1 (16)
o 987 3 a6l

must be violated somewhere along a flux line. Early paperszo’21 suggested
that waves generated near the center of a mirror plasma would be effectively
Landau damped in the low-density mirror regions, where wpe + 0 and k, -+ .
Berkl9 pointed out that this conclusion applies to a Maxwellian electrom
distribution, whereas actual distributions have a loss-cone character for
electron energies exceeding wmax and vanish continuously near the loss boundary.
His WKB analysis showed that a distribution cutting off abruptly at wmax leads
to wave reflection, whilg one with '\ linear energy dependence for E < wmax
causes absorption. A similar treatment by Hamilton and Moir22 using an
analytic Fokker-Planck equation solution for the electron distribu:tion and
taking magnetic confinement into account, predicted wave reflection near
Basebal: : mirrar points. Cordey23 likewise carried cut a WKB analysis of

longitudinal electrostatic wave reflection ir plasmas with a loss-cone lon
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distribution and electrons confined either electrostatically or magnetically.
He concluded that significant wave attenuation would occur when the magnetic
field scale langth L, satisfied Ly >> aive/vi.

One shortcoming of early work on wave reflection in mirrors was the use
of a local dispersion relation obtained from an infinite-medium analysis. A
series of pape!524,25,26 pointed out that the closed orbits of mirror-
confined particles could add a strongly resonant contribution to the dispersion
equation and result in nonlocal reflection of waves. Since all phase
information in a collisionless plasma is retained by particles, long-term
periodicities in particle motion can lead tc regeneration of disturbances
dampud by phase mixing. Berk and Book26 gave a clear physical description of
the phenomenon: When a group of particles has phase space trajectories with
the same bounce freguency W, as they do in a quacratic electrostatic well,
thea any wave disturbance will be regenerated each time they return to that
phase space configuration. The reactive t=im that this effest adds to the
dispersion equation becomes infinite when the wave frequency coincides with an
integral multiple of By Any velocity dependence of w results in exact
resonance occurring only for discrete values of v,, and the resonant dispersion
equation term is replaced by its velocity space average. Nonlecal particle
histories continue to make a significant contribution so long as the spread
in bounce frequency Awb = <lu$ - <mb>l>*is small enough to satisfy
2
b
wAwb

w,

>> 1 . (17)

Berk and Book account for these regenerative effects in WKB formalism by
including terms in the time integral of the perturbed Vlasov equation
representing the accumulated perturbation of the particles on previous
transits. This modified procedure gives good agreement with exact treatments
for k, = 0 waves in simple electrcn plasmas.

WKB formalism fails when wavelengths are comparable with scale lengths
of macroscopic plasma or field quantities. An alternate approach to analyzing
plasma waves in mirrcv devices is to directly solve the integral dispersion
relation obtained from the perturbed Poisson equation for the normal modes of
the system. Cordey21 used this method to treat unstable electron-ion waves in
a plasma confined by a quadratic electrostatic potential. Since he assumed

w/mb << 1 for electrons, bounce-frequency resonances were unimportant, and he

-9-



was able to use local expressions for the perturbed distribution functions in
an asymptotic series solution of the dispersion equation. A long wavelength
mode at the first harmonic of the lon gyrofrequency was found to become
unstable at the lowest plasma demsity, while for constant k, higher threshold
modes showed increasing maximum growth rates. When electron-bounce frequency
resonances are significant, periodic orbits must be used when integrating the
perturbed Vlasov equation for fe' The several papers using this general method
differ mainly in the detall and generality of their plasma models. An early
treatment by Weibel28 considered waves with k; = 0 in a one~dinensional
Maxwellian electron plasma confined by an infinite quadratically varying
electrostatic potential. Particle trajectories in this case are sinusoidal,
and when the wave electric field is represented by a Hermite series, the time
integral in Eq. (B) can be exactly evaluated. Laplace transforming Poisson’s
eq-.ation then leads to a matrix eigenvalue equation that is solved iteratively.
Harker29 likewise examined parallel modes in a collisionless, ome-dimensional
electron plasma, but he used a Green's function technique tc obtain an integral
equation for the perturbed electric field in an arbitrary symmetric confining
potential, The equation was speclalized to quadratically varying potentials
and solved numerically. Equations were derived by Kaufman for normal nodes
in an unmagnetized one-dimensional plasma30 and a magnetized cylindrical
plasma31 using a Hamiltonlan formalism, but he made no attempt to solve them.
Beasley 25“21-32 presented a more general analysis of electron-ion instabilities.
They considered electrostatically coniined Maxwellian electrons coupled to ions
by a uniform magnetic field, and the separable ion distribution they used
assumed a peaked v; distribution and a Gaussian number density variation along
field lines to approximate the velocity and spatial nonuniformities found in
mirror devices. Taking the plasma potential to vary quadratically, they
expressed fa as a Fourier series In harmonics of Qu and evaluated the
coefficients by integrating over gyrophase. Fouriler analyzing Poisson's
equation over the plasma length then yielded a matrix eigenvalue equation for
the Fourier components of the wave potential. This theoretical approach was
extended by McCune33 to slightly nonquadratic potential wells in a treatment
of electron Landau damping in mirror plasmas, and Beasley 55_31.34 applied the
formalism to several loss-cone instabilities. In this work, spatial variation
of Qi was included in integrating the ion Vlasov equation, and a radial density
gradient was incorporated in the electron term to permit analysis of density-
driven instabilities such as drift waves35 and drift-cyclotron loss—cone modes.36
~10=




DESCRIPTION OF THE PRESENT WORK

Previoug papers on electrostatic eicctron-ion instabllities idezlize the
plasma or the confinming fields for the sake of matkematical tractability.

Even the careful treatment by Beasley g&_gl.34 omits magnetic confinement of
electrors and the loss—cone nature of Fe’ and the Gaussian number density pro-
file assumed is inconsistent with the unperturbed electron distribution
function. Although the model does include important effects like electron
bounce resonances and Landau damping, the simplifications limit the predictive
value of the theory.

The treatment of electrostatic mirror plasma modes in the present
research avoids several of the simplifications of earlier work. A matrix
eigenvalue equation formalism similar to that of Beasley et al. is used to
find the plasma normal modes, but arbitrary monotonic magnetic and electro-
static fields are allowed, and the distribution functions used are appropriate
for a quasi-neutral mirror plasma. Perpendicular density and temperature
gradients are neglected because only unstable modes specifically driven by the
peaked-ion perpendicular energy distribution are of interest. In additionm,
the normal modes are calculated from the complete complex eigenvalue equation,
whereas earlier work solved only the equation for undamped electron modes.

A derivation of the matrix eigenvalue equation for electrostatic mirror
plasma modes is presented in Chapter 2 along with the methods used to solve
the equation for marginally stable waves and to calculate instability threshold
densities and maximum growth rates. The computer coding to carry out these
calculations is also described. The model is used specifically to study
normal modes in the parameter ranges where electron bounce resonance effects
dominate the plasma response. Chapter 3 summarizes the numerical results.
Important characteristics of the eigenmodes and the parametric dependences of
instability thresholds and growth rates are discussed first, and then predic-~
tions of the model for instabilities in the BBI and BBII devices are compared
with experimental values. A final chapter suggests further refinements and

extensions of the model.
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2. Bounce Mode Formalism

MODEL

Electrostatic bounce modes in a finite mirror plasma are obtained from
an appropriate integro-differential eigenvalue equation for the electrostatic
potential of small-amplitude waves. This equation is reduced to a matrixz
eigenvalue equation by Fourier analysis and solved numerically.

The physical situation considered retains important features of typical
hot-ion mirror plasmas. Both the magnetic field stremgth B and electrostatic
potential % are assumed to be monotonic functions of the distance s along flux
lines, cutting off at the endpoints tsmax' Particles which reach either end-
point with a nonzero velocity in the direction of B are considered tc escape
confinement immediately. In terms of total electron energy E and magnetic
moment Y, an appropriate electron distribution function is

F (1) = Ce(“Bmax +

nax ~ E) exp(-E/M.) . (18)

This describes a distribution that is approximately thermalized at energies

well below the cutoff value E = uBmax + ¢max’ but drops linearly to zero near

the loss boundaries. Here Bmax and ¥ are the values of B and electrostatic
potential energy P = —ed at Spax’ and the normzlization constent Ce is chesen

to satisfy

NOB(E) ™ meax+wmax Fe(E,u)
N(s) = 4n —5— fdp dE
m

0 HB(s)Hi(s) v

(19)

(s; B,

e en

where v - = 2(E - uB - w>1/2

subscript O hereafter labels quantities at s = 0. Appendix B gives the

/me 1s the parallel electron velocity, and the

analytic expression for Ce. Since the ions affect electron bounce modes
principally by transferring free energy of the distribution to the waves, the
anisotropy of the ion distributicn rather than the gpecific form is the main
concexr guiding the choice of a model distribution function. A form with
separable s, vu, and v, dependences like that used by Guest and Doryl6 is

selected:

Fi(S;Vu,VJ_) = N;‘:) Fu(‘:’u)F1 (V12> ’ (20)

12~




vwhere F, and F, are unit normalized according to 2 {;ndv“ Fy = 1 and

1U6mdval = 1, Since the equilibrium electron and ion number demnsities must
be nearly equal to maintain quasi-neutrality, the electron expression Eq. (19)
with Fe given by Eq. (18) is used for N in Eq. (20). Appendix B gives the
analytic N expression. The separable form assumed for Fi 1s not a solution to
the unperturbed Vlacov equation as a correct equilibrium distribution would be,
but it permits important simplifications in calculating the ion response
without sacrificing significant physical effects. The functions chosen for

F, model two simple situaticngs: At low density, a plasma decays principally
by charge exchange with the background gas. In this case, an initially mono-
energetic fon distribution such as that created by neutral-beam injection will
f>1/2

remain peaked about some mean value V, = <V , and a delta function

2 1 2 2
F(vy) = 5 §(vy -V)) (21)
is an appropriate approximation. At higher densities, electron drag and ion-

ion collisions can spread the perpendicular distribution during the plasma

lifetime. A general broadened distribution

2
2 42 v

F (v} = — Vi expl- —5 (22)
my '

is then used. In practice, conditions such as the finite neutral-beam cross
section, multiple energy components in the beam, and spreading of the distri-
bution by electron drag and coliisions during buildup result in more compli-
cated ion distributions, but the effect of ions on plasma stability is still
expected to be between the two extreme cases modeled by Eqs. (21) and (22).

For the ion parallel velocity distribution, a Gaussian form

1
Fo(vy) = ——5— expi- — (23)
“1/2V

n "
s 2 2 X
is normally chosen, where V), = <v, > is the mean squared parallel velocity,
and a ratio
2
Ve 2(B - B.)
= max 0 (24)

2 »
vy 4Bmax + B0
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derived in Appendix B for magnetically confined ions, is used.

model

and

Several assumptions about the plasma are introduced to simplify the .
and to eliminate complicating physical effects:

The equilibrium B and ¢ fields are assumed symmetric about s = 0. 1t is
shown in Appendix C that thils choice leads to elgenmodes than are either
even or odd functions of s. Even though magnetic field strength in
minimum-B mirror fields is not exactly symmetric about the centerplane,
the deviation along field lines near the mirror axis 1s small and should
not significantly alter the plasma response.

The number density and fileld gradients perpendicular to flux surfaces
are ignored, so that finite gyroradius effects and gradient-driven
instabilities such as drift waves do not appear. This assumption is
justified in low-density plasmas when the ion gyroradius is small
compared with characteristic lengths for N and B variation normal to
flux surfaces.35

The only azimuthal effect retained is the variation of k, along a fileld
line as the cross section of the flux surface changes. Whea flux
surfaces have approximate axial symmetry, the gquantity kf/B 1s nearly
independent of 5.37 Neither the fanning of field lines38 nor the
limitation of k, to discrete values resulting from azimuthal periodicity
are incorporated into the numerical model. Since these simplifications
allow electrostatic disturbances to be treated as plane waves perpendicular
to field lines, the resulting wave equation involves only one spatial
dimension.

A pure hydrogenic plasma with H+ ions only is assumed, and both electron
and ions are treated as collisionless.

A guiding center description of unperturbed particle motion is used for

\
{
both species: E and u are considered constant, and orbits are approxi-
mated by motion along a guiding flux line plus a circular gyration at the
local gyrofrequency Qu' This description is acceptable when the vari-
ation of B over a gyroperiod is small. It follows that
au 1
3 VB << 1
(25)
Vu
aB VuB << 1
o
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must be satisfied for typical particles.

o Long parallel wavelength modes characterized by k% >> a 5;% are sought
in particular because only such waves can couple effectively with the
ions for the temperatures and magnetic flelds found in typical mirror
experiments. This choice allows the parallel derivative in the perturbed
Poisson equation, Eq. (6), to be neglected for resonant modes. In
addition, modes with k; = 0 are treated to illustrate bounce resonance

phenomena.

With these assumptions, a one-dimensional integral equation is readily
derived for the wave potential ¢ along a field line. 3inze E and u are
constants of the unperturbed motion, it is convenient to write the integrand

of Eq. (25) as

BF (=5 V',t ) SFa(E,IJ)
. __ = —_— .91 L
Vb (xg,t") ~a m 3m %Y ¢(§a,-')

REALTCA I N 26)

where primed guantities are understocd to be evaluated at time t' on the

unperturbed trajectories xa(t';x,v,t). Noting that

do (x,t) _ 39 (x,t) .
de - ET +vvelx.t) , @n
the distribution function perturbations from Eq. (25) can be rewritten
9F (E,u) t v (-
- _a yldoGxl,e) | B39(xl,e")
£,(6vt) = q 5E _[m de' | g8 T
aF (E t ' '
+q a( 2 de MDA ML) (28)
I y B(x') :
Lo Xa
An appropriate representation for ¢ is
$(x,t) = ¢(s) exp(ik, *x~iwt) . (25)

This form permits accurate treatment of the wave along a field line but ignores

the perpendicular wave structure. Since the gyroradius 2, is nearly comnstant

~15-



30)

over a gyroperiod, both kl-xa and kl"’(,, can be written in terms of a gyration
If £
o

phase angle 9:
kysx = k_,_aa sin 8 ,
kllﬂa 1s an approximate constant of the motion due to

k,v cos 0 .
oL

lfl'fa
Here k,a_ = (2uB/m )1
1% [+]
. &(E,u)
3E
Q 3F, (E,u)
klaa —BF (31)

/2
the assumed constancy of u and kf/B along guiding center trajectories.
B

is written in the form fa(s;E,p,e)exp(—igl-g - iwt), then Eq. (28) gives

3F_(E.u)
o) 55

*
fa(s,E,v,e) =4,
+ +
[ dt*¢(s_ 'explik a (sin 8" ' - sin 0) ~fu(c'-t)] + i
+ + *
f dt' cos 87" tb(su') exp[iklaa(sin 87 '~ sin0) - iw(t'~t)]} ,

O
t
oo
where the * superscripts designate quantities on pesitive and negative going
trajectories at s. Using the Bessel function expansions
®
exp(ix sin §) = }‘ J. (x)exp(1j9) (32)
j:—m ]
and (32)
< 22
cos Hexp(ixsin 8) = >‘ = J,(x)exp(ij9) ,
j=..wo X ]
the time integrals in Eq. (31) may be consolidated to give
3F (E,u) =2 0= oF (E,u) 3o aF (E,u)
#(s) == +1 3 == =22
JE WL £ JE B 9n
377 me (33)

h 4
£ (83E,,0) = a,

t +
3 Gay) 3, (ka0 f_wdt' 0(sy") exp[1(G-m)6] expl-13876, (£',1) - tw(c"~) 1 [ ,
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where
t

Ao (¢',t) = 8 e(t')—fd"Q(i 34)
L, (E1,t) 20 - 0(s ) = . t Sy ) . (

When Eq. (33) is integrated to give the number density perturbations, the
integral over 6 is nonzero only for j = m. The first-order Poisson equation,

Eq. (6), then becomes

“l)b() =41 T g n (), (35)
[+

with na given by

211q N B(s) fm { maxﬂpmax 31-‘ (E,u)
n (s) = du T—~—~———T ¢(s)
o w2 b st (s3E,0)
® F (B,w) 3R BF ED ]
+ 1J E;n [ 5 _EIT J.(k,a )
t EN S < B
i [m de' ¢(s) ) exp[-1A70, (t',8) - dw(t'-D1f . (36)

Physically, the first term of Eg. (36) represents the species response to the
local wave potential and is referred to as the adiabatic or nonresonant
contribution. Information about the accumulated density perturbation over
particle histories is contained in the resonant second term.

To solve Eq. (35), ¢ is first expressed as a Fourier series. Appropri-
ate basis functions for representing ¢ on the interval ]s] < Spax ATe sinusoidal
functions having the same parity as ¢ and satisfying the boundary condition
¢(s___) = 0 implicit in Eq. (35). For odd ¢, suitable functions are

max
: N s 1) .

