
DPh-PFC-SCP EUR-CEA-FC-910 

DRIFT MODES ENERGIZED BY TRAPPED 
ELECTRONS IN THE CASE OF LARGE 

TRANSVERSE AZIMUTHAL WAVE NUMBERS 

F. KOECHLIN A, SAMAIIM 

August 1977 

DEPARTEMENT DE PHYSIQUE DU PLASMA . ( 
ET DE LA FUSION-CONTROLEE . •.. C 



DRIFT MODES ENERGIZED BY TRAPPED ELECTRONS 

IN THE CASE OF LARGE TRANSVERSE AZIMUTHAL WAVE NUMBERS 

F. KOECHLIN - A. SAMAIN 

•\ssoa-mo\ /:t arroxi-a: i si u L t n s/o\ 
IK-fttirlriHriil i(<- t'hwiifur tin I'tti.i/tit rl t'.f In l'tt*ii>tt i'.uiiinih'f 

Crntn- , f f . W ^ \,u-Uimr* 

Itrtitr I'oshth- n° ft, V22MI F<i\TK\ I) - If \-KOSi:s (I It i\(.l) 

ABSTRACT. 

The drift modes energi2ed by trapped electrons are 

discussed in the case where the azimuthal transverse wave num

ber is of the order of the inverse ion thermal Larmor radius. 

For the usual values of the shear, the* parallel wave number is 

then larger than 1/qR in the major part of the radial interval 

where the mode escapes ion Landau damping. The tine during 

which the trapped electrons remain coherent with the mode is 

reduced and the Kadomtsev dissipative mechanism is less effi

cient. The critical shear for the onset of the instability and 

the induced electron energy transport coefficient at a given 

level of the density fluctuation are estimated. 

RESUME. 

Les modes de r".priv_• rendus instables par les elec

trons piégés sont étudiés dans le cars où leur nombre d'onde azi

muthal est de l'ordre de l'inverse du rayon de Larmor des ions. 

Pour des valeurs normales du cisaillement magnétique, le nombre 

d'onde le long du champ est alors supérieur à 1/qR dans la plus 

grande partie de l'intervalle radial où le mode échappe à 

l'amortissement par effet Landau des ions. Le temps pendant 

lequel les électrons piégés peuvent être cohérents avec le mode 

est réduit et le mécanisme de dissipation de Kadomtsev est moins 
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efficace. Le cisaillement critique qui déclenche l'instabilité 

et le coefficient de transport pour l'énergie des électrons 

induit par le mode sont estimés. 

I - INTRODUCTION. 

In this note, we discuss the drift modes energized 

by trapped electrons in Tokamaks when the azimuthal transverse 

wave number K„ and the thermal Larmor radius of hydrogen ions 

f t hi verify K f^. . *J 1. Our motivation is to check if the 

density fluctuations which have been recently detected by the 

microwave scattering technique ^ !_/» Z 2_7, and which have 

in fact a wave number K.A; û . . , could consist of drift modes, 

and, assuming it is the case, if the electron energy flux resul

ting from the balance for electrons can be justified by the 

measured levels of the density fluctuations. The microwave 

diffusion technique gives the spectrum in frequency and trans

verse wave numbers of the electron density fluctuation 

on(x, t ) • Some hypothesis must be made to estimate the trans

port coefficients from the experimental data. It is natural of 

course to assume that the turbulence originates from the conven-

tionnal drift modes driven unstable by electrons. We then have 

r «. 
where &|/(x, t) is the fluctuating electric potential and 

2 
n, T = m V., /2 are the density and the temperature of electrons. 

(charge e and mass m ; p ., = V _ | eB/inC | ~ ) . We make a more 

stringent assumption, namely that the turbulence consists of 

modes which approximatively retain their structure in the linear 

range. In this scheme the modes are stabilized at a saturation 

level by some non-linear mechanism allowing the hydrogen ions to heccme 

resonant/"3 J .Due to the large value of the scale time involved 

in the unperturbed parallel motion of electrons (namely the 

transit time (K g V ^ ) - 1 or the trapping time Jf E t h) , such a 



mechanism is not'likely to affect the resonance of electrons. 
We may then calculate the irrever-ible action of the turbulence 
on electrons, e.g. the transport coefficients or the power 
density exchanged with the modes, by a 2 order perturbation 
theory.(The transport coefficients ror ion energy cannot be 
calculated, however, without stating the ej:act nature of the 
non linear process which saturates the turbulence). 

