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ABSTRACT 
Using 4 years of data from an E.A.S. experiment on Kusala Peak, 

wo have performed a power-spectral analysis on the flux of -бхЮ^З еу 
primary cosmic rays. Statistically-signifleant non-Poissonian fluc^uations 
are found, with a power spectrum proportional to f l foi frequencies 2xlO~8 Hz 
í.fílO~5 H z_ possible sources of these fluctuations are discussed: instru­
mental drifts, data analysis techniques, meteorological effects, and scat­
tering by interstellar electromagnetic field irregularities. 

АННОТАЦИЯ 
Определен спектр мощности потока первичных космических лучей с 

энергией -6х.1о13эВ с помощыо данных, полученных в течении 4-х лет в экспе­
рименте по широким атмосферным ливням, проведенном на пике Мусала. Статисти­
чески достоверная флуктуация носит не пуассоновский характер, и уменьшается 
по закону f i в интервале частоты 2.10"^ Герц < f í 10~5 герц. Рассмотрены 
возможные причины полученной ф.:уктуации: нестабильность аппаратуры> методы, 
использованные при обработке данных, метеорологические эффекты и рассеяние 
»а электромагнитных неоднородностях в межпланетном пространстве. 

KIVONAT 
A Műszála csúcson végzett kiterjedt légizápor kísérlet 4 év alatt 

kapott adatainak felhasználásával meghatároztuk a 6xl0 1 3 eV körült energiájú 
primer kozmikus sugárzás fluxusának power-spektrumát. Statisztikailag szig­
nifikáns r.em Poisson jellegű ingadozást találtunk, amely a 2xlO~8 Hz<f<10"5 Hz 
frekvonciatartományban f"l 3zerint csökken. Megvizsgáljuk a kapott fluktuáció 
lehetséges okait: a berendezés instabilitását, az adatfeldolgozásnál alkal­
mazott .nódszereket, meteorológiai hatásokat valamint a csillagközi elektro­
mágneses térben történő szóródást. 



1. INTRODUCTION 

The Extensive Air Shower experiment on Musala Peak 
has given evidence for a non-solar diurnal anisotropy 
/Gombosi, et al., 1975a/. The experiment has been run for 
several years with few major data gaps, and care has been 
taken in interpretation of the data to eliminate spurious 
temporal drifts. To verify the techniques used to eliminate 
spurious trends, we have performed a power spectral analysis 
of the flux observed at Musala. The statistically-significant 
fluctuations found and reported here are not due to long-term 
trends or detector drifts, to meteorological corrections, or 
to near-earth solar-system effects. They may originate in 
space far from earth. Several possible sources for the fluc­
tuations are briefly discussed, although their large size 
/^0.5%/ and their peculiar power apectral shape (f ) severely 
limit the possible production mechanisms. 

2. THE OBSERVED POWER SPECTRUM 

Four years of counting-rate data from the Musala 
experiment, composed of 3-hour average fluxes, were divided 
into 4 temporal periods. We calculated a power spectrum for 
each epoch, using the nested variance method /Owens, 1977a/. 
The four similar spectra were weighted by their 68 % ("Id") 
confidence intervals and combined to give the "raw spectrum" 
in Figure 1. This is the spectrum of the relative flux, 

n r - {J#-<J>}/<J> = AJ»/<J>, /1/ 

where J* is the observed flux and <J> is its long-term aver­
age, both corrected for meteorological effects /Gombosi, et 
al., 1975a/. 
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Random fluctuations due to counting statistics give 
flat ncise power spectrum of 

P(f) 2 /<J> /2/ 

/Owens and Jokipii, 1972/, where <J> - 2.5/sec. As shown in 
Figure 1, this Poisson noise spectrum is important only for 
frequencies greater than ,ЛЛ0 -5 Hz. 

LOG[f(Hz)J 
Pig. 1 Power spectra of the Mueala fluctuations. Filled circles 
are the raw spectrum of nr. Poisson noise level C'p")and con­
tribution of counter-tube jumps ("j") are shown. Heavy bars 
give "observed spectrum" raw spectrum minus p and j spectra 
with la confidence intervals. Solid curve is predicted result 
for a f spectrum with linear trends subtracted, displaced 
vertically for clarity. Aliasing frequency is f . 