3 -
51n(mﬂa/smax) for positive integral m, while the set cos (m 2 S/Smax] is
used for even §. Both sets are complete for representing funrtions with the
chosen symmetry and boundary value. The notation sc(kms) is used hereafter
to denote sine and cosine respectively fcor odd and even eigenfunctions, and

k is defined
™

K E(m,,c;l) ulg a7

~]17-



where ¢ 1s zcro for even functions and unity for odd., With this notation, the

Fourier series representation of ¢ is

o(s) = z ¢ sc(k s) , (38)

m=1
vhere $m is the Fourier transform of ¢ over the plasma length

S
max

2 ds 9(s) sc(k s) . 39

Smax 0

¢ =

1he perturbed Poisson equation, Eq. (35), is .educed to matrix form by first
multiplying by BD/B to remove the s dependence of k% and then Fourier trans-
forming both sides in the manner of Eq. (39). The resulting matrix eigenvalue

equation is

« Py .
N 2 .2 _pe _ i -
m:i (kLOXDeO 6mn Rmn Rmn) ¢m 0, (40)

i ol . ‘
where the response matrix Rmn for either species is

o DeO Pres
R =8 q nm(s) sclk s) , (41)
Smax 0
with
. q NOBO o uBmaxw’max 3F (E,n)
TERR . LI T g
m, (4] HB(5)+¢(5)
® BF (E,u) iR 9F (E,n) ‘
L N o« 2
- i _}__ w—-—aE t 5 JJ. (klaa) |
J_—w
£ ] x P 1 3 [
E lw at sc(kmsm)exp[—le ea(t ,t) = dwl(t'-)] ¢ . (42)
1/2
Here the electron Debye length at rhe centerplane A = (V /preO has
been introduced as a scaling factor to give a dimensionless eigenvalue
A= (k )2

lO Ded
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An equation analogous to Eq. (4D) for parallel modes is derived by
retaining the parallel derivative in the first-order Poisson equation, Eq. (6),
while setting k, = 0. Substituting the Fourier serles, Eq. (38), for ¢ in the
expression for n, and again Fourier transf~rming Poisson’s equaticn then leads

to the eigenvalue equation

232 5 _g® _gly3 -0, (43)

©
N -
“~ (km De0 mn mn mn’ "m

m=1
A dimensionless eigenvalue equation with the same form as Eq. (40) is obtained

by multiplying Eq. (43) by (kmsma )_26 and symmetrizing:

X m
- 7‘; 0 1 1.1 i
S15s - — (S +=Y@®E +r|6 =0. (64)
=1 52 mn 252 k2 k2 mn mn’ | 'm
max max m n

The real eigenvalues (A / )2 of Eq. (44) then determine for a device of

Deo Smax
length S ax the plasma densities at which parallel electrostatic modes
satisfying the ¢(smax) = 0 boundary condition can be supported.

For either finitc k, wudes or k, == O modes, two forms of the appropriate
matrix equation are used to determine the spatial profile and stability of the
eipgenmodes: An approximate form retaining only the real part of the electron
response matrix is acceptable when electron Landau damping and the ion
response are negligibly weak. In this case, these small effects are treated
as perturbations of the undamped electron response in analyzing plasma
stability. Otherwise, the damping term and the ion contribution must be
retained when solving for eigenmodes, and the plasma density at marginal sta-
bility 1Is determined by requiring that w and k, for the modes be real. 1In
elther case, the matrices are truncated by discarding elements with indices
above some maximum value M, and the remaining finite matrix eigenvalue equa-
tion is solved numerically. Maximum growth rates for waves with 1eal k; are
found by a perturbation procedure at low plasma densities and by direct search

at higher densities.

DERIVATION OF THE ELECTRON RESPONSE MATRIX

Since mirror plasma bounce modes depend on electrons retaining phase

coherence longer than a half bounce period, accurate trajectories must be used

~19-



in the electron orbit integral in Eq. (42). Orbits of adiabztic electroms are

in general periodic with a velocity-dependent period o glven by the integral

5
I ds .
B ED { T, & @

The perturbed potential along an electron trajectory is likewise periodic, and
it is conveniently represented by a Fourier series in harmonics of . This
representation gives a time dependence tkat can be exactly integrated and leads
to an integral expression for R:n that 1s suitable for numerical evaluation.

For electrons, the ﬁ; expression, Eq. (42), is simplified by observing
that typlcal electron gyroradii are small compared with perpendicular wave-
lengths for modes of interest. For a wave to gain energy from the ion

distribiution, most ions must satisfy the »:.om:lil:it:n-n'1 klai > 1.85, and since

= "== <1, (46}
a m1 Wi
the Besscl function argument in Eq. (42) is small enough for modes of interest
to permit a small argument expansion of Jj:40
Jo(klae) =1
J(ka)=—1k‘ae for j > U o))
i t% i 2 :

Only the j = O term then contributes significantly to the sum in Eq. (42),

and the expression reduces to

wB__ +p

2meN.B ] max 'max oF (E,n)
8%Gs) = - ——o2 [ au f aE L - 2 selk s)
® 0 (B(s)#p(s) Veu SIEW 3E u
e (48)

t
+ 1w f at! (sc[kms:(t’;E,u,:)] + sc[kms;(t';E,u,t)]) exp[-iw(t'—t)]] )

where both positive and negative going trajectories coincide with s when

t' = t.
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In terms of a trajectory se(t;E,u) that satisfies the conditions
se(O;E,u) = 0 and Vou (0;E,u) > 0, the trajectories in Eq. (48) may bc w.itten

+
s_(t";E,u,t) = s_(t'-t ;E,p)
e e 0 “%9

sg(t'3E,ut) = s (2t-t'-t ;E.y) ,

where t, 1s the last time at which s:(t';E,u,t) crosses 8 = 0. Explicitly,

0
s

ds’
t.(s;E =t - . 50
o (S3E) 4 o GrERT (50)
Since se(t;E,u) is an odd functicn of time, sc(kms) along that path has the

game symmetry in time as in positlon and so may be represented by an appropri-

ate sine or cosine series of the form

sclis, (5E.)] = 1§o Tyn(Es) scl(2brodmy (E,0)e] (51)
where
lm’b(E u) “/Zi)b(s,u) ' v
Tgm(E'u) = pe dt sc[(21+0)mb(E,u)t ] sc!kmse(t sE,u)) .
(52)

+
When sc(kms;) in Eq. (48) are replaced by appropriate Fourier series using

Egs. (49) and (51), the time integral can be exactly evaluated:

[

=0

t
de’ (sc[kms:(t';E,u,t)] + sc[kms;(t';E,u,t)]) exp[-iw(t’-t)]

® 0
zgo Ty (Esl) [md'r'(sc[(ZRM)uxb(E,u)(t-to-b‘[)] + sl (2040)u, (E,1)

(t-t,-7) ]) exp (-iwt)

2 Ty (Eawsel 287w (B,1) (et )] 53

= 2iw

2=0 o - euo)? W@

21—



With Eq. (53), the ﬁ: expression, Eq. (48), becomes

WB___+P

4meN B, o max ‘max 9F (E,u)
ORE 20 : f a [ a I~ (:'E 3 X3
n n 0 UB(s)+p(s) [Ven (S3ESH

2 o T (B sel2tio)a, G (tp)] |

x sc(kmS) ~ . (54)

2=0 o - ero? olEw

The spatial integral, Eq. (41), giving R:m is then rewritten using the relation

S, WB © uB -y

max 4 max “max . max max
jds fdu jdE T—‘—?‘—(—SJ(E%—)I—=Idu[dE
0 () UB(s)Hp(s) Yen 'S3EsH 0 ‘ub,
TT/Zu)b(E.u)
[ae” T Fs (Em5E (55)
0

where F represents an arbitrary continuous integrand. The final expression

for the response matrix is

e HZVEBO o uBmax-Hpmax 1 aFe (E,u)
Ron "5 s fd“ dE (E,u) OF
e max O uBo o (5s
® 2

)

Sy (Eol) = 2 T EWT EW [ . (56)

=0 W - o)’ ulew

Here the definition

by (E,1) ﬂ/dz::b(E,u)

Sm(E,u) = sc[kmse(t‘;E.u)]st-'[knse(t’;E,u)]

(57)
has been introduced, and Egqs. (50) and (52) have been used to reduce the second
bracketed term.

The response matrix, Eq. (56), is put into a form better suited for
numerical evaluation by a change of variables. When restoring forces on a
particle vary linearly with position as in quadratically varying W and B fields,

then particles execute simple harmonic motion

=22~




s(65E,1) = s (E,1) sin[mb(E,u)tl (58)

with turning point s, defined by

E - uB(st) - w(st) =0 . (59)

In Appendix D it 1s shown that the orbit integrals Smm and T1m in this case
are expressible in terms of Bessel functions of the first kind depending only
on s :

S (Bo10) = oL Gk D3 BT + (1) To[Ge+e s (Byk)] (60)

ks (B0 (61)

T (Bl = 2 dy0 005

Except in strongly anharmonic fields, Eqs. (60) and (61) remain good
approximations of the orbit integrals, and when s, 1s held constant, Smn and
Tlm are in general weakly dependent functions of U, Because of this slow
variation, it is convenient to rewrite the R:n expression, Eg. (56), using the

dimensionless turning point ¥ = st/smax instead of E:

2.2

m V'B 1 Kl 3F_(X,»R)
R = p se 0 f dx j du __(].___)_a_e 5_n GG
m e max 0 0 W, (XU X ™
® - 2
-5 W
Tlm(x,L T 0GR (62)

S —_
=0 o - (21+0)2w§(x,l-l)

where all functions of X are obtained from E~dependent forms by the substitu-
i = + N
tion E uB(xsmax) w(xsmax)
Since the strongest 1 dependence of the integrand in Eq. (62) arises
from Fe and from the resonant factor multiplying Tlm’ a usaful approximate
expression for R:n is obtained by using the Bessel function forms, Egs. (60)

and (61), for SrIn and T n and factoring them outside the p integration

1
e ﬂZVZBO - - - R
R = [ dy [(Jol(km-kn)xl + (-1) JOI(km+kn)/.l)Ii(x)
e"'max 0
% S T —
4 ﬂ:b J21+0(kmA)J21+O(knx)Iz(x)] , (63)
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where the W integrals I, and 12 are defined

1
® 3F_(x,1)
1 e
L, = dy = = s (64)
1 .g w (W) 3
and
® 2 aF_(u)
1 W e
Lo = du = s (65)
2 'g wb(x’u) mz - (2!1.+o)2 uﬁ(x,u) X
and k = k s = Im+ 0 l) 7 is the dimensionless parallel wave number for
™ m max 2

Fourier modes. The R;n expression, Eq. (63), is exact for quadratically
varying equilibtrium fields and closely approximates Eq. (62) except for
strongly anharmonic B or Y.

For the special case of electrons in a uniform magnetic field confined by
a quadratic electrostatic potential y(s) = wmaxszlsiax’ the bovance frequency
from (D15) of Appendix D is

" 1/2

“pp = ;2__;@5 (66)
e B
max

for all particles. The R:n expression, Eq. (63), then reduces to

. 1 aR,0 o O 5 (ol
& m———— —_— J -k -
Rmn zwbosmax _é X S Ol(km n)X] + D JO[( m"'kn)X
@ 2
4 Y e &0, &0] . 67
=0 mZ _ (21+G)2u§0 2040 W 2840

where

-]

Sy =t o
R0 = £ du F (X1 - (68)

In particular, Eq. (68) gives
X2
a _ 2 max'
F (x) = C¥ (1-x") exp W (69)

max
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for the cutoff Maxwellian distribution, Eq. (18).
DERIVATION OF THE ION RESPONSE MATRIX
The assumption that the ion distribution function is separable in v,

and v; makes it convenient to rewrite the perturbed number density integral iam
Introducing the identities
(70)

terms of the velocity components.

avav? = 2B ardy
miVu
LA on
9E m,Vy 9V
1
and
aF, B 1 aFi 31“1
w2 2) a2
1 " n avi
the ?\m expression, Eq. (42), becomes
Vinax (5
max .
2ng,N. B o 9F, (s,va,v,)
At = 10_0 2 2 1 L se(k_s)
N () m B(s) fdvl -gdv"‘v.. £ =
v min(s)
® [w-j2s) 3F,(s,vu,v,) 9F, (s,vu,v,)
+2[21 o l+j$2.(s)——; o
o Va Vo i v
2 kv,
Jj R Ijm(s,v..,vl)
AL
where
1/2
(o (8) = [—“’——2 (S’] .
imin m,
i
2 1/2
1+ (e - vl [

(s) = 2 Bmax
wmin 'S/ T |Va B(s) ~

-~25-
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and

t
I, (Syva,v) =13 f de' sclk s (t ,v..,v,t)]exp[:.JAG (', t)~da(t'~t) ], (74)
Jm T Leo

The ﬁ;n expression is simplified by noting that magnetic confinement causes a
relative spread in ion bounce frequencies Awb/<mb> ~ 1, so the condition for
ion bounce rasonances, Eq. (17), is not satisfied for frequencies near electron
bounce harmonics. The phase factor in Ilm is then rapidly oscillating except
near points of stationary phase w ~ jQi. This fact makes Ijm resonant at these

frequencies, and the integral is approximately proportional to

2w-32)

(m—jﬂi)z - v’ ’

kmv" km v, Bmax—B0 klv1
For the long parallel wavelength modes considered ) 5.—5—— = << -
i i 0 1

so all JF /avl terms 1n the j summation are smaller than the tesonant tern by
a factor of order (k V) /[JQ (w—JQ )1. Also, since 1 = Jg + 2 le Jf, the
nonresonant '()Fi/BV.. term in ﬁ; is nearly cancelled by the BFi.’av,, terms in the
summation, leaving a term comparable in magnitude with the nonresonant
BFilatherms. So long as the resonance condition w ~ jQi is satisfied in the
system for some j, these nonresonant terms may be neglected, and Eq. (73)

reduces to

2
o 4,32, N(s) @ aF, (v)) K, v,
O Zﬂ—]-'-—]i—— f dv% —_ " J% -
m o, 2 j Qi
vlmin(s)
Viimax ()
dvy Fulva) Ijm(s,vu,VQ . (75)

An ion phase mixing time T may be defined as the interval in which particle
orbit perturbations lose phase coherence. Approximately T is the duration
|t - t'l that makes the 1 n phase factor, averaged over the distribution,

equal to un:!.ty.]'9 Evaluating the phase factor for a quadratic B field with
W= iy, sives T = Garviat3

as an upper bound, where AQ = %-(329/352)S=0.
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Since the corresponding phase mixing length V.T is smaller than the character-

-1 -1
Lavey ™ (LdB
<V|| s > (B ds) » by a facter of

m

istic length for changes in vy, Lv

order (V“/Ve)1/3, a straight orbit approximation treating v, as constant along
trajectories is justified and removes the v, dependence of I_m. The further

observation that Wi >> Né ~ wmax in a hot-ion plasma allows all ¥ terms in

Eq. (75) to be discarded, and since the Gaussian v, distribution, Eq. (23) is

small for vﬁ >>V§ ~ VE(Bma - BO)/BO, the v, integration may be extended to

X
infinity with little error. These approximations separate the v, and v,

integrals. Introducing the function

2
o ™ 2 EGD S,
l\:.| Bl J dv, —5 JJ. - (76)
0 vy i

then allows the ion response matrix expression from Eq. (41) to be written

2iA.Q, W Smax ©
RE, * 202 fas M e [ ek sv) 07
max i 0 0 0
where
- t +
LG5 = 1 % [mdt' sclk, (stva(t'=£))] expldjA0](e",6) - fw(t'-0)} . (78)

: ; R i :
4 simple approximation of Rmn follows from treating Qi as a constant over

a phase mixing length., In this case,

+
887 (e, t) = Q,(s)(e-t") , 79)
and the integral, Eq. (23), is readily evaluated

~ g 1
Ijm(s’v") = -Sc(kmS) 21’ EW-‘T“ . (80)

For a Gaussian F,, the v, integral in Eq. (77) may be rewritten in terms of
the plasma dispersion function
< s
25 A, Qio W max

y 310 e [ 47 Ns)

R
i kmv"smax Wi 0 NO

w=30; (s)
A7 ’

sc(kms)sc(kns) z (81)
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where Z for a complex argument z 1s dwzf:l.nedé2

00 2 -
z(z)=—sz-LdyE‘§L(§le. (82)

Symmetrizing Eq. (81) then gives

s s
JAQ, W max
Ri ~ 110 e f ds Nis) sc(k s) sc(k _s)
™mn 3 W, N m n
max i 0 0
N T, w= 39 (s) Ll w—jﬂi(s) l ] .
kan kan anu ann ]

The lcecal approximation, Eq. (83), is invalid near s = O because the
phase mixing length increases as V,B vanishes. When w = jﬁio, Qi is expanded
in a Taylor series about s = 0, and the quadratic term is retained in calculat-

"
ing A"9. Again treating v, as constant then gives, instead of Eq. (79),

t
207 (e, ) = ] e {2, + 60 {2  2vas(t™=t) + va (e -t)]}

t
s (e'er) (9,0 + 02 [s7 F vas(el-o) + 2 "" (-0 . (84)
Since t' - t = - |s' - s{/vs, the phase change A®" may be written as a function

of positions s and s':
a6t cst,s) ~ 8=l lo 4 g (-——5'*3 2, e’ (85)
se8) = 10 2 1z :

With Eq. (85), the time integration in Eq. (78), is rewritten as a spatial

integral

Van
Smax (86)

(s,v..) =1 [ ds’ SC(k s') exp [j_ J__[ lm 39, —JAQ[( ) (s 1-25) ]” ,

and for a Gaussian parallel distribution the R:'m expression, Eq. (77), becomes
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JAR, W L 2. 5 S
i ~1/2 3 s _ max max
Rmn~ / v 10 e f -‘:,l"- exp(%) ds ngs) sc(k s) [ ds' sc(k s')
"“max "1 0 " Vu / =s 0 n -s "
max max
s'+s 2 (s'-s)2
- a0 [(25) + C]HL (87

The unspecified functional form of N makes simplification of Eq. (87) diffi-
cult, However, an expression for R:'m that is suitable when w * jQio is
obtained by taking N/NU = 1. This approximation is allowable because it uses
the correct number demsity where the ions couple most strongly with the wave.
The resulting expression is reduced to a single complex integral similar to
that of Beasley M.Sa or Baldw:lu&ai.37 by first introducing the variables

x = s'+s

2

and (88)

y=s'-3g8.

In terms of x and y, the product sc(kms')sc(kns) is written

1 ; kr|1+kn
sc(kms')sc(kns) =% lexp i(km—-kn)x + i ( 3 )y
g km_kn . . Ikm+kn
+ (-1)" exp I:i(km+kn)x + 1 ( 3 )y:l + exp |:-1(km—kn)x— 1\ 5 ) y:l
+ n° r. Mk
- exp ’-1(km+kn)x - i ( 5 ) y . (89)
L

Each term in Eq. (89) has the form exp(iklx+ik2y) and makes a contribution to

i . B
Rmn given formally by

1 © 2. o ©
o =ty [ () [ [
Ik, 203D e Ve exp( v% _wdx ) y
i 1yl 2 2
exp [ilf_lx + 1k2y + - (Cl sz - C3y )j| (90)
where the coefficients in the exponential argument are Cl =W - jQi’ ¢, = jaQ,

C3 = jAQ/12, and the former integration limits :Smax have been extended to

i to simplify evaluation. By using the relation
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[

fdx exp (~ax - sz) = (%)1/2 exp (‘Z_B) . (91}

to carry out the x integration, Eq. (90) becomes

© ® 1/2 2
L1 dv, MV, Vi
Llepakyo 1) = 3 /(; a Ldy (iCZIy ) exp ( vﬁ)
kzv
s 1" ily 2
exp [1“23' B TR N ’J . (92

A second change of variables z = y/v, results in a v, integral with the form
of Eq. (91), which evaluates to
2
1/2 1

© I 2 k
N m vh . .
I(Rl,kzyj) p— Ldz %‘d\h. (iCZ z ) exp ( 2 )exp I:lkzvuz ——r—”icz 5

L
+ ilz; (C] - Csvﬁzz)jI

l ki kZV%z2
exp |iC, |z] - 5= -
- 1770 T 4ic, Te] z.(1+ic3v“z3)

= dz .
/ 73 3)
0 e t? (ricyizh

Since kl and k enter Eq. (93) as squared quantities, the last two terms of

Eq. (89) make the same contribution as the first two, and the resulting R

expression is

. 1/2 JAR, G
RO = -—?——— (TG =k L,k +e ,3) + (-1)° Ik +He Lk -k D)1, (94

mn 2 s
max

with

kz kzvﬁzz
exp 112 )2 - Ty - ——— g3
10 Ho2 e+ M e |

Lk, 3) = /0 dz -
(ijAQz) 2 +J~— )

. (95)
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The function I(kl,kz,j) is evaluated as a contour integral in the complex z
plane, with the path chosen to avoid singularities of the integrand.

A single expression for R;n suitable when jfI, . < w < JQ (s ) is

10 —
obrained by combining the local approximation, Eq. (83), and the quasi—local

is defined by w = jQi(sreS), then
Eq. (94) is valid for any sres < Snax provided that N!NO =1, and Eq. (83) is

acceptably accurate for resonances away from s = O for any N/NO. It follows

form, Eq. (94). If the resonance point Sres

that setting N/N0 = 1 in Eo. (83) should give a good approximation to Yq. (94)
for S as > 0, When Sres =0, N/N0 =~ 1 at the resonance point, and Eq. (94) is
approximately valid. A suitable composite form may therefore be written

symbolically as

i QL
Rmn (N) - R (l) + R » (96)

where R (N) is the local approximation given by Eq. (83) using the correct

number den51ty, (l) is the same integral with the change N/N0 =+ 1, and
Rgﬁ is the quasl—local form, Eq. (94). For Sres * 0, the first twc terms
nearly cancel, while for off-center resonances the second two terms do.
Rﬁn is then approximately RQL for Sleg * =0 and RLn elsewhere as desired.

Written out explicitly, the hybrld form for R is

i JAJ e | int/? ; o 5

Rn ™ = W. 5 [I(km-kn’km+kn’3) + (-1) I(km+kn’km-kn’J)]

max i

+ [II(km,kn,j) +11(kn,kmaj)] > (CXp]
where
oo w -~ 3. (s)

iy = 1 N(s) _ p i 8

II(km,kn,J) = ka" _L ds N 1 sc(kms) sc(kns) Z kau . (98)

CALCULATION OF MARGINALLY STABLE EICENMODES

The wave potentials ¢ that solve the integral equation Eq. (35) are the
normal electrostatic modes of the bounded plasma, and any wave satisfving the
boundary conditions and the requirement for self-consistency can be described
as a superpostion of these modes. Modes which arc neither damped nor growing
are of particular Interest because these are destabilized by any increasc in

plasma density and limit the densities attainable in confinemert exzperiments.
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This condition of marginal stability occurs when the transfer of free energy
of the ion distribution into wave energy is balanced by the dissipation of
wave energy by phase mixing. Mathematically, marginal stability is determined
by the condition that the wave frequency w be real, and the additional con-
straint that k, for the wave also be real is imposed to maximize ion-wave
coupling.

To calculate the marginally stable eigenmodes either exactly or by the
perturbation method first requires evaluation of the response matrices. The
electron matrix Rzn is calculated from Eq. (62), with the u integration
carried out first. Since the orbilt integrals Smn and Tlm are in general
weakly dependent on u when X 1s fixed, they are approximated during numerical

integration by cubic spline interpolation between relatively few values,

When the confining fields vary nearly quadratically with s, the orbit integrals

are replaced by their Bessel function approximations, Eqs. (60) and (61), and

e
R
mn

U integral is evaluated by a standard variable-step numerical integrator using

is calculated from the simpler expression, Eq. (63). 1In either case, the

a path along the real axis. When w is real, the resonant factor becomes

singular at Mgy defined by

w = (2240) mb(x,uz) . 99)

The imaginary contribution to the integral from the simgularity is then cal-
culated analytically by formally deforming the contour below the pole in the
complex u plane. For the principal part of the integral, a nonsingular
integrand is produced by adding 1 term to the integrand that cancels the
singular integrand at ¥y and is itself analytically integrable. The exact
integral of this added term is then subtracted from the numerically evalvated
integral of the new nonsingular integrand. When w is complex, the pole is in
the complex p planc, and integration of the complex integrand using real p is
straightforward. The resulting u integral is a slowly varying function of ),
so that a standard trapezoidal rule algorithm is used for the ¥ integration.
Appendix E describes this integration procedure in detail. To evaluvate the
complex integrals in the R;n expression, Eq. (97), the same variable-step
numerical integrator used for the u integrals is employed. For the local
approximation integral, Eq. (98), a real s path is used, while to evaluate
I(kl’kZ’j) in the quasi-local integral, Eq. (95), a complex z path discussed
in Appendix F is chosen that approaches z = 0 along the negative imaginary
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axis and avoidc the singularities at z = (ijAQV%/lZf_l/3. For the perpendicular
ion distributions considered, Aj is evaluated analytically in terms of Bessel
functions and is found to depend only on 7 = (klovlo/ﬂio)' The delta function,

Eq. (21) gives

=L -
M@ =5 3,0 1y, @ -, (@], (100)

and a spread distribution of the form of Eq. (22) leads to

2 2 2 2 2
1o <5 oo () o1 () - 1 () 1 (5)] - o

These functions are shown in Fig. 1 for j = 1.

To make the matrix equations for ¢ tractable, tie summation over bounce-
frequency harmonics in the R:n expression, Eq. (62) must be truncated, and
R:n and R;n themselves must be limited to finite dimension. An appropriate
number of terms L for the summation is estimated from the approximate Re(R;n)
expressions, Eqs. (D19) and D27), given in Appendix D. To include the most
strongly resonant term, L must be no less than the largest integer Zres for

which o > (22reS +0)mb0, and for adequate convergence, the magnitude of the

L+1 term should be small compared with the truncated sum. An upper bound on

L then follows from the condition

w? - 22 > (102)
0.4 I T T
t .gealged 4
0.2 jdistribution _|
- 2 ~—X "
< Pt
0 7
- ~—Spread E
0.2 — distribution
| | ]

0 1 2 3 4 5
4

Fig. 1. Aj vs { for peaked and
spread v, distribution functionms.
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obtained from the ratio of the L+l and 1res terms. A requirement determining
the appropriate matrix dimension M is that the largest elements of R:n be
retained. From Eqs. (D19) or (D27), this condition is approximately satisfied

by the M maximizing

2 2
exp |- i[- I —li'* (103)
L T u +o\28)"
where § = (mbosmax/ve)z' When lres > 2, an asymptotic expansion of the Bessel
function gives
1/2
n-L28 9 4y (104)
™ res

as an approximate lower bound on M.

When electron damping due to bounce~frequency spread is sufficiently
weak, the real part of the electron response largely determines the character
of eigenmodes. This condition occurs in low-density hot~ion mirror plasmas
where electrons are confined principally by the ambipolar potential. In this
case, a perturbation procedure treating Im(R:n) and R;n as firse arder
quancities is used to calculate ¢ and the instability threshold densities.

s . ~0 :
Zeroth order eigenfunctions ¢0 with Fourier coefficients ¢ satisfying

o

- 2,2 e ~D

% (Ko pep Spn~ RE(R- DT 6 =0 (105)
m=1

for real w are considered the marginally stable modes for finite k,, and

because the matrix is real, all positive nondegenerate eigenvalues

X = (kyghpg e .
expression, Eq. (D43), in Appendix D indicates that Re(Rmn) and Im(R;n) are

)2 meet the requirement that k, be real. The analytic R1
Tn

of the same order, and at marginal stability the full eigenvalue equation,
Eq. (40), gives the first~order condition
o« @ . 0 0
N e i 20 A0 _
y oy [Im(R_ ) + Im(R_D] 6 ¢ =0. (106)

m=1 n=1

All terms treated as first order consequently have similar magnitude, and

neglecting them in zeroth order is permissible whenever

~34




R e | 20 ~0
| ;1 %i (RS ) 6, &
me << 1. (107}
N CL
=1

When Eq. (107) is suitably truncated and solved numericallv by a package of
matrix solution roul:ines,44 a set of at most M real eigenvalues A is returned,
each with an M dimensional array of Fourier coefficients 62 for the correspond-
ing eigenfunctions, Any negative eigenvalues are discarded as spurious, and
since the eigenvalue equation determines ¢0 only within a constant factor, the
eigenfunctions are normalized to unit maximum amplitude.

The instability threshold density for any of the eigenmodes oo is
calculated using the first-order relation, Eq. {106). Since A_ appears in the
Ri expression, Eq. (97), as an undetermined factor, Eq. (106)Jis an algebraic
equation for the values of Aj at marginal stability. If the electron and ion

contributions respectively are written as

@ @ 0 0
e _ v\ e ~0 A
sy 2 I ) w8, (108)
m=1 n=1

and

N
-
-
'
(-8
8

i, 2070
Im(R_ ) % b (109)
m=1 n=1 faomon

this threshold I\_.| value for the particular mode treated is

(110)

With either of the analytic expressions, Egqs. (100) or (101) for Aj, the
corresponding A, argument gth is found by a quickly converging secant method.

Combining this threshold value of f with the eigenvalue A leacs to an expres-

sion for the value of density parameter € = (wpi/ftl,o)2 at marginal stability:
2
4 W
_ th e
€eh T2 W, (i
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According to Eq. (10), a necessary condition for instability is that A, be
greater than zero, and when more than one solution of Eq. (108) exists, Cth

is taken to be the minimum value because this choice gives the lowest
threshold density Een® These constraints restrict Cth to values between the
first zero and first maximum of A,. For j = 1, this range is 1.85 to 2.89 for
a peaked fon v, distribution and 2.49 to 4.27 for ions with a spread in v, .
If the A, value given by Eq. (110) is greater than the respective maxima

Amax = 0.385 and Amax = 0.133 for the peaked and spread distributions, then
the ion drive 1is insufficient to cause instability at any demnsity, and the
particular mode is said to be unconditionally stable,

When the perturbation validity eriterion, Eq. (107), is not satisfied,
the full complex matrix equation, Eq. (40), must be soived. Since the eigen-
values are in general complex, an iterative procedure is usad to find the
value of Aj for which k, for a particular eigenmode is real: Aj is inc:eased
stepwise from zero, and the eigenvalues are recalculated with the new Rmn
until Im(kl) for the mode changes sign. . A secant method is then used to find
the desired A, value. The mode is unconditionally stsble if the real k,
condition cann~t be satisfied for 0 < Aj < Amax' When a marginally stable
eigenmode is found, the corresponding €eh value I{s calculated from Aj Jjust as
in the perturbation treatment.

i Since modes with the lowest threshold densities determine plasma
stability in mirror gxperiments, the parameters j and QiO in R;n are normally
chosen to maximize T, According to the analytic approximation, Eq. (D&3),
R;n increaces slowly with j while £ at the first zero crossing of Aj increases
directly. Waves that couple to the first gyrofrequency harmonic therefore
have the lowest instability threshold densities, and these j = 1 modes are the
ones examined most thoroughly. The ion ceuterplane gyrofrecuency Qio is chosen
so that the ion resonance point SLpg OCCUTS where ion interaction with the wave
is strongesi. Even eigenfunctions usually have maximum amplitude at s = 0.
Since density also peaks at the centerplane, the strongest interaction is

es
and the imaginary perturbed ilon density according to Eq., (83) is approximately

expected there, and Sres is taken to be zeru. For odd eigenmodes sr > 0,

proportional to

N(s) Qz (s)
BQi (s)

9s

(112)

S=5
res
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In this case, the electron eigenfunctions ¢0 are first found by solving Eq.
(105), and then Sres is taken to be the position at which N|¢0|2/s is maximvm.
The resonant gyrofrequency is then 910 = mBO/B(Sres)' Also, it i: clear from
Eq. (111) that modes with the largest A values become unstable at the lowest
densities due to the restrictions on ;th' For a particular frequency, there-
fore, Eth is normally calculated only for the modes having the largest real

positive eigenvalues.

CALCULATION OF MAXIMUM INSTABILITY GROWTH RATES

At densities above the instability chreshold, a wave grows exponentially
in time with a growth rate vy = Im(w). Although Y is not readily determined
experimentally and is modified by nonlinear effects as the wave amplitude
becomes measurably large, the observed time for a wave to grow to detectable
amplitude should exceed IOY;;x’ where Ymax is the maximun growth rate for a
particular mode.

Maximum growth rates are calculated in two ways. If the criterion,

Eq. (107), for a perturbation treatment of the eigenvalue equation is satisfied,
then Ymax is estimated by a perturbation method based on the analyticity of

klO
(97), is set to Amax to maximize 1+ -wave coupling, ard the complex eigenvalue

equation, Eq. (40), is then solved with real w, giving in general complex k10

as a function of complex w. The function Aj in the R;n expression, Eq.

values. In a linear approximation, the imaginary shift in w required to

Im(klo) for a mode to zero is given by the Taylor expansicn

afIm(k )}
L0 )y . (113)

0= Im(klo) + (—_——B[im(w)]
Using the Cauchy-Riemann equation

3(Im(k, )] 3(Relk )]
3Iim@ ] o[Re(@)] °*

Eq. (113) is manipulated to give

-1

3[Re(k, )]
() mogy - (114)

3[Re(w)]

Since the derivative in Eq. (114) is constant te first order for a change iy

in w, it is convenient to evaluate it by finite differences at Im(klo) = 0.
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When Eq. (107) is not satisfied, the maximum growth rate is found by a simple
search procedure: Using a complex w in the full matrix equation, Eq. (40), Yy
is increased stepwise until the Im(klo) = 0 condition cannot be satisfied by
any Aj S-Amax' A Taylor expansion akin to Eq. (113) is then used to estimate
the maximum y for which the condition can be met with an allowed Aj value,

DESCRIPTION OF COMPUTER PROGRAMS

A family of computer codes is used to determine the form and stability
of electrostatic bounce modes in the model plasma considered. The programs
share the same overall logic, but differ in the approximations employed and in
the handling of stored data.

Figure 2 shows the code organization schematically. To allow easy
testing and alteration, calculation of each vequired function is performed in
a separate subroutine. These routines are arranged hierarchically: The
control program MIRROR reads the plasma and numerical parameters, calculates
required dimensionless parameters, and assigns bulk storage space. The
response matrices R:n and Rin are calculated respectively by RESPONSEl and
RESPONSE2. The first of these performs the trapezoidal ¥ Integration of Eq.
(62), with the u integral and orbit integrals Smn and T1m each calculated in
separate subroutines. RESPONSEZ calculates the point of strongest ilon-wave
interaction Sres from the appropriate electron eigenfunction, chooses the
corresponding jQiO‘ and calls subroutines which carry out the two complex
integrations in Eq. (97). The response matrices are then passed to subroutine
THRESHOLD, which finds the value of Aj for marginal stability and calculates
the corresponding threshold density €en’ The subprogram makes repeated use
of the real and complex matrix eigenvalue equation solution routines EIGEN1
and EIGEN2, and then calls subroutine COLLATE to plot the marginally stable
eigenfunctions. The final major routine GROWTHRATE finds Ynax either by the
perturbation technique of the preceding section or by incrementing Ymax
and repeating the entire solution procedure until a real kLO mode cannot be
calculated. These principal routines use a library of utility subroutines
that perform required numerical integrations and evaluate special functioms.

All versions cf MIRROR use bulk memory and approximations to improve
speed. Since the orbit integrals Smn and Tlm are independent of w and the
distribution functions, redundant calculation is avoided by evaluating the
integrals once at points on a (X,h) grid using the algorith:u discussed in

Appendix F. In subsequent runs with the same unperturbed fields, the values
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are recalled as needed, and intermediate values required for numerical
integration over L are approximated by cubic spline interpolation. When the
fields are nearly quadratic, further economy is achieved by using the Bessel
function approxirmations, Eqs. (60) and (61), for Smn and T1m because the
Bessel functions are generated by an efficient recursion relation procedure
and are independent of u. Other forms of MIRROR either solve only the
electron eigenmode problem, Eq. (105), or use the analytic approximations of
Appendix D for the response matrices.

Each subroutine used has been extensively checked for accuracy. Where
comparison with analytic results is possible, as with the Fe normalization
constant and the Bessel function forms of Smn and T1m for quadratic fields,
then agreement is exact to within crmputational error. In limiting cas=zs, the
response matrices approach the variocus analytic approximations in Appendix D,
and the values are found to be effectively unchanged by halving integration
step sizes. The results are insensitive also to increases in the number of
time and space Fourier modes used above the minimum L and M values discussed
earlier. The fact that different versions of MIRROR give results that agree
within error tolerances for the same problem despite different integration

algorithms indicates the absence of significant blunders.

3. Properties of Bounce Modes

EIGENVALUES AND EIGENFUNCTIONS
Important features of bounce-~mode behavior are seen in the response of
electrons confined only by a quadratic potential

2
= -
(s} = wmax 5 (115)
Smax
This idealized plasma shows especilally strong bounce resonance effects because

all electrons, according. to Eq. (D15) of Appendix D, have bounce frequency

v
Wy = (f— ‘;a"> . (116)
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Even though this case omits the response of ioms to the wave and the mirror
force on electrons, it illustrates the underlying bounce-mode mechanism, and
certain results can be directly compared with earlier work.