The data used in these calculations had been correct­
ed for drifting counter response by subtraction of a fitted 
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line for each of the 5 counter-tube assemblies used. The count­
ing-rate difference upon changing tubes was 2.5 %, and the de-
-trended data used here had residual "jumps" of -xO.6 % at the 
joints. Each of the 4 spectra had exactly one jump due to the 
residual tube-changing effect. For a single jump of size 
d = 0.6 %, the power spectrum is 

P(f) = T d 2 U-cos(x)}/x2, /3/ 

7 where x = irfT and T^4000x3hr3<4xlO sec is the length of the 
data record. The spectrum of these jumps, averaged over the 
frequency intervals used in the power spectrum, is shown in 
Figure 1. It dominates the power only for very low frequencies. 
A similar conclusion is reached if one supposes that the 
temporal drift of the tubes has quadratic or higher-order 
trends. 

The "observed spectrum" in Figure 1 is for the re­
sidual fluctuations with the contributions of Poisson counting 
statistics and tube-changing effects subtracted. Low-frequency 
components with f'vl/T in this spectrum are reduced from the 
true level due to the linear trend subtraction employed in 
correcting for counter-tube replacement, as discussed by Owens 
/1977b/. Assuming that the true spectrum is a power law, 
P(f)ctf , we show in Figure 1 /solid curve/ the power spectrum 
of the de-trended data. The curve fits the spectrum quite well. 

We conclude that the true power spectrum of the Musala 
fluctuations - corrected for Poisson counting statistics, 
long-term counter drifts, and linear trend subtraction - is 

P(f) = A/f /4/ 

with A*=4xl0 Hz . This spectrum is observed over the entire 
frequency range analyzed, from 1/T to f . or for frequencies 

— 8 —5 
2x10 Hz<f$5xl0 Hz. These fluctuations have an rms size 
~0.5 %, similar to the Poisson noise /0.6 %/ in the original 
data. We ncte that the Musala fluctuations, with a 1/f spectrum, 
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cannot be produced e i t h e r by noise [which has a f l a t spectrum] 
or by long-term t rends [which have spec t r a p ropor t iona l t o 
1 / f 2 ] . 

3. METEOROLOGICAL AND SOLAR-SYSTEM EFFECTS 

In the Musala experiment, the air-shower flux was 
assumed to be of the form 

AJ/<J> = ВДР + CAT + d i u r n a * anisotropy / 5 / 

terms 

where the coefficients В and С giving the dependence of the 
flux on pressure /P/ and temperature /T/ were determined by 
least-squares regression /Gombosi, et al., 1975a, 1975b/. The 
data n used in the power-spectral analysis were pressure -
and temperature-corrected, 

n r = AJ*/<J> = AJ/<J> - ВДР - С ДТ. /6/ 

We next show that fluctuations in n are not due to insuffici­
encies in the meteorological corrections. 

The power spectra of observed pressure and tempera­
ture /at the P-120 mbar level/ for the Musala experiment are 
shown in Figure 2. Both spectra are fairly flat up to a char­
acteristic frequency f«10~ Hz [corresponding to variations 
with a period ^12 days] and have a shape of P(f)af for higher 
frequencies. These spectra are quite different from the ob­
served Musvla spectrum with a shape of 1/f. 

We have performed a cross-spectral analysis on daily 
averages of Musala and the meteorological data, using the FFT 
method of Bendat and Piersol /1971/. For the cross power spec­
trum P of x and y, the coherence у is defined by the rela-
tion 

Y 2 - l pxy( f)| 2/ { pxx< f> P y y ( f ) } - fl 
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Figure 2 Power spectra of 
meteorological data. Filled 
oiruteo and squares 
specira of pressure дг-ое 

(in mbar) 
the P-120 
Some la 

and temperature ''of 
mbar level, in °K). 
confidence intervals are shown; 
they are smaller for higher 
frequencies. 

Figure 3 Coherence between 
Musala and Pre в sure and Deep 
River. y(f) is shown for cross-
-power spectra of Musala and 
pressure (solid circles) and 
Musala and Deep River Neutron 
Monitor (open circles), each 
with v=S0 degrees of freedom, 
dashed line at y=0.2 gives 
bias level to he expected 
from uncorrelated data. 

For an estimate based on v degrees of freedom, there is an 
inherent bias in the coherence estimates, so that two per­
fectly uncorrelated records have a coherence of 

0.5 
Ybias * l 2 / v ! /8/ 

Our analysis shows no significant coherence between Musala 
and P er T for any frequency range, above the bias level of 
Y =0.1. This is illustrated for the cross-spectrum of Musala 
and P in Figure 3, where the average coherence is equal to 
the bias value. Thus the meteorological data "explain" less 
than 10 % of the variance in thu observed fluctuations for 
Musala shown in Figure 1. 