Quadratic well eigenmodes with k, = 0 are studied by solving Eq. (44)

with R:n given by Eq. (67) and R;n neglected. For each real frequency w, a
2

ma:

consequently, a plasma with a particular density and length can support

finite set of real eigenvalues X%eols x is found for odd and even ¢, and
parallel bounce modes only at discrete eigenfrequencies. Figure 3 shows the
three largest eigenvalues for a quadratic potential with wmax = 4,5 we over a
range of frequencles. The strongly resonant behavior near alternative bounce-
frequency harmonics is characteristic of bounce modes and arises because
electrons at a particular position always encounter the same wave phase on
each transit whenever w = (22+ﬂ)mh0. Orbit perturbations on successive passes
then add and give a large plasma response for arbitrarily small wave fields.
With frequencies above exact resonance, the shift of wave phase that occurs
each transit causes some cancellation of earlier perturbations and a consequent
weakening of the plasma response. The even and odd modes with the largest
respective eigenvalues, referred to hereafter as the principal modes, have
obviously different frequency dependence. Since the sum in the electron
response matrix expression, Eq. (62), includes a nonresonant & = 0 term when ¢
is even, the principal eigenvalue remains relatively large at frequencies away
from resonance, and the mode persists even at frequencies below the w = Zwbo
resonance. For odd eigenfunctions, only resonant terms appear in the R:n
summation, so the plasma response drops off rapidly away from the resonances
at w = (22+c)mb0. For u)>wb0, the odd eigenvalue;gfound by the p;esent treat—
ment closely match the results reported by Harker ™~ and by Weibel =~ for
Maxwellian electrons in infinite quadratic potential wells. For lower fre-
quencies, Harker claims to find odd eigenmodes on isclated frequemcy intervals,
but since a thorough examination of low-frequency cases with the present
method finds no odd solutions, it seems likely that Harker's w*:wbo modes are
artifacts resulting from numerical inaccuracies. Weibel treats even modes
also, but he finds no mode comparaole to the principal mode of Fig. 3(a).

This discrepancy results from the choice of boundary conditions. Since Weibel
studies an infinite one-dimensional system with no boundary currents, a long
wavelength even mode is inadmissible because it would violate charge conserva-

tion, whereas the bounded system considered here allows wall currents.
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Fig. 3. Eigenvalues for kl = 0 electron modes when Bmax/BO = 1.0 and £ = 4.5.
Dotted lines are analytic approximations: (a) even modes, (b) odd modes.

Finite k1 modes are examined by solving the eigenvalue equation, Eq.
(105), with the same electron response matrix, Eq. (67), used for the parallel
modes. Again, a finite set of eigenvalues A = kfokgeo is in general found for
each real frequepcy, but this constraint limits kiD rather than w to discrete

values when density and length are fixed. The three largest eigenvalues for a

v

max
similar to the kl = 0 modes. The main qualitative differences are expected

= 4.5 we quadratic potential, shown in Fig. 4, have a pattern of resonances

from the eigenvalue equations treated: Whereas the parallel-mode equation,
Eq. (44), is dominated by the m = n = 1 matrix element due to the E;Z-FE;Z)
factor multiplying R:n, matrix elements for the higher-mode numbers are larger
in Eq. (€7) and broaden the w = (22+0)mb0 resonances appreciably.

For electron modes in a finite quadratic potential well, the physical
parameter £ = mz s2 /V2 reduces to wmax/we and fully characterizes the system.

b0 max’ ‘e
This quantity determines the energy at which the electron distribution is cut
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Fig. 4. Eigenvalues for finite k, electron modes when By,./By = 1.0 and £ = 4.5,
Dotted lines are analytic approximations: (a) even modes, (b} odd modes.

off, and as £ » « the R:n expression approaches the form for Maxwellian
electrons in an unbounded potential well. The value £ = 4.5 used for the
eigenvalues in Figs. 3 and 4 is a typical value found in Fokker-Planck studies
of mirrer devices. Figures 5 and 6 show how the principal parallel and finite
k, eigenvalues change with §. The decreasing sensitivity of eigenvalues to
changes in maximum potential for £ > 2 is expected because 78% of the
electrons in a Maxwellian distribution have enerpgies below zwe and are
unaffected by variations of wmax' The increase in minimum eigenvalues found
for the principal even modes as £ is reduced arises mainly from the lowered
bounce frequency and consequently greater nonresonant interaction of particles
with the ' ave.

The principal qualitative features of quadratic-well eigenvalues are
seen in simple analytic solutions of Eqs. (44) and (105). When & > 2, the
Tesponse matrix R;n for Maxwellian electrons in a finite quadratic potential

is shown 1in Appendix D to be approximately

43—



w/upg

i | I |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Apeo
s|'|'|a)(

Fig. 5. Variation of principal k;, = 0 electron mede eigenvalues with £ when

Bnax/Bg = 1.0: (a) even modes, (b) odd modes.

-~ - 2 = 32
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1
R:m 5.3 (%) Iexp [_ _.'ETEE_]+ -1)% exp [— “‘AE"_:I
( E:l+E§) 2 W2 (Emin)
-4 exp (- > 1 — . (117>
A SR wz—(21+0)2u1§0 2840\ T2 l

For parallel modes, the m = n = 1 matrix element in Eq. (44) is dominant, and

if only this element is retained, the principal even elgenvalue is estimated

by

2
iv_eqz*z___4exp(_ﬁ)1(ﬁ)+_i_~l (ﬁ)
52 1T3/2E1/2 8E o\8g wZ_ (zzres)zwz eres 8¢

2
- exp (—- -}g) - l] . (118)
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Fig. 6. Variation of principal finite k;, electron mode eigenvalues with ¢

when B /By = 1.0: (a) even modes, (b) odd modes.-
0

max
Here, R're is the largest integer giving a frequency shift from resonance
§ s [w- (2%

re res
resonant contribution to the sum in Eq. (117). It is clear from Eq. (118)

+Cr)u;b0]/mb0 greater than zero and identifies the most strongly

that the 2 = 0 term of the sum leads to a positive nonresonant contribution

to the principal even eigenvalue that should persist for w < ?.;;bo and scale

roughly like 5_1/2. The kL = 0 eigenvalue for odd is similarly approximated by
2
ﬁ)e_o = 1 4“’2 exp (- ﬁ) I (“—2-)+ exp (-1-2- -1
2
s2 2173/251/2 m2_(22 +1)2m2 28 “lresﬂ' 28 E)
max res bo (119)

Since the nonresonant contribution to this expression is negative, the eigen-
value should decrease toward zero as 5res increases and should become negative
and therefore spurious for m<wb0. In both approximate eigenvalue expressious,
the I”-res+cr factor in the resonant term becomes small for lres > 1, so that

resonances at higher are much less pronounced. The auclytic approximations
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given by Eqs. (118) and (119) are plotted on Fig., 3 as dotted lines. For

finite k1 modes, the analytic approximations of A obtained from them = n =1

term of Eq. (117) are

1/2 2 2 2 2
LT L TNt W I
Tz (5) lh P ( €)10(85) m2_ 25 )2m2 12’Lres ( E)
) res’ "hQ
“2
~ exp (— 4—5-)— 1 I 120)
for even ¢ and
R 1/2 2 2 2 2
r= i (1) . " S—— (- 1—) 1 (3—) + exp (- l) - 1{a2y
2 \& Lu2_ (eres+l)2w§o 2¢ eres+l 2¢ £

for odd ¢. These functions, shown as dotted lines on Fig. 2, are poorer
estimates of the principal eigenvalues than the parallel mode results because
the eigenvalue equation, Eq. (105), is not in general dominated by the lowest
Fourier modes. 1t is apparent from the R:n expression, Eq. (117}, that the
largest contribution is from diagonal elements maximizing the Iggres+U term.
Since the maximum of exp(—x)Ip(x) is of the order of pz, the dominant matrix
elements should satisfy the relation

/

1/2
o~ 28) 1-0
m=n T (22res+0) + 7 . (122)

The approximations given by Eqs. (120) and (121) therefore omit significant
higher mode contributions when zres >1oxr § > 2.

Typical eigenfunctions associated with the largest eigenvalues for
k; = 0 and finite k, modes are presented respectively in Figs. 7 and 8 for
6res = 1. In each instance, eigenfunctions for the principal even and odd
modes have the longest parallel wavelengths and are well represented by the
first few terms of appropriate Fourier series. Eigenfunctions made up mainly of
higher Fourier components have progressively smaller eigenvalues, indicating
a weaker electron response to the wave. This decrease of eigenvalues reflects
the fact that electron orbit perturbations due to higher Fourier components of
a wave oscillate more rapidly and tend to cancel. This effect is evident

mathematically in the decrease in orbit integrals S“m and Tlm for larger indices. ‘
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For parallel modes, the dominance of the m = n = 1 matrix element results in
principal odd and even elgenfunctions that are well represented by the lowest
Fourier component alcne and therefore are effectively independent of Srea

In contrast, finite kl modes have significant contributions from higher
Fourier components when sres 1s small, and since these result from the
resonant term in Rﬁn' they become less pronounced as & increases. Figure 9

illustrates this shift. At a constant value of 6res

res
, the prominence of higher

Fourier components in finite k, eigenfunctions increases with Eres and with

E, as Figs. 10 and 11 show. The dependence on the harmonic number is expected
because indices of the dominant matrix elements, determined apprcximately by

Eq. (121), increase linearly with % res® The shift to higher Fourier components

with £ is likewise evident in the linear 1/2 dependence of Eg. (122) and

increases the wave is largely confined to a region in
2 1)
which F is appreciable, given approximately by |5| < Zwesmax/wmax

occurs because as w

0 0.5 1 0 0.5 1

s/S
/ max

Fig. 7. Eigenfunctions for k, = 0 electron modes when B X/BO = 1.0, £ = 4.5,
and 8y = 1.0t (a) even modes, (b) odd modes. a
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Fig. 8. Eigenfunctions for finite kl electron modes when Bmax/Bo = 1.0,
£ = 4.5, and 8peg = 1.0: (a) even modes, (b) cdd modes.
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Flg. 9. Varlation of principal finite k, electron mode eigenfunctions with
8reg when By /By = 1.0 and £ = 4.5: (a) even modes, (b) odd modes.
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Fig. 10. Variation of principal finite k electron mode eigenfunctions with

fres thu Bmax/Bo =1.0, L = 4.5, and 5res = 0.2: (a) even modes, (b) odd
modes.
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Fig. 11, Variation of principal finite k, electron mode eigenfunctious with
£ when Bpax/Bp = 1.0 and 8peg = 1.0: (a) even modes, (b) odd modes.
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For the collisionless plasma considered, both the mirror force -:VyB and
any anharuonic spatial dependence 5f § spread electron-bounce frequencies. If

the potential is a quartic function of s,

2 4 .
P(s) = Als + Azs ’ . (123)

and B is quadratic,

. 2
B{s) = BO + Bys” , (124)
then for Al >> A2 Siax the bounce frequency is shown in Appendix D to be
apptroximately
1/2
2 3 2 5=
Ub(X.U) = [EZ (Al + uBl + 2 AZX smax) ] * (225)

This expression shows how the two spreading mechanisms differ: Whereas Bl is
positive for monotonic mirror fields and always increases Wy, the y term can
have either sign. The frequency is increased by positive A? since the poten-
tial well is sharpened, while a negative Az reduces wy by flattening the
central field. Also, the magnitude of the u term in Eq. (125) is unbounded,
but the shift in w’

b
electron distributions. The zero-energy bounce frequency

2 /m_ for cutoff
X e

from the x term is no greater than 3Azsma

2\ 12
w o = lim w_(x,u) = (————) {126)
B0 " lag B ™
w0

is the same here as for the pure electrostatic field, Eq. (115), becuase Yo

is determined by the quadratic potential variation alone. The spread in Wy

has two principal effects on eigenmodes. Since electrons resonate at different
frequencies, the strong resonances at harmonics of Yo found for gquadratic Y
are shifted in frequency and broadened. In addition, the electrop damping
introduced by phase mixing tends to stabilize waves. All k1 = 0 modes are
dampzd because they do not couple with the ions, and modes with finite k; are
normally stabilized at frequencies where damping is strongest. Since these
phenomena are independent, it is conver..ent to separate them by first consider-

ing the effect of bounce-frequency spread on undamped electron modes.
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Eigenvalues of the electron equation, Eg. (105), for Bmax/BO = 1.5, .
presented in Fig. 12, illustrate the effect of a quadrailc mirror field. Since
"w_ > w,  for all electrons, the maxima of X occur at frequencies shifted

b b0

2
approximately 6res = (Zﬂ,res-l-u) <p> Bllmetubo from the BmaxIBO = 1 resonances,

and the maxima becomes less pronounced as !'res increases because the (ZZres-Kr)z

harmonic factor spreads resonances over a wider frequency range. Since

B = BBy

greater frequency spread and a weakening of the electron response. The eigen-

2 .
)/smax for a quadratic B field, increasing Bmax/li0 results in

value curves in Fig. 13 for several values of Bmax/BO show this behavior.
Scaling of these mirror force effects may be estimated from the approximate
Re(R;n) expression derived in Appendix D:
= =2 = =2 =2 2
rE x - 1fm 1/2 ex) _(_kﬁ'_k_“z_ +(-1)Uex . .Ek_"’i‘.)_ -~ bexp (- km+k“
mn 2\% P € i 4L P 4E
¢ i
T mn
W e“P(‘“z)Ei("z”uw( 7 )
~5 3 , (127
2=1-0 “max 0 “o (28 +0)

»/mbo
/

(a) (b)
0 l | ] L o
0 1 2 3 0 1 2

wl-

2
(k; 6 pep
Fig. 12. Eigenvalues for undamped electron modes when Bmaic/BO = 1.5 and
£ = 4.5: (a) even modes, (b} odd modes.
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Fig. 13. Variation of principal undamped electron mode eigenvalues with
Bmax/BO when £ = 4.5: (a) even modes, (h) odd modes.

where

2 22
BOE,' w” = (28+a) @ o

v, =
B -B 22
max O (2440) “ho

and Ei is the real exponential integral defined in Appendix E by Iq. (E4). The
principal difference betweeen Eq. (127) and the Bmax/BU = 1 result is that the
resonant factor wZ/[wZ—(22+c)2w§01 in Eq. (117) is replaced by a factor pro-
portional to exP(_vl)Ei(vl)' Since the function is peaked at vy = 1.4, the

maximum eigenvalues should occur for frequencies
1/2
Bmax_ 0
w = (28+a) {1.4 -~BOT + 1 Woo - (128)
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Figure 14 compares the resonant factors for BmaxIBO =1 and Bmax/BO = 2. The

IZZ—H‘J factor in the Eq. (127) resonant term accounts for the weakening of .
principal mode resonances as Lres increases, and this weakening together with
the greater spread of resonances at higher Eres causes bouncer-resonance effects

to become inconsequential for

1 Brax~Bo
0l (Zﬂres-+0) EBO > 1 . (129)

Since nonresomant terms in R:n are unaffected by s A for the principal even
mode shows that same limiting value and £ dependence for Stes = 2 as the

Bmax/BO = 1 case. The principal change in the eigenfunctions introduced by a

mirror force is a somewhat greater localization near the centerplame. This is
caused physically by the enhanced electron confinement and {s seen by compar-

x/B0 = 1.5 eigenfunctions of Fig. 15 with those in Fig. 8 for

Bmax/BU = 1.

ing the Bma

If a nopguadratic potent<al

4

2
W) =y {Q-a) F—+a 53— (130)
S

S
max max

‘ max i
0.5 \ \(: B, | \\ -

w/uyg

Fig. 14. Approximate even-mode
resonant factors for Bp,y/By

= 1.0
and 2.0 when & = 4,5 and & = R

es’
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Fig. 15. Eigenfunctions for undamped electron modes when Bp../Bg = 1.5,
£ = 4.5, and Sres = 1.0: (a) even modes, (b) odd modes.

is combined with the quadratic B field, Eq. (124), the anharmonic potential
term has two main effects on bounce modes. The (l-a) factor introduced in the
quadratic term of Y to keep wmax constant changes £ by a (l—u)-l factor by
altering wbo. Since the R:n expression, Eq. (128}, remains an acceptable
approximation when a/(1-0) is small, this £ change affects the relative
magnitude of the resonant term and, through Vg the frequencies at which the
principal eigenvalues are greatest. In addition, the quartic term in Eq. {130)
causes a shift of 3awmax <x2> /(meS;ax) in the mean squared bounce frequency,
which further shifts the A maxima. These changes are apparent when the
eigenvalues fn Fig. 16 for « = 0.5 and Bmax/BO = 1.5 are compared with the

o = 0 results in Fig. 12, From Fig. 17 it 1s evident that a positive a
broadens the resonance, while negative o tends to cancel the mirror force
spread in @y and to sharpen resonances. According to Eq. (122), changes in §
caused by nonzero & alsc shift the mode numbers that are dominant in the
response matrix. The small differences seen in the principal even-~mode
eigenfunctions of Fig. I8 illustrate this effect.

When terms for electron damping and the ion response are included in the
eigenvalue equation for ¢, they affect bounce modes principally by stabilizing
the waves at frequencles near the w = (21+c)mb0 resonances where damping is
strongest. Even though eigenvalues are in general altered by the added terms,
Im(R:n) is normally small enough for parameters of interest that the validity
condition, Eq. (107), for a perturbation treatment of ¢ is approximately
satisfied whenever marginally stable modes exist, Consequently, Re(R:n) is
still the dominant matrix term in these cases, and the eigenvalues calculated
from the undamped electron equation, Eq. (105), are close arproximations to

correct values. Figure 19 compares even-mode eigenvalues of the full matrix
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Fig. 16. Eigenvalues for undamped electron modes in a quartic potential with
wmax/we = 4.5 and & = 0.5 when Bmax/BO = 1.5 (a) even modes, (b) odd modes.

equation with results of Eq. (105) for the same parameters. The small eigen-
value discrepancies arise principally from including the real ion term in the
matrix equation for ¢, and since the ion response tends to cancel electron
charge density perturbations, A for the prinzipal modes is reduced when the
ion term is added. The corresponding eigeunfunctions obtained by the two
methods are found to differ by less than 0.5% st each point in this example.
Although the results presented are calculated for the gradually cutoff
Maxwellian electron distribution, Eq. (18), the corresponding A values for an
abruptly cutoff Maxwellian distribution differ by no more than 1.5% when
£ = 4.5, and choosing a Maxwellian withou' loss regions for Fe reduces A
typically by 4Z. - This ingensitivity resilts mainly from the fact that the
cutoff factor in Eq. (18) becomes appreciable only near E = uBmax'meax’ where

the exponential factor in Fe is small.
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Fig. 17. Variation of principal undamped electron-mode eigenvalues with o in
a quartic potential when Bmax/BO = 1.5 and wmax/we: (a) even modes,
{b) odd modes.

Fig. 18. Variation of principal even
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INSTABILITY THRESHOLD DENSITIES

The stability of bounce modes 1s governed by the relative magnitudes of
the electron damping and ion drive terms of R:m and R;n. For the quadratic B
field given by Eq. (124), and a quartic potential, Eq. (123), with small
2 /Al and A sz [/ <u> Bl, the imaginary part of Rgn is shown in Appendix

A8
2 max 27 max
D to be approximately
2 E;H-(lzx kR,
res exp(-v ) exp \- —— /I _mn
m@e ) = -2n°/? %o’ 2 2 B/ BN am
ma Brax 50 t=1-g Ezl/ 2
where
2 22
o - BOE w” = (28+0) Wo
2 B -B 22 ’
max ( (2240) wa
and
2
£ =l: wz _ 3AZ B0 smax}g
A 22 m B -B *
(22+0) Yo e ‘max 0w
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Here, Eres is the largest integer solution of

3 max(0,A,) s ]
2 212 2’ “max
w - (Zf.res-fd) [“’bo + -——————me J 0. (132)

For even modes with w < Zmbo, the harmonic factor 22 +c 1s zero and the mode
is undamped. The damping represented by Im(R ) results from the mixing of
bounce~orbit phases that occurs when the mirror force or any nonquadratic
field variation spreads . The bounce-frequency spread has three effects on
the matrix elements: The relative spread due to the mirror force, given

approximate1§ by

Aw B __-B
_b . _max "0 s (133)
Wy  2Bgb
X € . = o
controls the exponential decrease of Im(Rmn) with Gres = [w (21res+c)mbo]/mb0
in the small A limit considered here. In addition, the strength of damping
at resonance is altered by the B E/[ l/Z(B )] factor, whlch cends to

sharpen resonances as Am/wbu de—reases and the appearance of E in the
Bessel function argument affects which of the matrix elements are dominant
according to Eq. (122). The (21+G)_2 factor in Vg causes a weaker exponential
frequency dependence in Eq. (131) as lres increases because particle resonznces
are spread over a greater frequency range. An upper bound on the magnitude

of the ion drive term is given by Eq. (D44) in Appendix D:

1/6
i we BO 23 w2 Vz
~ 1.6 = L £
Im(Rmn) 1.¢ Aj wi Bmax'Bo 3 v2 . (134)
Yho Y0

The weak frequency dependence of Eq. (134) results from the assumption of ion
rasonance w ~ jQi, and the expression is independent of indices m and n
because spatial variation of ¢ 1s neglected.

A marginal stability condition obtained from Eqs. (131) and (134) shows
the important qualitative features of threshold density behavior. Provided
that the validity criterion, Eq. (197), for a perturbation treatment of ¢ is
satisfied, the ratio of imaginary electron and ion contributions, Eq. (110),

gives the value of Aj at threshold. When
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Buy Buax 2o
(22_ +q) a;- x (ere5+ﬁ) —

res 0 <1, (135)

ZBOE ~

the sum in Eq. (131) is dominated by the Eres term, and an estimate of the

electron contribution, obtained from the dominant Im(R;n) matrix element, is

exp[— bosres ]
e x _pliam S0 L (L rodhuy, (136)
ZAmb 51/2 2£res+0
1Tes
where the approximations v, bO res /(21 +G)Awb and
res
( Emin> (k i ) 1
max {exp |- 57—) I N —— e ———— (137)
2€, / T2040\ 2L, PSS VAP ‘

have been used to simplify Eq. (131). 1If AjI'l is approximated by the Im(R:;n)
expression, Eq. (134), then the threshold Aj value for the principal modes is

1/6 “bg “res
1/3/ 2 2 exp[— —-—~————]
PR Bt P _E_”Z(bo PR N NN
¥ * ¥ Egres ZAmb \E Vz u:z “Eres—'.0 ’
(138)
which vanishes for 28 _ +0 = 0. Since this value must be less than A e
res max

0.385 for instability to occur, electron modes should be stable at the lowest

bounce resonances whenever Wi > we. In this case, Eq. (138) predicts three

regimes of qualitatively different threshold density variation. For frequencies

with
. Aw, A
5. < @t +0) —2 1n{-E2) (139)
res res Wyo Amax

where f“res 1s the A:l value at w = (eresm)wbo, Aj/Amax > 1, and the mode is

stable. In the transition region where Aj/Amax < 1, the argument eh of Aj
drops as w increases from the value at the first A, maximum toward the value

at the first zero crossing. The corresponding threshold density ¢ given

th’
by Eq. (111), likewise decreases due to its ;2 dependence. When Aj/l\max << 1,
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Cth remains at approximately the value at the first zero of Aj independent of
w, and the principal €ih frequency dependence then comes from the A-l factor

in Eq. (111).

Calculated threshold densities for the three longest-wavelength modes,
plotted in Fig. 20, show che expected frequency dependences. Values are
calculated from the full complex eigenvalue equation, Eq. (40}, using a sharply
peaked v, distribution and quadratic B and ¢ fields with Bmax/BO = 1.5 and
wmax/we = 4.5 nominally., The energy ratio we/wi = 4.5 x 1073 is low enough that
all modes are unconditionally stable just above resonances, and at frequencies
where electron damping is cxponentially small, thresholds for all except the
principal even mode increase rapidly with frequency due to decreasing . For
the principal even mode, €ih varles gradually with w in the Aj/Amax << 1
region because A approaches a constant nonzero value. The nonrescnant even
mode below w = 2wb0 is unstable independent of density since it is undamped
when the fields vary quadratically. Threshold densities for ions with a
spread in v, differ from the peaked distribution results of Fig. 20 in two
respects: Since the first zero of Aj for the broad v, distribution, Eq. (22)
is higher than the peaked distribution value by a factor 1.3, the Ecp Curves
are greater by a factor of 1.7 at frequencies where I\j/I\max is small. Also,
the smaller Amax value for a spread distribution, according to Eq. (139),
results in a larger interval above resonances in which modes are stable. The
pattern of strong bounce resonances in Fig. 20 is expected to vanish when ires
is large enough that the coherence condition, Eq. (135) is violated since
particle rescnances from different bounce harmonics then begin to overlap.
Figure 21 shows that with the same plasma parameters as Fig. 20, the resonance
structure is substantially lost for w/mb0 2 9.

A higher energy ratio We/wi both broadens the /\j//\max > 1 frequency
interval by increasing Ares in Eq. (139) and affects the minimum threshold
values due to the linear we/wi dependence of the Eth expression, Eq. (111}.
These effects are seen in the threshold curves of Fig. 22. Changes in bounce-
frequency spread, in contrast, leave €en effectively unaltered in regions
where /\j//\ma << 1, but can shift and broaden the Aj/Amax > 1 and transitional
/\j//\max < 1 intervals. Threshold curves in Fig. 23 show the effect of changing
the spread due to the mirror force, The Aj/Amax > 1 region is broadened with
increasing Bmax/BO as expected from En. (139), and the transition region
becomes more prominent. Figure 24 illustrates two effects of changes in

wmax: Increasing the potential strengthens the exponential dependence of
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Fig. 20. Threshold densities for the longest-wavelength modes when Wg/Wy =
4.5 x 1073, Bp./By = 1.5, and £ = 4.5: (a) even modes, (b) odd modes.
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electron damping by raising the zero-energy bounce frequency @ substantially
. reducing the frequency range where waves are stable. Also, the values of Eth
in the I\j/Amax << 1 regime are altered because of the shift in A discussed in
the preceding section. Introducing a nonquadratic potential with the form of
Eg. (130) likewise increases the size of the Aj/Amax > 1 frequency interval
by changing wbo, but in addition shifts the regions of greatest damping, as

max

zres due to the AZ term in Eq. (132), and comparing the chreshold curves in

Fig. 26 with Fig. 25(a) indicates that this shift is indepenlent of we/Wi.

Fig. 25 shows. The shift of Aj/A > 1 intervals results from the change in

The calculated instability threshold densities for the principal even
modes are insensitive to details of the physical model. According to Eq. (111),

any change in €

when We/Wi is fixed requires variation in either ) or Eth'

th
The eigenvalue studies in the p-eceding section indicate that 1 for the

principal even mode is approximately constant over the frequency range where
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. Fig. 22. Variation of principal mode threshold densities with We /N when

mav/BU = 1.5 and £ = 4.5: (a) even modes, (b) odd modes.
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Fig. 23. Variation of principal mode threshold densities with Bpax/Bp when
We/W; = 4.5 x 1073 and £ = 4.5t (a) even modes, (b) odd modes.

electron damping is *..ak enough to allow instability, and the minimum value is
principally affected by wmax/we rather than by the plasma distribution functions
or spatial dependences of the fields. Similarly, Seh is effectively comstant
over w-st of the frequency range of possible instability so long as the condi-
tion im Eq. (135) is met, since Aj/Amax is exponentially small. Changing F,
does alter this Cth value by shifting the first zero of Aj' but for piausible
distributions such as multiply peaked functions or superpositions of peaked and
spread functions, the fivst zero is bracketed by values for the forms of Eqs.
(21) and (22). Using different F, or V.,/Vl expressions normally alters Fi in
Eq. (110) by a factor of the order of unity. Since this change principally
affects the size of the Aj/Amaﬂ +rval through the logarithmic Amax dependence
of Eq. (139), the choice of tli s ~tions has negligible effect on the

minimum Eeh in typical devices. Only wien the principal even mode is actually
suppressed, either by stronger damping or by weakened ion drive, is a

substantial change in the minimum Een expected.
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Fig. 24. Variation of principal mode threshold densities with Vmax/we when
We/Wi = 4.5 x 1073 and Bp,,/Bg = 1.5: (a) even modes, (b) odd modes.

MAXIMUM INSTABILITY GROWTH RATES

For electrostatic bounce modes with real k,, the greatest growth rate
for any real frequency Wy = Re(w) occurs for the density at which either
maximum ion-wave coupling is achieved or ions begin to weaken the electron
response by cancelling electron density perturbations. The first mechanism is
important when elements of Re(Rin) evaluated using the maximum value of Ll are
small compared with the dominant elements ofRe(R;n), and the maximum , I lm(.)
is then calculated by the perturbation method of Chapter 2. In most cases,
the ion response with Al = Amax is strong enough to reduce X appreciably when it
is included in the matrix equation for ¢. Direct calculation of the real k
eigenfunctions for increacing y values is then carried out to find the maximum.
When vy << wee a Taylor expansion of the imaginary part of Eq. (40) leads

to an analytic estimate of Ymax' To first order in v,
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where  are the Fourier coeflicients for an wundamped electron mode. Sincee @
mn

according to the analytic approximation given by lq. (D44 varies like

mllj, the R- derivative in Eq. (140) is discarded. Using A in RS thea
mn mirX un
glves
. o~ S i 0 s0 :
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where Eqs, (108) and (109} respectively define 1 and 7Y, and the Cauchy-

Riemann equation result
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With the calculated electron eigenfunctions from Fig. 12, qualitative features
of the Ymax frequency dependence are apparent from Eq. (143). According to .
Eq. (110), 2 mode is stable when ™+ AjFi < 0 and Ynax is zero. At higher
ffequencies, Ymax should increase from zero to a peak value proportional to
Fl, and as 6res -+ 2, Ymax is expected to drop rapidly back to zero due to the
increase in ISA/Ber. Since the \ derivative for the principal even mode is
generally smaller than odd-mode values where marginally stable modes exist,
Eq. (143) predicts higher Ynax values for even modes. From Eq. (D27),
aX/awr ~ aRe(R:n)/Swr has approximately linear dependences on (ZEres+0)_l and
£~l/2 fer 8 = 2, independent of B___/B.. The peak vy should therefore

res max "0 max
scale roughly as BOE(ZQreS+G)/(Bmax—BO).

Calculated growth rates for sufficiently small we/wi show the predicted
qualitative behavior. In Fig. 27, Ymax for the principal even and odd modes
for we/wi = 4.5 x 10-3 1s plotted over a range of frequencies, Again, the
values Bmax/BO = 1.5 and wmax/we = 4.5 are used, and quadratic spatial depend-
ence of the fields is assumed. The maxima for successive Eres values have
nearlv the expected Zires+d proportionality, and a rapid dropoff near 6:95 =2
occurs., Figure 28 and Fig. 29 show how the growth rate curve for the principal
even mode varies respectively with Bmax/B0 and §. Since the perturbation
approximation is acceptable for the we/wi value used, growth rate dependences
are in good agreement with the predictions, and Ynax values calculated both by
the perturbation and direct methods of Chapter 2 differ by no more than 3%.

2

For Ne/wi = 4.5 x 100 °, the ion term is large enough to affect the eigenvalues

and require direct calculation of Y Growth rate curves in Fig. 30 for

this higher energy ratio show reduc::xdependence of Vmax O Rres because the
important limit on Y is the relative magnitudes of the real ion and electron
terms of the matrix equation. Scaling of growth rates with Bmax/BO is not
significancly affected by We/Wi since these dependences enter through

multiplicative factors.

APPLICATION TO MIRROR EXPERIMENTS

The numerical model is used to test whether electrostatic bounce modes
were an important instability mechanism in the Baseball I (BBI) and Baseball II
(BBII) experiments. Since most idealizations in the model are appropriate for
low-density mirror devices, the calculated instability threshold densities and

growth rates should be close to experimental values if destabilized bounce

modes were the dominant cause of instability in the two machines. The general
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1.5, and § = 4.5: (a) even modes, (b) odd modes.
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Fig. 30. Maximum instability growth rates when Wg/Wj = 4.5 x 10-2, Bnax/Bo
1.5, and £=4.5: (a) even modes, (b) odd modes.

approach is to choose parameters in the model to simulate the BBI and BBII
plasmas, and then to compare predicted threshold values and parametric depend-
ences with the findings of a large number of experimental rums.

General features of bounce modes are consistent with the observations of
instabilities in low-density mirror experiments. Electrostatic probe measure-
ments indicate rapidly growing disturbances with typical wavelengths along

45 and the instability thres-

field lines comparable with the plasma length,z’
hold densities are affected by changes in plasma length and the distribution
functions near the mirror centerplane, as expected of nonlocal modes. Insta-
bility was detected by ejected electrons inm BBI and by .he onset of radiofre-
quency (rf) activity in BBIL. As density was increased above the threshold,

rf signals appeared first at the lon gyrofrequency and then at successively
higher harmonics. This finding agrees with the theoretical result that thres-
holds for frequencies w = jQiO increase with j. The rf activity also was

found to cease when the neutral beam used to generate energetic ions was turned
off. This effect and the prominence of gyrofrequency harmonics in the rf spec—
trum together indicate that the instability was driven by coupling to an
anisotropic ion distribution.

Comparison of experimental threshold densities in BBI and BBIL with
theoretical values is the principal quantitative test of the bounce-mode
mechanism, Since the onset of instability during plasma buildup is an
important and accessible experimental diagnostic, threshold densities were
routinely measured in both experiments over a wide range of field and plasma

parameters, In contrast, growth-rate information is limited to the observation
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that instabilities grew to full amplitude in about 10 gyroperiods. This

figure provides no more than a lower bound on Yy since the plasma density during
buildup could not have been at the value required for maximum growth, and
interpretation is further complicated by the fact that the linear perturbation
theory used to analyze bounice modes is invalid for waves of the strength
observed. Llikewise, other predictions of the theory, such as bounce-mode
dispersion characteristics and spatial wave forms, are not directly comparable
with experimental data.

Since a gquantitative comparison of predicted bounce-mode threshold
densities with experimental values is iIntended, the experimental parameters
must be caref:illy related to quantities in the theoretical model. The experi-~
mental threshold values of £ for BBI and BBII buildup tests were calculatnd
from the maximum plasma number density NO measured at the onset of rf activity
and the minimum magnetic field strength Bo found at the centerplane. Corres-

ponding values of we/wi were calculated from the maximum plasma potential

wmax and measurements of Hi. The maximum NO values were estimated in most
cases by applying a conversion factor to average density me: :urements from a
microwave interferometer. The potential wmax was equated to _.ec minimum

energy of escaping ions, determined by a gridded detector, and the mean ion
energy was estimated either from the energy spectrum of charge-wxchange
neutrals or from the energy of the injected neutral particles. In BBII tests
and in some BBI tests using low-energy ions, the neutral beam used for plasma
buildup produced substantial fractions of H atoms with half and a third of the
rated energy, The wi balue used in these cases to calculate the energy ratio
was an appropriately weighted average of the beam components. Other BBI tests
used a nearly monoenergetic H beam., In both devices, the vacuum magnetic
field close to the mirror axis had a nearly quadratic spatial dependence both
along flux lines and across the centerplane, and the mirror ratios on axis
were about 2.1 for BBI and 1.9 for BBll. The respective mirror points were
30 cm and 45 cm from the centerplane.46’47

Since the numerical model describes electrostatic modes along a field
line, the parameters Bmax and wmax’ and all s = 0 quantities in Rzn and R;n
are values appropriate for a particular flux surface. Accounting for the
variation of BO on different flux surfaces is especially important because the
range of field strengths found at the centerplane determines the frequency
interval over which the ion resonance condition w = QiO can be satisfied in a

finite plasma. For BBI and BBII, the plasma radius was about 10 cm, and QiO
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on the outer flux surface was approximately 15% above the mirror axis value.
This limited range is allowed for numerically by searching for minimum
threshold densities only at frequencles matching gyrofrequencies found within
the plasma. The calculated threshold densities €.y Dust also be corrected to
mirror axis values for comparison with experiment. If Eh? NO and BO are all
considered functions of the flux surface radius r, then the correction factor

is

for eth

N0<0) Bo(r)
Eth(o) = Eth(r) EET;T EETBY . (17 4)

For this correction, NO is assumed to have the form ND(r) = NO(O)exp(-r/rmax)-

Because the parameter studies presented earlier indicate that threshold
densities are not strongly affected hy changes in wmax or Bmax/BO’ the
experimental values on axis are used in calculations. No more than 5% error
is expected from this approximation. No experimental information was obtained
about the ratio wmax/we’ the spatial dependence of Y, or details of the
electron and ion equilibrium distribution functions, so plausible approxima-
tions like those in the parameter studies are used. Again, P __/W = 4.5 is
48 49 max: e

chosen, and since Post  and BenDanial ~ find §/B to vary slowly with
position, 1 is taken to be a quadratic function of s. For the unperturbed
distribution functions, the forms of Eqs. (18) and (20) are used, with either
a delta function, Eq. (21), or a spread distribution, Eq. (22), chosen for
F,. The ratio of mean squared lon velocities, Eq. (24), for magnetically
confined ions is used throughout, even though the ion distribution function
assumed for the derivation is inappropriate for BBI and BBIIL. Since V. enters
the approximate imaginary ion response matrix, Eq. (134), as V"-l/s, the
calculated threshold densities are insensitive to the choice. In specifving
the mean ion velocities, Wi is treated as the ion thermal energy, so that
Wi = % mi(vf + Vi). This is not strictly correct for the multiple-peaked
distributions expected from the BBII neutral beam injection, but test calcula-
tions indicate that using the average beam energy introduces only a 1% error
in threshold compared with values for a doubly-peaked distribution.