Next we considered solar effects and whether they 
could caase the observed Musala fluctuations. We used the flux 
of the Deep River Neutron Monitor /Steljes, 1971/ to investi­
gate correlations between the solar-influenced lower-energy 
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cosmic rays and Musala, and we investigated correlations be­
tween the Mus-ala flax and the interplcinetary magnetic field 
sector structure /Svalgaard, 1972/. The cross spectra be­
tween Musala and Deep River /see Figure 3/ and between Musala 
and the magnetic sector structure showed no coherence above 

2 
the bias level, with an upper limit of у ^0.1. The shapes of 
the Deep 4iver and magnetic sector power spectra were also 
very different from Musala. Deep RÍVCÍL has a spectrum pro-

-2 -7 -5 

nortional to f for frequencies 10 Hz£f<10 Hz, with a 

small shoulder at 5x10 Hz. The magnetic sector structure 

has a spectrum with a maximum near IG Hz and falls off 

for both highrr and lower frequencies. Therefore, the primary 

energy of the Musala cosmic rays is sufficiently high that 

nearby solar-system effects contribute negligibly to the 

fluctuations. 

4. DISCUSSION 

14 We have shown that the 10 eV cosmic-ray flux, as 

observed by the Musala experiment, has unexplained broad-band 

aoeriodic fluctuations with an amplitude 0.5 %, a spectrum 

of 1/f, and tin", scales from days through a year. These fluc­

tuations are not o2 meteorological origin and are not cor­

related with near-earth sc}ar-system parameters. They are 

not due to long-term instrumenta] drifts or our data analysis 

techniques. Although extreme care has been taken to insure 

stable operation of the detector system, and linear trends 

have been taken into account, it is still possible that very 

small amplitude, long-term aperiodic variations in the 

sensitivity of the GM tubes are responsible for the observed 

variations. Similar analyses using data from other detectors 

could test this possibility. If the fluctuations are not 

instrumental, the remaining sources probably must be either 

interstellar or interplanetary cosmic-ray scintillations. 

Interstellar scattering by random magnetic fields 

probably cannot account for the observed effect. From 



Liouville's theorem /e.g. Owens and Jokipii, 1972/ one can 
derive 

LJ*I--J' к (ЛВ/В)6 F /9/ 

where ЛВ/В is the relative field fluctuation, <S is the cosmic-
ray anisotropy, and F<1 is a frequency-dependent factor. For 
interstellar fluctuations whose wavelength (A) is much 
smaller than the cyclotron radius (r ) of the particles, as 
is the ca-=i heie, F"-,\/r • • <1 since the particles effectively 
"average" the field fluctuations over a gyroperiod. For the 
observed ar.isotropy f>~!0 J /Gombosi, et al., 1975a, 1975b/, 
even for ЛВ/В 1 this process fails by several orders of 
magnitude to exniain the Musala fluctuationr. 

A possible source is the "scintillations" of the 
high-energy cosmic rays in the electric fields that they see 
in the solar wind as they approach earth. The frozen-in mag­
netic field is convected outward by the solar wind with 
velocity V, giving rise to an electric field AE~AB V/u. For 
particles with charge q~Ze, the energy change AT~q AEL, 
where L is the size of the solar modulation region. Then we 
have 

AJ#/<J> ~ ГДТ/Т ~ (rZeV/сТ) (ДВ L) , /10/ 

where J(T)~T . Because of the magnetic sector structure, 
the fluctuations ЛВ<В>. Since the magnetic field changes 
throughout the solnr system, the term (ЛВ L) in equation /10/ 
should be interpreted as a path integral, 

j<B> dx /11/ 

averaged over typical access paths in the solar system. The 
value AJ*/<J>-0.5 % can be obtained if we take (AB L) =70 
/gammas/ /a.u./ and Z~25. This model may be implausible be­
cause it requires ЛВ L about a factor of 10 larger than es­
timated ;n equation /11/ and because it assumes that most 

14 of the -10 eV primary cosmic rays are heavy nuclei. But it 
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gives the magnitude and the approximate time scales of the 
observed fluctuations. 

Clearly, the large amplitude of the Musala fluctua­
tions poses a difficult problem in binding a plausible source, 
as does the unusual 1/f spectrum. Additional power-spectral 
analyses from E.A.S. and deep underground muon experiments 
would be very helpful in developing models for these fluctua­
tions and in testing them. 
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