A typical sample of theoretical and experimental threshold densities for
BRT and BBII is shown in Fig. 31. The calculated values of E.p 3re minima
found for frequencies within the range of centerplane ion gyrofrequencies after

being corrected to mirror axis values according to Eq. (144). Thresholds

~70-




found for the sharply peaked and spread distributions are taken to define
limits within which the actual ion distribution is likely to be found.
Accordingly, the range of € between these two cases is plotted as a vertical
bar in Fig. 31 for each value of we/wi. In each case, the theoretical
thresho.d densities are calculated from the full complex matrix eigenvalue
equation, and except for a few low values of we/Wi, all the theoretical €h
correspond to the principal even mode. No resonances with harmonics of the ion
gyrofrequency above the fundamental are considered because in experimental
tests instabilities with w ¥ QiO were detected at the lowest densities. The
corresponding experimental €n values are presented as data poinus in Fig. 31,
with results from BBI and BBII denoted respectively by circles and squares.
Although no error limits are shown, the experimental threshold densities are
certain only3with +59%, and the welwi value for each case has about a +25%
uncertainty. A series of BBII tests was carried out to determine the effect
of reducing the plasma length.3 A conical metal limiter was placed on the
nirror axis, and the threshold density was found to vary sharply with the
limiter position, The experimental instability thresholds are plotted in

Fig. 32 along with lines bracketing the range of threshold values expected
from theory. A similar strong variation of the experimental threshold density
was observed when other conditions such as background gas density and the
injected neutral beam cross section were changed, but predicted thresholds are
not presented for these cases since the numerical model does not incorporate
the investigated conditions.

The BBII threshold densities show close agreement with theoretical
predictions. 1In Fig. 31, about 70% of the experimental values fall between
the thresholds calculated for the spread and peaked perpendicular ion distribu-
tions, and none of the other data points is farther away from the thecretical
range than experimental uncertainties could explain. Many of the BBII
thresholds found in the axial limiter tests likewise fall within the range of
predicted values, as Fig. 32 shows. The experimental densities are closer to
thresholds expected for a peaked distribution for smaller we/wi, while for
larger enerpy ratios the experimental values are near to predictions for ions
with a spread in v;. This behavior is consistent with the expectation that at
higher threshold densities electron drag spread the initially peaked ion
distribution. Since the electron drag time defined by SpitzerSO is around
30 s for the BBII cases with the iowest £ih and varies inversely with NO, the

effect should become important above eth % 0.1, In the collisional regime, a
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Fig. 31. Theoretical and experimental threshold densities for BBI and BBII
when £ = 4,5,

further adjustment of the theoretical €h is needed to account for the decrease
of Wi of about 15% due to electron drag for tests of the duration reported.

The corresponding 15% increase in the calculated thresholds improves the
agreement with experimental threshold.

The BBI threshold densities presented in Fig. 31 are systematically
higher than the theoretical values. Even though experimental values show the
approximately linear dependence on we/wi expected from Eq. (111), typical
threshold densities are greater than the theoretical predictions for ions with
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a spread in v, by a factor of 2 to 3, and since plasma densities remain
relatively low, no correction of Wi for electron drag is justified. Also, the
gcatter of experimental thresholds from a linear we/wi dependence is markedly
greater than that of calculated values. These discrepancies between theory
and experiment are greater than experimental vmcertainties and cannot be
elininated by reasonable changes in the plasma potential profile or the ion
velocity distribution functions.

Several differences between the BBI and BBII experiments have been
examined to account for the systematic deviation of BBI thresholds from
predicted values:

@ The plasma buildup procedure in BBI resulted in an ion distribution
quite different from that of BBII. Although both devices produced
plasma by neutral beam injection, the beam in BBI was angled 61° to the
mirror axis, whereas the BBII beam was perpendicular. Because of finite
beam diameter and the angle of off-axis field lines, the Gaussian form,
Eq. (23), chosen for F, 1s appropriate for BBII, but the BBI parallel

ion velocity distribution would have been peaked around V, = 0.6 V, near
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the axis, with few particles near v, = 0 at the centerplane. The
qualitative effect of this double-humped v, distribution can be deter-

mined using the distribution function

3 2 32
1- -
Fu(va) = Co |exp (— e "—'z'>— exp (— 5= 121> . (145)
Vi v Vu
with
1/2
PG et 1
o2 Ly

and 1-v chosen to be a small positive number. This distribution has
maxima near v, =%V, a * has the same mean parallel velocity as Eq. (23).
Recalculating sample BBI instability thresholds using Eq. (145) gives
values greater than using a Gaussian for F, by only 2%, Dominant
elements of the ion response matrix are reduced by nearly 30% when the
double~humped distribution is used due to the poorer coupling to the
wave, but the imaginary electron term in the ma.rix equation, Eq. (40),
is small enough in this regime that Aj ~ 10_2 at marginal stability,
making the calculated Eth values insensitive to changes in the parallel
ion response.

The bean injection angles also make appropriate choices of the rms
parallel :locity V, different for the two machines. The velocit- ratio,
Eq. (24), used for the thresholds shown in Fig. 31 is obtained by
assuming the phase space volume within the loss surfaces to be filled
with Fi peaked near v, = 0. While this assvmption is acceptable for
BBII, V,/V, for BBI should be about 0.6 on flux surfaces near the axis.
Even though this value is about 20, above that calculated using Eq.
(145) and increases ion response matrix elements by nearly 6% due to
the approximate V..-l/3 dependence of R;n’ the theoretical threshold
densities show less than 0.5% change.

The neutral beam injection angles used in BBI and BBII resulted in
dissimilar number density profiles along field lines. Whereas N was
sharply peaked near the centerplane in BBII due to the narrow spread,
the BBI number density had a maximum about 7 cm from the center. This

peak occurred because particles trapped on a flux surface had nearly the
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same parallel velocity and therefore similar turning points. The prin-
cipal effect on bounce modes of these differing profiles results from
changes of the self-consistent electrostatic potential along field lines
and the corresponding modification of electron-bounce frequencies. For
each machine, a quartic potential with the form of Eq. (130) can be
specifieud with a chosen to give the resulting number density the same
half width as densities calculated in numerical buildup simulations.
The half-width for BBII was 6.5 cm,51 and this value is reproduced by a
quartic potential with o = ~1.0. The flatter BBI density profile had a
calculate alf-width of 12 cm,52 and the best quartic aproximation has
~ 0,4. When theoretical threshold densities for BBI and BBII are
recalculated using these quartic potentials, the BBI predictions are
still systematically below observed values, while RBII results give a
slightly improved fit of the data. Even though the positive a used for
BBI calculations increases the spread in w electron damping is in fact
weakened in the frequency range w ~ 9 bezause the imaginary part of
R:n from Eq. (D31) of Appendix D has both an £ 1/2 factor which is
proportional to %o and a Bessel series that decreases as lres becomes
larger.
Bacause BBI | .d a weaker mirror field and normally a higher mean ion
energy than BBIL, typical ion gyroradii at the centerplane were greater
in the earlier experiment. While BBII had pyroradii around 0.5 cm, BBI
values were as large as 3.5 cm. The requirement that the azimuthal
wavelength of a mode Zw/k fit an 1ncegr11 number of times around a flux
surface restricts k;, to dis:rete values k kz + k where the radial
wavenumber kr is assumed fixed and greater . an T/rmax' In BBI, typical
ion gyroradii are large enough that some practical limitation on
allowed Eth results, To assess the importance of this effect, the radial
wavenumber i{s neglected compared with k , and flux surfaces are assumed
to be circular., Then k, = n/r on a flux surface of radius r and n a
positive integer. S<ace the marginal stability condition, Eq. (138),

gives an approximate relation k = 1,85 for the sharply peaked v,

a
10710
distribution expected in BBI, the threshold condition can be satisfied

only on flux surfaces with radii

row il (146)
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For approximate treatment, the radial dependence of a,. 1s ignored. If

i0
w does not nearly equal the don gyrofrequency un one of the flux surfaces .

determined by Eq. (146), the coupling of lons to the wave is weakened.

Recalculating thresholds for a typical BBI plasma, allowing only values
of Qio
mode the frequency dependence shown in Fig. 33. The minima occur at the

on those critical flux su-faces, gives eth for the principal even

exact resonances and equal the previously calculated values, while the
threshold density is increased off resonance. Since several flux

surfaces satisfying Eq. (l46) are found within BBI plasmas even in the
extreme case with kr = 0, the periodicity comstraint on k1 results in

only slight changes in calculated minimum thresholds.

Even through these refinements of the model distribution functions and
fields have little effect on theoretical threshold densities for the principal
even mode, the experimental data suggest that the mode was stabilized in BBI.
Stabilization of the mvde would allow density to imcrease during buildup to.
the thresholds for odd modes or shorter-wavelength even modes. Since these
densities are higher by factors of 2 to 5 than €h for the principal even mode,
they are near observed values, and because small changes in parameters can
destabilize the plasma, more scatter of threshold values would be expected.
Two requirements for stabilization of bounce modes are that 1Te/Ti| in Eq,
(138) be greater than Amax in the region of strongest Landau damping and that
the spread of bounce frequencies, glven approximately by Eq. (133), be great
enough that r® does not become exponentially small in the frequency range of
interest. Each modification of the model considered alters I or Fi in the
direction of stability: Nonquadratic y reduces the dropoff of r€ at fre-
quencies away from resonance, while the changes in V, and F, weaken the ion

drive. If damping in BBI were higher than calculated by a factor of the order

T T Fig. 33. Comparison of theoretical
even-mode threshold densities in
BBI for discrete and continuous k,

B when We/W; = 6.0 x 10-3, Bpa,/Bj =
w 1.9, and £ = 4.5.
10’2 —Discrete k; -
- esesContinuous ki =
2.5 3.0 3.5

m/wbo .
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of 10 due to such conditions as field line fanning or asymmetry, a strongly
anharmonic potential profile, or nonlinear effects, or if radial localization
of the wave correspondingly reduced ion coupling, the principal even mode
would have been stable according to theory. To verifv this conjecture about
stabilization of the principal even mode would require both a considerably
more detailed plasma model than the present one and information about the

plasma that is not available from experimental data.

4. Conclusion

Electrostatic bounce modes can be an important instability mechanism iIrn
certain mirror plasmas. If most ions have a gyrofrequency near low harmonics
of typical electron-bounce frequencies, then within a range of densities a long
parallel wavelength electron mode with klOaiO ~ 2 and w ~ Qio can be destab-
ilized by ions with a peaked perpendicular velocity distribution. These condi-
tions were satisfied in the BBII experiment, and threshold density calculaticns
indicate that the rapidly growing instabilities observed in the device resulted
from the bounce-mode mechanism. In BBI, the longest-wavelength even mode
appears from experimental data to be stable. The greater bounce-frequency
spread and poorer ion coupling to the wave in the BBI regime as well as such
complications as field line fanning and radial wave structure are likely causes
of this stability. For high we/wi values, the higher marginal stability
densities make wave currents more important. The resulting electromagnetic

effects give a parallel electric field53

2, 2
__ MO we , 7
K (s)c? + wie(s) ds

Eu(s) =

so that plasma response to electrostatic waves is substantially weakened.
Consequently, electromagaetic inscabilities like the drift-cyclotron loss-cone
mode36 are dominant inestability mechanisms in high~density mirror machines
like 2XIIB54 and the proposed MFTF device.55

The present numerical model of bounce modes improves on infinite-medium
analyses principally in using complete electron histories in calculating the
perturbed number density. Retaining the periodicity of orbits allows math-
ematically for the regeneration of density perturbations that causes bounce

modes. In addition, solving the matrix eigenvalue equation for the plasma
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no;mal modes avoids the short wavelength restriction of WKB formalism. The
-mo&el is more complete than previous work on mirror plasma electrostatic
modes since the ion response and damping terms are retained in the eigenmode
calculations and a wide range of equilibrium fields and plasma distribution
functions may be used. The principal simplications are the neglect of perpen-
dicular wave structure and use of qualitatively plausible idealizations, such
as a quartic plasma potential and truncation of the plasma at S pax? where
little experimental data {s available. With BBII, ion drive Is sufficiently
strong to make predicted instability threshold densities insensitive to the
choice of distributions and fields, and in these cases close agreement is found
between theoretical thresholds and experimental values. For BBI parameters
where the system is more semsitive to changes in electron damping and ion
response, the idealizations result in predicted thresholds consistently below
those observed.

Several refinements and extens.ions of the bounce mode model are possible:

® Specifying an asymmetrical magnetic field like those in minimum-B mirror

devices would test whether the assumption of exact symmetry significantly

reduces wave damping. Also, replacing the approximation

kf(s)/kf 6= B(s)/B0 with a k;(s) that accounts accurately for the change

in flux surface perimeter with s would incorporate effects of flux line

fanning into the one-dimensional formalism. Work by Baldwin38 suggests

that fanning helps stabilize long-wavelength modes.

® A more accurate expression-for the perturbed ilon density could be
obtained by Fourier analyzing ion orbits in time as in the electron
treatment. This approéch would allow use of more general distribution
functions and would take into account the bounce motion of ions confined
near the centerplane.

® Since k; >> k, for unstable bounce modes in typical mirror experiments,
Poisson's equation nearly separates into parallel and perpendicular
parts. Baldwin56 has suggested that approximate solutions for the wave
potential in realistic geometries could be obtained by treating the
radial dependence of ¢ as a perturbation of the one-dimensional model
used in the present work. In principal, the effect of field line
fanning can likewise be treated as a perturbation provided that k(s

varies slowly enough. An approximate solution of this sort for three-
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dimensional eigenmodes is probably necessary for an adequate treatment
of small we/wi plasmas like that in BBI.

e Electromagnetic bounce modes could be analyzed by using accurate
electron trajectories as in Chapter 2 to calculate the perturbed distri-
bution function and then obtaining an integral equation for the wave
electric field from the linearized Ampere equation. This analysis would
be appropriate for proposed high-density mirror experiments such as MFTF.
Even though electrostatic bounce modes are not a significant instability

mechanism in the plasma regimes currently under study, the underlying phenom-
enon of periodic trapped particle motion supporting plasma modes is found
whenever coherent disturbances can persist longer than a typical bounce
period. Trapped particle modes in tokamak devices57 are an example, The
integral equation method used here for electrostatic modes is gemerally useful
in other geometries so long as particle motiom remains periodic ovar time

scales of interest.
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Appendix A. Notation

The following symbols are consistently used throughout the text:

O W w [

= n

m

gyroradius of species

magnetostatic field
magnetic field strength

normaljzation constant for distribution functiom of
species o

speed of light
total particle energy
electron charge

particle distribution function of species a
perturbation of Fa due to wave

wave propagation vector

wave number for mth Fourier mode

particle mass of species a

number density of species o

perturbation of Na due to wave

particle charge of species a

response matrix for species o

flux surface radius

mth Fourier coefficient of sc(kns)

distance coordinate along a flux line

sine or cosine respectively for odd or even Fourier
series

mth Fourier coeffizient of sci (22+a)uwt]

time

thermal speed of species
rms ion velocity along a flux line
rms ion velocity perpendicular to a flux line

particle velocity
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]

=]

(-

Tes

Lyl

A,
J

s> 9 9 Qq D) B =

>

Lol =}

£

mb

w
pC

W
T

particle velocity magnitude

thermal energy of species G
particle position

imaginary response of species G
wave growth rate

relative frequency shift from resonance

dimensionless centerplane deusity parameter (mpiOIQiO)

dimensionless parameter kLOVLOIQiO

particle gyrophase

ion coupling coefficient for jth ion gyrofrequency
harmonic

)2

dimensionless parameter (kLO)\DeO

electron centerplane Debye length

particle magnetic moment

. . 2
dimensionless parameter (wbosmax/ve)

parity parameter
plasma electrostatic potential

perturbation of ¢ due to wave
mth Fourier coefficient of ¢

dimensionless distance coordinate along a flux line
slsmax
electron electrostatic potential energy -ed

gyrofrequency of species a

wave frequency

electron bounce frequency
plasma frequency of species a

real part of wave frequency

In addition, several modifying subscripts are used consistently. For a vector

or scalar quantity A, the following meanings are associated with subscripted A:

A

@ n

vector component of A along a flux line

vector component of A perpendicular to a flux line
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& value of A for electrons

e
Ai value of A for ions
AO value of A at the mirror field centerplane s = 0
A maximum occurring value of A
max
- Ares value of A associated with resonance
Ach value of A associated with the onset of instability

Mathematical operations and constants are denoted conventionally, and

the notation of Abramowitz and Sl:egun53 is adopted for special functions:

1
B(w,z) beta function B(w,z) =fdy )Vw_l(l--y)z~1
0

I
El(z) complex exponential integral El(z) =fdy y_lexp(—y)
z
©
Ei(z) real exponential integral Ei(z) = - fdy j.'_lexp(-y)
-z

4
erf(z) error function erf(z) =jdy EXP(-}'Z)
(4]

exp(z) exponential function
I’L(z) modified Bessel function of the first kind
Im(z) imaginary part of z
i (_1)1/2
J,(2) Bessel function of the first kind
N
K(a) complete ellipeic integral of the first kind
T2
2 .-1/2
y) !

K(a) =[dy (L - a sin
[¢]

max(0,By...) maximum of set Q,B,...

min(e,8,...) minimum of set o,B,...

o(a) of the order of o

Re(z) real part of =z
e -l

o) gamma function T (&) =fdy ¥y Texp(-y)
0




o
T'(a,z) incomplete gamma function I'(a,z) =fdy ya—lexp(-y)
z

z
Y(a,z) incomplete gamma function Y(@,z) =fdy yu-lexp(-—y)
0

m 3.14159265358979

lc.| absolute magnitude of vector or scalar a

Where dimensioned quantities are used, cgs-Gaussian units are understood.

Jackscm59 discusses this choice of units and gives conversions to other

systems. In these units,

e = 4.8 % 10-10esu
2 \1/2
4m e” N
w =|l—=2] = s.64 x 10“[.\1 (cm‘3)]1/2 st
pe m e
e
2 \1/2
4T e” N,
w = |——2 = 1,32 x 103[:\1.(cm_3)]1/2 s for " ions
pi m, i
o =B . 1.76 %107 BG) st
e m C
e
-1 +
2, = % = 9.59 x 10° B(G) s ' for H' ions
W 1/2 W (eV)
A = | —— = 7.44 x 10° —=— | cn
¢ \4r e N, N, (em™)
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Appendix B. Normalization of Distribution Functions

+
The electron distribution function F;(E,u) is normalized so that

N B(S) nax¥nax F:(E,u) + F_(E, 1)
N(s) = Tan [ s 7> @D
n S errv(e) [—(E-uB(s) - w(s))J
e o,
where all symbols are defined in Appendix A.
For a Maxwellian distribution,
F (B = C_ exp(- =~ (82)
e ! e S¥P we ’

the E integration in Eq. (Bl) is conveniently written in terms of variables
= uB/W, andy = (E - uB ~ Y)/W_:

Aw+&x

LA o exp (- UA dx exp(-x) dy exp(-y) » (B3)
N e e W 1/2
0 e/0 0 y

where AB = Bmax_B and AY = (lbmax-\b)/we, and the s dependence of N, B, and {

has been suppressed. The integral may be formally evaluated as follows:

o + Bx @

f dx exp(-x) Jr dy _e_leEll_= [—exp(-x)y(%, o+ Bx):;
0 0 y 0

g expl-o -~ (1+8)x
+ Bfo dx (u+sx)1/z

1/2
- 1 B o)L , 1B
= Y(z,a) +(l+8) exp(s)}“(z, a g >, (B4)

where the incomplete gamma functions Y and I are def]‘.nedE|0

X
Y{a,x) Ef dy y* Lexp(-y),
0
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I(a,x) Ef dy ya-lexP(-y) = TI'(a) - v(a,x).
X

If the identifications & = Ay and B = AB/B are made in Eq. (B3) and the

relation Y(%,x) = Tl’1/2 erf(x]'/z) is used, then Eq. (B3) reduces to

:_0 = 1r3/2 Ceve3 exp<%‘:—> erf [(ALD) 1/2]

max

Since Y = 0 at the centerplane, Eq. (B6) yields

1/2 1/2
-1 3/2,3 Yuax Bnax o B9
C =7 v erf + | == exp{——
e e W B B -B
e max max 0

1-erf Bmax uJmax 172
B __-B. W *
max 0 e

As B - Bo, the asymptotic expansion

max

erf(z) ~ 1 - —1/+ exp(—zz)
bt z

may be used to find C_ in this limit:

- v 1/2
c 1 < TI3/2V3 orf <max> .
e W

e
e
This form approaches the pormalization constant

-1l . Tr3/2V3
e e

c

of an unconfined Maxwelllan distribution as wmax/we becomes large.

For a cutoff Maxwellian distribution,

. . E
F(E,1) = C_(HB___+y - E) exp( "’e)’

-85~

1/2
1/2 By -B ¥ B
+(§B ) exp(————-——m;: A8 max ) l-erf ( X;xl AUJ)
wmax
W

e

(B5)

(B6)

(87)

(88)

(B9)

(B10)

(B11)



*he number density integral, Eq. (Bl), is rewritten in terms of x and y as

N
N—T\'CV

i ap+ 3B
3y W)f ax exploxs | &
exp(- — x exp(-x,
o ° e ¥/ 0

(m+%“‘ﬂ%ﬁg- (812)

The first integral required has the same form as Eq

. (B4). The remaining two
are evaluated as follows:

a+Bx

f dx x exp(-x) [ dy Q—‘;L](.%)—

- [_(1+x)exp(—x)‘y(%, OL+BX)} + B/ dx (1+x) ex( -: ;1/(]2.+B)x]
1] 0 at+Bx.

1/2} fa_
b ) B 2 e g5 (3 22 o) ewls) o

\B

and

at+px
f dx exp(-x)f dy y exp(—y)

= [-exp(—X)Y(%. a+8x>] f + 8 f dx (a+6x)1/2e>=1= [-a-(1+B)XI
() 0
3/2
_ (3 R 3 1+8 (B14)
= Y(Z’a)+(1—+§) exp(s)r(z, & OL).

Substituting Eqs. (B4), (B13), and (Bl4) into Eq

. (B12) and again taking
o = Ay and B = AB/B gives

%a - nc, VZ W 112 exp( L)(Aw +__ - _)e c I(M’) 1/21 ‘

N\1/2 By =B ¥ . B 1/2
(GEEY ool (e (e Dt oo () o0 @
max. e €
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Evaluating Eq. (Bl5) at the centerplane then leads to

- 12 B b \1/2
cl o gy g2 (max | max 3} of ‘max
e e e We BO 2 we

3n/2
Tr(Bmax_BO) B0 ll'max Bmax wmax 1/2
H— explz——= l-erf B b W

2 -B. W
B() Bmax max 0 ‘e

v 1/2 v
+<%:5) exp(——::—:—’s) . (B16)

In the limit B + B, Eq. (Bl6) reduces to
ma 0

X

~1_ _.3 /2 wmax 1 lJJmax 12 wmax 1/2 wmax
e T e ’l“ (—r - E)“f (T) AN A I
e e e e

(B17)

For large wmax/we

reduces to the normalization constant for an unbounded Maxwellian distribution,

, the first wmax term is dominant, and Eq. (B17) again

Eq. (B10), multiplied by wmax'
For the ion distribution treated,

P (s,v,5v) = X2 w0y F D, (18)

Q

the functions Fy and F are unit normalized separately. The parallel distri-

bution must satisfy
«
[ dv, Fu(V") =1, (B19)
T=00

and for a Gaussian form,

Futv,) = C, exp(-ava®), (820)
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Eq. (B19) gives

_ fall/2
Cy = (F) . (B21)

The average of v"z,

2 ® 2 cy 772
<vy">=Cy f dvy vy" Fu (va) =% 3 (c2)
J 2 372
= [+)
leads to the relation
1 =
o= =g (B23)
2<vn > Vi
The perpendicular distribution is normalized so that
©
2 2
k dv,” F,(v]) = L. (B24)
For a sharply peaked distribution,
Fow,? =c, 8(v,? -
L5 = 8w -, (B25)
Eq. (B24) gives immediately
c, =% s (B26)
and the integral of v™ yields
2 e 2
<v/?>= 'né w2v?rwb =0 (827)
For the family of spread distribution functions
F 905 20, D03 [—(j+l)owlzl , (828)

Eq. (B24) leads to

¢, - [ir1yal it (829)

mi! ’
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and calculating <"1.2> gives the result o = VIZ. In particular, for j =1

c, = —2 (B30)

Since the parallel and perpendicular ion distributions are treated as
independent, there is formally no relation between V. and V,. An expression
relating the two root mean squared velocities appropriate for magnetically

confined ions may nonetheless be derived by taking

E
Fy (E,u) = C; (uB__ -E) exp '(iq) . (B31)

The electrostatic potential has been neglected here because Ni > wewmax
is normally valid in mirror devices. 1If the velocity components are written

as v..2 = 2(E - uB)/m:.L and vl2 = ZuB/mi, the parallel average is

J1t:3
] max

2 2. _ 8B f 2 1/2 _ E
v," = 2> = - Ci{ du dE [—m. (E-uB)] (]JBmax E) exp )

m, uB i i
1
(B32)

where the s dependence of B is again suppressed. In terms of variables

X = uB/Ni and y = (E—uB)/wi, Eq. (B32) is written

2 5. x 1/2
Vo© = 2m G .V, W, f dx exp(-—x)/'B dy y (Bx-y) exp(-y), (B33)
i1
Q 0
where B = (Bmax-B)/B. Since

2 Bx o
{ 1x x exp(-x) [ dy yllz exp(~y) = 83/2f dx xllz (1-x) exp [-(1+B)x]
: 0

0
3/2 r!i!
- [B) 3 2
- <1+B) l“(2) g | (B34)
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- and

o

X
/ dx exp(~x) f dy +3/2 exp(-y) = 85/2 f dx x3/2 exp(-(1+8)x]
(4] (4] . [4]

5/2
_ (B 5
= (1+B) F(2> , (B35)
the V”Z expression, Eq. (B33) reduces to

5/2 (3)

1" =

v?- zwci.viswi L) . %6
(1+B)3/2 (B36)

The V, 2 integral,

1B .
il uBmax E

max
vizaw Bt [ [ 2 e 77 exe(- ) (837
n’ 1 iB 1 [ (E-uB)| i
1 mi

is similarly rewritten in terms of x,y, and B:

@ X
2 5 —
vo= 11Ci\/i wi _{ dx x exp(-x) j dy f—;f/% exp{-y). (B38)

The required integrals are Eq. (B34) and

® Bx
f dx x2 exp(-x) _{ dy exply) 1/2 / dx _i’/ﬁ-z exp[-(1+8)x]
0 ¥ 2
(5) 3 ]
1/2 | Ti= 2r )
- (L) 2l 4 2 (2 + zr(l> . (839)
1+B8 (1+B)2 1+8 2 |

Substituting Eqs. (B34) and (B39) into Eq. (B38) gives

3/2 |
2 Sy (B 3 1
v o= ‘n’CiVi wi (l+B) [I‘(z) + 21‘(2) (1+B)J . (B40)
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The velocity ratio 1s then

v,_.2 _ 28 - 2By~ B . (B41)
w? 1F 2(1+B) T(1/2)/T(3/2) ~ 4 B___ + B

Even though the loss-cone distribution, Eq. (B31l), is inconsistent with Eq. (B18),
the velocity ratio, Eq. (B41), may be evaluated at the ion resonance point

Sies defined by w = jQi(sres) and then used to relate the mean squared velocity
components appearing in Fn and F,. This is a useful approximation because it

is accurate where ion-wave interaction is strongest.
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Appendix C. Symmetry of Eigenfunctions

The integral equation for the wave putential ¢ is given by the perturbed
Poisson equation, Eq. (27), with the density perturbation, Eq. (36):

2 ©
2 N QOD/ / max max
- d(s) = 2m8_ % B2 [ qy 2 2 4(s)
10 0G m uB(s)+¢(s) vu(s)

-ijﬁ [ :;F: ‘“;Q:Z j( ) /d: ofsscen)
el w

*
As in Chapter 2, s;(t') denote positive and negative going particle trajectories
intersecting s at time t, and the E and u dependences of integrand quantities
have been suppressed. To display the symmetries of Eq. (Cl), it is convenient

to rewrite the equation as follows:

Ny t J? meax+wma
0=_) de’ du -’—-——l- Cy §(t-t")
+ g S 0 UB(S)'HJ)(S) va(s)
‘\‘, t " ( j o ) * vl
2 Cag el l‘ ae (o - 3o St elsien] @
where
2 2
c = wguo aFu N Klo Fu
o m 9E 87 B ’
o
and
i o F . OF K 1/2
c .= Pu0f “a, JQ o) 2]% (2B
af ~ n, (33 B du i £ m, .

When a trajectory sa(t') defined as in Chapter 2 crosses the centerplane with
positive velocity at time t' = 0, the relations, Eq. (49), allow the sum over
positive and negative going orbits Eq. {(C2) to be performed:

~g2~



. uB v

) g ’/ aw 1( » 1'A/B(s)+ll-'(5) T:?)T

Loy

XHC“ Sle=th) - jg_,m Cos exp’-itff aet (m-ma Isa(t"to)l)]¢lso:(“"to)l

+[Ca6(t—t') - § Caj exp[—ijdt" (w—jﬂa[sm(Zt-—t'-to)')] ¢J[5a(2t—t‘-t0),

oo

uB_ -+

@ 2 inax 'max 1 c3)

=% lo a o/ o qu(s>+w(s> vu(s)

x lcu S(T'- t + :O) - ; -m 5 exp[—l J[Idr"l w—JQ ls (1"4 ]; ¢l5 (' 4

From the defiuition of to, Eq. (50), the quantity

ds’ (c4)

8
TEt—tO(S)={mS—.)T

is a single~valued function of s, and the inverse function is

s =s,(1) . (c5)
The integral equation, Eq. (C3), may then be written
@
=%—/n; a1’ K (T,7") ¢ sa(‘r')] , (c6)

where

/’P -}I‘Bmax+wmax 1 "}":
X (1,7') = dp dE -‘———'- c, &{(1-t") - C_;
¢ 0 uB(s (1] vals, (Tl ¢ i

exp[—i T/'I dt" (m—ja’)alsa('r")’)]} .
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When B and § are even functlons of s, the trajectories s, are odd functions

of time. In this case, Ka has the symmetry
K (1,1') = K (-1,-1'), €7

and since a solution ¢ must be valid for any 1, it follows that

0 %!:dr' Ky(-T.1) ol a0 ] = %f art K -T,-t) ¢fs (0 |
=\_a‘j:dr' 1(Ul (t,t") ¢l-—sa(’(')i . c8)

The function ¢{-s) is therefore also a solutiorn of the integral equation.

Because Eq. {(C6) determines ¢ within a constant factor, Eq. (C8) gives

o(s) = Co(-s). c®)

Repeated substitution of Eqs. (C7) and (C9) in the integral equation then
yields

@ w0

% Jf dr' K (1,1") ¢|5a(T')l =C % jr ar' Ka(r,-r') ¢[sa(1‘),

Zoo Zwo

;‘;[: T! KQ(T,T') ¢i50‘(‘[')‘. (c10)

Since C2 = 1 according to Eq. (Cl0), C = 1, and 9 is either an even or odd

function of s.
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Appendix D. Analytic Approximations of R:m and R:m

Analytic approximations of the electron and ion response matrices Rsn
and R:n are useful both to check the numerical evaluatiun procedures and to
show the explicit dependences of the matrices ca plasma and field parameters.

4 simplified expression for Rzn is obtained from Eq. (56) by assuming
Maxwellian electrons and by treating electron orbits as simple harmonic motion.

A Maxwellian electron distribution is written in terms of Y and u as

!
F =C exp|- Y (b1)
e e &XP W N
e

where Eq. (B7) gives the normalization constant. This form is used both
because electrostatically trapped electrons are expected to be near thermal
equilibrium and because the resulting R:n expressions are significantly simpler
than those derived for a cutoff Maxwellian distribution. The assumption of
sinusoidal electron orbits is made to permit exact evaluation of the integrals

S and Tlm in terms of Bessel functions. Since an electron turns at s, =

Xsmax’ the appropriate sinusoidal trajectory for a bounce freq:ency wy is

s(t3E,u) = XS pax sin wb(x,u)t |. (b2)

This expression is exact for quadratic Y and B fields. In this case, Smn

from Eq. (57) takes the form

4 /2 _ _ - . N
Smn(x,u) = ;_{f de 5clkm X 5in(t)}5c kn ¥ sin(e) |, (D3)
where t = wb(x,u)t and km = kmsmax' With the identity
se(x)sc(y) = % Re {exp[i(x—y)] + (-l)u exp[i(x+y)]} (D4)

and the integral representation of Bessel functions of the first kind

5

Jn(x) = E% dy exp{-iny + 1 x sin(y)], (D5)

El
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Eq. (D3) is rewritten

/2
Smn(x,u) = % J[/ dt !expli(im-in)x sin(E)l+(—l)G exp[i(im+in) sin(E)l}
=r/2

- JOI(Em-En)XI + ¢1° JO[(l-cmﬂ-cn)xl . (D6)

The iantegral T, from Eq. (52) is similarly reformulated as

1m
/
Tlm(x,u) = %:ég 2 dt sc|(22+U)Elsclme sin(E)l

s

%; / 4t 2explj(2£+ﬁ)?: - ik sin(E)]+(-1)° expli(zuo)E * ik x sin(E)”

- z 1y° z
= o apo) T+ ED_(4) (0

2J22+U(kmx)' (D7)

Here, the Bessel function symmetry relations apparent in Eq. (D53)
= (= n
Jn( X) = J_n(x) (-1) Jn(x)

have been used. These orbit integral expressions are exact when the unper-
turbed fields are quadratic functions of s, and they are close approximations
except for strongly nonquadratic fields. When Egqs. (D6) and (D7) are substi-
tuted for S and Tlm’ the R;n expression reduces to Eq. (63).

The bounce frequency wb required to evaluate the u integrals I1 and I2
in Eq. (63) is found as ar explicit function of ¥ and u by approximately
evaluating Eq. (45) for general symmetric equilibrium fields. If terms of
higher order than s are negligible in the power series

4

L, 2
Y(s* = Als + Azs + ...
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and

2 4
B(s) = BO + Bls + BZS + .o (D8)

representing ¢ and B, then Eq. (45) becomes

m 1
wmoom - 9 » (D9)
2w, (1) {X (i_)l/?. |31(X2 2 B, 4 _ x4)11/2
e

37 “max
are understood to be functions of f. When BZ > 0, the change of variables

where x = s/sITIax is used as the integration variable, and Bj = (Aj + uB.)SzJ-2

cos ¥ = x/X reduces Eq. (D9) ta

) m_\1/2 ©/2
Ti z(_&-3) dy 1
2y (x5 1) 2 lBl + 32)(2(1 + cos? ) 1/2
2
m 1/2 B,X
(3 L) "« ), (D10)
2
B, + 28X £y + 28,%
whrre K denotes a complete elliptic integral of the first kind
/2 3
K(a) = j dy 7 for o > 6. (D11)
(1 - o sin” y)

Similarly, the substitution sin y = x/¥ gives

/m 1/2 8, |x%
o (;T 53 L) x(—2—— (o1
3 - -
b By - IBylx B, - [B,lx
for Bz < 0. Since B and d are required to be monotonic, the denominator
Bl - |89|X2 in Eq. (D12) is always positive. The bounce frequency for quartic

fields is then
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22 1/2
i/2 Al+unl + 2(A2+u52)x Smaxl

W
wh(x.u) =3 (m—)

Y for A +uB, > 0
N (A, +uB)xZsZ I 27F2
22
fl+u31 + 2(A2+u32)x Spax ]
(D13)
. 22 11/2
w2 \H2 [ARuB, - (A2+u32{x s “max
=5 = 772 for A2+u32 20;
€ |A2+“BZIX Smax
2 2
ﬁl+”31 ]A2+u32]x Smax_
and since K(0) = %, the zero-energy bounce frequency is
ZAl 1/2
Wo = lim mb(x,u) = E;— . (D14)

xX+0
w0

The simplest case that shows bounce resonance effects is that of electrons

confined by a quadratically varying electrostatic potential
2
Y(s) = LA (D15)
In this case, the bounce frequency expression, Eq. (D13) reduces to

_ [z, e
© = Yo <me “1) (D16)

for all electrons. The simpler equation for R:n’ Eq. (67), is then valid,

and for the Maxwellian electron distribution, Eq. (D1},

W00 26, EX

o%

exp(- €x%) , (017)

max

where the parameter £ E'mzbosiaxlvg is gilvea by wmax/we for the quadratic
field, Eq. (D15). The integrals then appearing in Eq. (67) are approximated
by noting that the maximum potential wmax in typical mirror devices is

greater than we by a factor 2 or more. For the nominal value wmax/we = 4.5,
the exponential factor in Eq. (D17) is less than 0,01, and negligible error is

introduced by extending the integration to X = ®. The resulting integrals are62

-G R=



o

200 o 1 2
_/ dy x exp(-&X )Jo(kx) =gz e |- ZE)’ (D18)

0
and
- Kk 2 2 Bk
/[dx X exP(‘EXZ)J k_x)J k) = e expl- ) _m3a
5 20+0 " m V2840 28 4E 2040\ 28 [’
19
where 1 is a modified Bessel function of the first kind. With Eqs. (D18)

2840 o
and (D19), the Rmn expression, Eq. (67) ylelds

(1)1/2 exp [_ MZ] . )? exp{_ (_l?m_if]

4t aE

( Emz + En2>w W2 (Emir9
- 4 expl- Z I
% 220 w?- (20402 “’bc,z 20\ 2¢

(D20)

Here, the approximate form Ce = (ﬁB/ZVes)-l from Eq. (B10) has been used. 1In
this case, R: is real valued because there is no spread in bounce frequancy
to attenuate the wave.
When e'ectrons are confined by both the quadratic potential, Eq. (D15),
and a gquadratically varying B field
B(s) = B, + B, s2, (d21)
0 1

the bounce frequency from Eq. (45) becomes
-2 1/2
wp () _[“‘e (Al+uBl)] > (p22)

and for the Maxwellian distributionm, Eq. (D1),

, 2 2.2
aFe((,u) . ZCe (A1+|JB1)smax e | - uBO + (A1+uBl)x Spax
X W, X exp (R
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. 9 -
w () ( 22 )
- b0 v _ B\B, + B.X"s
= 2Ce EX - exp EX a = 1" “ma: . (023)
e

“bo

o esi.'mate the real part of Rgn, the condition

B15max - Brax = Bo Ye
BO; BD 1ym.ax

<< 1 (D24)

is imposed. The u dependence of wb then affects Rzn principally by spreading
the bounce~frequency resonances. In the R;n exprassion, Eq. (63), the

integrals Il and I, may then be approximated by replacing the nonresonant w

2 b
factors by Wt
r Y
2C EX @ i u!s + B.X's ’
2 0 1" “max
I.(x) = - < exp(-£x") du expl -
1 “%o %f we
2
C m Ex v
T - —5;:——%*—2 exp(-£x%), (D25)
0 BO+le Spax
and -
22
H (Bo + ByX Smax)
2C Ex o exp W
1,06 ~ - === exp(-ex) [ au —- <
0 0 1__(2_£_+_o)(A+B)
w 15
e
Cm ngx exp("EXZ) exp [—v (0)] El [—-v (0)]
=2 £ & for 2%+0 > 1
“bo (2240) B,
(D26)
= 11(X), for 20+0 = 0
where
22
B .+ B.X's
- _0 1% “max 2 22
v (X 2 [m - (2%40) “’hoJ >

2
(2R+0) Blve
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and El is the complex exponential integral (63)

- 7 exp (-y)
E (2) = -,./ ay —Ly—y . 027)

When the inequality in Eq. (D24) is satisfied, the spatial variation of B may
be neglected in the integrations of Eq. (66), and the upper integration limits
may again be extended to infinity. The integrals then have the same form as

Eqs. (D18) and (D19), 1In this approximation, the real part of R:m is

1/2 k& ) (k +k )2
(.—. exp[— 2 n ]+ -n° exp|- =

ey . _1
Re (Rmn) - 2 £
=22 = =
k +k k k B ¢ o
- 4 exp\- “) 101 i)
i %, B By ud il
max l‘lbO
[ l'cmﬁn
Xp| -V (0)} E [\) (0)] 1 A=
S¥P| Ve i e 2840\ 2% i (028)

(2140)°

s

where Ei(x) = -Re [El(-x)] is the real exponential integral defined by Eq. (I4).
The imaginary part of R:m comes only from the singularity in I2 and may b

evaluated without the restriction of Eq. (D24). Whenever the I, singularity

n mz - (22+0)2m12)0
uﬂ = 298 2 (p29)
1 (22+0)

occurs on the positive U axis, w 1s assumed to have an infinitesimal positive
imaginary part to satisfy causality. Since the real axis integraticn path

in 12 then passes beneath the singularity, the imaginary contribution is

2 2
7 m EX B + B .x's x)
___ee w _ _ 9( o] 1* "ma
" {Iz(x’l)} B B, 2o P £x") exp W

(D30)
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Extending the x integration limit in Eq. (63) to infinity again gives as
integral with the form o. Eq. (D19) and leads to

k k
m n
3/2 By & Epes Ei*ﬁz exP[-Vl<0)] 1ZE+'J (251 >
Im(Re) x - 27 3 -5 }_ exp _‘_n 173 . (D31)
mn max 0 f=1-0 3 £,
where

£, =
£

e 3
(28+0) W@
and Eres is the largest integer giving a posilive ul.
The effect on R:n of a slightly nonquadratic potential is seen when B
is given by Eq. (D21), and the ;otential is taken to have a quartic form
4

Y(s) = Als?' +As . (D32)

If the further condition

2
>>
A1 2A2 Smax

is imposwd, then the elliptic integral series expausion

2.5 |1 x,9 2 24 fi_o=x_3 2
k (x)—[2(1+4+64x +)] "ﬂz(l TR +)

(D33)

may be used in the bounce frequency expression, Eq. (D13), and leads to the
result
3 2 2 ) A

2 =2 ERN .
wb(x,u) = n_ (Al + usl + 3 AZ,( S ax + 000y (D34)

The quartic poiential term acts principally to further alrer bounce-frequency
resonances. In evaluating the real part of R;n’ the spproximate forms of the
U integrals I1 anq I2 given by Eqs. (D25) and (D26) remain valid provided Vo
is redefined
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2 2

B.+BX s 3A.x" s
noo - LT L2 no? (2« L)), o)
(2%40) B, Smax e

This alteration makes the singularity at Vo = 0 in Eq. (D26) integrable and
shifts the peak of the resonant factor exp(-vl)Ei(vz) in frequency by about

3 2 2 2 . <
= <>, .
2 (Azsmax/me wa) X eIf the condition in Eq. (D24) is again assumed
satisfied, then the Re(Rmn) approximation for the nonquadratic poteatizl

becomes identical to Eq. (D28) in lrwest order. The imaginary part of R:n
for the slightly nonquadratic potential ic obtained in the same say as the

A, =B_=0 case. The singulavity in 12 then occurs at

272
22
3A,4"s
2 2{ 2 2 max
) w = (2240) wb(‘ + ———me
o (X) = 55— . (D36)
A 231 (21+0)2

1f My is positi.e for all XZ < 1, then *hen 14 terms are neglected, the

Im(Rﬁn) expression becomes formally identical to Eq. (D31) with Z. redef ined

2
2 B 3A. s
- W _ 0 2 “max . (937)

22 B _=-B 2
(2240) Weo max 0 m, Wg

&y,

1n chis approximation, the quartic potential term affect:s electron damping

both by changing the magnitude of R:n through the :1—112 factor in Eg. (D31)

and by determining through the Bessel function argument which matrix element

is dominant. When My from Eq. (D37) is negative for some 7 values 1ess than

upity, the X integration in Eq. (66) must be lirited to the range giving

7} > 0, and the resulting lm(R:n) expression is more complic?teu vhan Eq. (D31).
4n analytic estimate of ion respornse matrix elements R;n is obtrained by

evaluacting I(kl’kz’j) defined by Eq. (97). The strongest ion interaction for

even modes is expected when w=jQi0 in the integral and the oscillatory expo-

nential factors involviag %. and k, are unity. In this approximation, the

1 2
remaining integral is
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o
1
I(k; .k, ,5) ~ { dz -
172 (ijAQz)llz(l + iiég Vuz z3i112

>3

~ 1 — f dy 1 .
1 (J.AQ)IIZ(Ji(zN..)llé § VL D 5

(D38)

y?)

1f a path along the real axis is chosen, the integral in Eq. (D34) splits

immediately into real and imaginary parts.

1 on
fd -1 _ d - - i d [ S
4 B PRV Y e 3,172 Y 23

v 1-y7)
(D39)
. 64
By using the beta-function relation
1
B(c,B) 5{ dy yO"_1 (l-y)B_l = —L';EZ_'_;)(B) »

the integrals in Eq. (D39) are immediately evaluated:

1 1
~ 1 2 -5/6, -1/2 _1 . {1 1)
{dy VEPR NV [ PawT =58 (e'z) » (D40

0
and = 2.43
f°° N 1 L2y -2/3) 52 1, (_; l)
T 23 123 { v v 3° 2
=1.40, (D41)
For a quadratically varying B Tield"
2
M= 1 ? 21 - 2;-0— —-———B"‘:"’Bo . @42)
Js S 0

s=0 max
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Eq. (D38) may then be written

2

By S ax 2/3 12 1/6
I(kl’kz’j) ~\FT =B T =3 (1.40 -~ 2.43 1), (D43)
max 0 10 Vu

and from Eq. (94) the correspending response matrix elements are

22 2 \1/6 2/3
i 12w f12%% s B
R - -7 A =& ;0 max = 9 (2.43 - 1.40 1),
i Vi max O

(D44)

Since the integrand of Eq. (D38) neglects oscillatory factors, the magnitude
of Eq. (D44) is an upper bound on IR;nl calculated from the complete

quasi-local expression, Eq. (94).
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Appendix E. Evaiuation of R:nn and R®

The integrals in the response matrix expressions, Eqs. (65) and (97),
have singular integrands that require careful treatment in numerical evaluation.
The integral in R;n is calculated along the real p axis, and when fre-

quency w is real, the resonant factor is singular at positive values u, satisfying

w = (22+0)wb(x,ul). (E1)

In this case, the singularity is removed by adding an integrable term that
cancels the singularity at p= 7Y and subtracting the analvtic integral of that

new term. Near b, @ Taylor expansion of wb gives

2 . mz . iuif -1 (%) (E2)
mb(mv) : m Em - [Ll PRSI
2

The singular term of the W integral is then formally rewritten

o

du G Gop) L
of Yo w?-(2240) 2l (o)

o w? . Comn l:x,ulfx)

[ a o (s
~ poexp[-v (1 LG, (1)
b Rmn wz— (22+0)2m§(x,u) 2 awg
o \52 f-, 60
u=uy )

B(xs KoM (X :
_ B%nay! Sym exp (x)] [ [\) (x)] -1 w, , (E3)

du u=hg
where
1 9F_(X,u)
Glm(x,u) B mb(x’u) % TEm(x,u\ Tln(x.u) exp{v(x,w)} ,
vix,u) (X800 2
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and
Vo (x) = V[x,uz(x)] .

The final term in Eq. (E3) is the integral of the added i integrand term,

the principal value being the real exponential integral63
T ¢
By = - fay RN (£4)
=x

and the im term being the residue contribution at - In performing the
integration along the real p axis, the contour has been deformed so that u is
always below “2’ and therefore Im{(w)>0 as required by causality. Near Wy the

integrand in Eq. (E3) goes to a constant value

- exp |-y, 0 [aclmn(x’u)] [Bmi(x,u)]
(29v+\:r)2 ou B=Uy 3 Ualy
so the integral may be evaluated by standard numerical techniques. The
function Smn has no singularities and may likewise be integrated conventionally
aver d.
The exponential integral in Eq. (E3) introduces a logarithmic singularity
at values of X where Hp vanishes. To integrate the term over yx, the integral

is written as a sum of subintegrals, each of which is approximated analytically.

B{xs ) G [X.u )
- max” _fmn 13
Hemn O = g Ve (E5)
€ (2u0) 5

“b
TeT

If the quantity

is treated as a slowly varying function of Y, the required integral is written

1
Ty = 91 i 0 exp -, 0] lEi[VZ(X)]_ i n]

+
J Xj o ~

= v G exp(-y)

= .gi Himn(xj)_/i dx exp[ Vz(‘ﬂ ;L dy SRS, (E6)
= X3 2(x)
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where Xj are midpoints of the intervals ij bounded by points X§ = Xj + A—ZX N
and the exponential integral factor has been replaced by a complex integral.
Using vy as an integration varilable and Integrating Eq. (E6) by parts then
gives

J

) . (E7)
()

derivative has been assumed to be slowly varying over AJ)(. The

v
) R 2
1 ) LI ‘exp(—y) [Ei(y) ~ 1Tr] - —1—1“}(' ) ]
& v
2

Here the \)E‘
u integrals of Smn and the first term of Eq. (E3) are both smooth functions
of x and may be approximated by trapezoidal rule integration. If the intervals
Aj)( are taken cqual to the step size AX used for numerical integration, then

R:m from Eq. (65) may be written

nZVZB J ol
R
mn

eo v I N[z +w,II (+)]+w111 +
Trlesmax j:l ll,:l[ L (Xj) 37 Amn Xj i mn Xj ’

(E8)
where

B (Xsmax) Glmn [X’ul(x)]

I, (x) =
2mn We 2 Bwb B\)Q
Q+0) "\ o
U ax x=
w=iy X5

Vg (X +§i)
l—n}(,y—) -exp(-y) [Ei (y) - iﬂ] ,

wnfe - )

2 .
WGy ()

I, )=/ dv expr-v(X,U)] = 732,
mn 0/ [ {wz - (22+c)2mt2’(x,u)

G!Lmn [X’UR(X)]
awf)
24+0) 2<a—> [u—ug(x)-l
w/ 1
M=,
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Fig. E-1. Integration path for I(kl,kz,j).
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and

Here the weight factors wj are correct for trapezoidal rule integration with
IIlmn = IIIlmn = 0 at x = 0. In practice, the leading factor in Ilmn_is
approximated at Xj by linear in?erpolation between values at Xj and Xj'

The ion response matrix R;n requires evaluation of complex integrals
I(kl,kz,j) and II(km,kn,j) given respectively by Eqs. (95) and (98). For
I(kl,kz,j), an integration path in the complex z plane is chosen that avoids
all integrand singularities. From Eq. (95) there are several considerations
governing choice of a contour:

e For large |2|, Im(z) should have the same sign as w-jﬂio.
e As |z]|»0, z should approach the negative real axis so that the exponential
in Eq. (95) is strongly damped and nonoscillatory.

~1/3 should be avoided.

e The three singularities at z = (—ijAQV"Z/lz)
Appropriate paths for w—jﬂio greater and less than zero are shown in Fig. F-1l.
The angle either path makes with the positive real z-axis is selected to give
the integrand a large negative real exponential factor for large [z[.
I(kl,kz,j) is then evaluated by numerical integration of the real and imaginary
parts of the integrand along the complex z path, and integration is terminated
when the integrand kas become sufficiently small. The approximate criterion

for convergence of the integral is

7 1/3
. | Im(z) 1{isavy
min '—-‘m_jgio s 3 (———12 > z} > 10. (E9)

Because the plasma dispersion function is analytic, the integral II(km,kn,j)
is evaluated by numerical integration of the real and imaginary parts along

the positive s-axis.
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Appendix F. Evaluation of S;,and T\,

The orbit integrals Snm and Tlm defined respectively by Egqs. (57) and
(52) are unsuited for efficient numerical evaluation. Positions along a
field line must be calculated as a function of time, and since the integrands
have a sinusoidal position dependence, the appropriate time step for integra-
tion changes considerably as parallel velocity v, approaches zero near the
orbit turning point. Even though the numerical integration routine used43
adjusts the step size automatically, extra integrand evaluations are needed.

It is convenient to replace t by a variable

max ?

X = [x - s(t;X:u}/s ]1/2

where X is the dimensionless turning point st(E,u)/smax that is used instead

of energy E in evaluating R:n. In terms of x, the orbit integrals are written

N 1/2
Bwb(x,wsmx X /

. .
smn(x,u) __11___4 dx mxm sc[kms(x)}sc[kns(x)} , (F1)

and
1/2
8w, (x,1)s X
_ b max X .
T, Cuu = - 2 4 o T [(zmmb(x,u)r(x,x,u)] Sc[kms(x)} ,
(F2)
where
x x'
E(RIXE) = — ZSmaxK & s ool &3
s = - xDs (F4)
and
vg(s;x.u) = %—lu [B()-’.smax) - B(s)]+ blxsp.,) ~ ¥} - (F5)
e
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The bounce frequency is calculated as a function of ¥ and uw using Eq. (F3):

[ S
o, 0w = IR (F6)

Since both x2 and v% vanish linearly with position as s + S.» the x/|vu|
factor in Eqs. (F1), (F2), and (F3) approaches a finite value near the turning

point. The integrands are consequently nonsingular as desired.
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