Let us consider a simple mode specified by a poten

tial of the form (see Fig. (1) ) 

S v ^ t ) s (p (?) fct|» lh) I + c. c. y (r> Cxf> Lfay + ?d + Ot) + C. C . 
1 (2) 

where q> is the angular coordinate around the major axis, 0 is 
defined by 8 = <p/q(r) ( q(r) = r B_ / RB ) along a flux 

line on a magnetic surface of radius r and © = 0 in the equa-
The mode may exist in the radial interval 

-1 
torial plane 
where the parallel wave number K|( ^ (r) = | R 
is small enough to prevent ion Landau damping, 
K(/ y (r) < \ui\ / V 

=2) 
(M+^/q( r ) ) 
, e . where 

'I 

' t h i - Usually the e l e c t r o n dens i t y n ( r ) , the 
2 , temperature of hydrogen ions T. ( r ) = m. V , . / 2 and the safe ty 

fac to r q( r ) s a t i s f y T ± ^j T, ~3h/n"àr *J "&T; / T. "3r „j ~bcf j<^ "Jr /O r 
We then have u) ~J K ^d'iPt^-Jr v»iH> K-^iê/r.The i n t e r v a l =à. 
i s centered a t the r ad ius r such t h a t 

RK„ (v£) -- n+i(ff] =o (3 a ) 

and i s spec i f ied by 

l r - r / i < ù ~ e è k i - ^ ~eK-¥- ( 3 b ) 

where 

s * R T > r K q ' * <JR 

The next mode exists in the interval oo. centered at 
r = r^+l a n d 

e = \%< - Ti K f l 9 R 
(3C) 



We assume that \<Q Ç^^J-Ï , so that £ ^ ÇbhL *{r/«jR) * . The conse

quence is that the neighbouring modes strongly overlap. On the 

r hand 

k „^> = k e 
r - n . r- r( 

e 
-f 

9 * 
This yelds ** »(r) Q ft ̂ -1 for (r - r. )-v/p , and 

K^rj tj/?^ qR/r when[r_ r ^ ^ A . Thus we have K„4(r) cj £ » 1 

over tne major part of = ^ . 

Let us consider the set of electrons with an energy 

£ ; m V 7 2 on a magnetic surface labelled by r. Some of them 

are trapped ; let the frequencies 

^ -"^ 4 > * W T r J e T ^ <-*) 

Of " 'Elk V T ' ' J£tk" m 2 v ^ r ^ ^ 
I We) 

be their precession frequency around the major axis, their 

bounce frequency between the magnetic mirrors and their col

lision rate for detrapping. The mode may irreversibly transfer 

a power W to the circulating electrons of this set by Landau 

resonance and to the trapped electrons by a bounce resonance 

of the typeU)^-f> W b + M U» -O , with (> f- ° , or by the dissi-

pative Kadomtsev mechanism [fr-A • (As ^ " ^ O I L l^khh ^ 

Kg ft(v c^\Rlr) ~ ( n / m ^ cjÇR/rffc « -L , we may neglect 

M M with respect to ̂  ) , 

The Landau resonance with the circulating electrons 

is active for small enough values of K..«(rj • such that the 

frequency gap KvfiT) V (r /R) associated with the trapped 

electrons is smaller than either the mode frequency U o r the 



"1 
Landau resonance broadening . This is the case when 

« - ^ «?" < ^ " *.*('>«?*<•£ 
if we take into account ^~4_/that &U) ~j(K..f(n V) \> where 
i ^ y r/f? is the collision rate for 90° deflection of the consi
dered electrons. OF course the Landau resonance occurs only 
if- *c<: «u{(n v , i.&._, K l l f(r) cfR > ( r / R ) J / a a r t . / w b 

Also, we must have l<0/=[k„|(r) V„ | < k,^(r; V, f.e.,hj,^r;<)«>(r/S) M / « V 
The Landau resonance is also active for large values of K ptT*' 
such that the circulating and trapped electrons can hardly be 
distinguished by the wave. This occurs when the parallel velo
city change experienced by a trapped electron due to the 
mirror effect over a distance ^ £ n / K..fl(rj is small compared 
to the width of the Landau resonance Sw/«»/((•) . As o V v 
(r/ft)* V/(K,(f(rJ CfR) this condition writes \f(r)c\R >[U>J}{ V\ 

It is readily shown (see appendix I) that when the 
magnetic field, the profiles n(r) and T(r) and the values of 
M and tO are given, the power W T transfered to the electrons of 
the considered set by the Landau effect, when it is active, 
varies as W L rj A /^(""j/ /CS^( rJ v ) - J t i s a l s o shown in 
the appendix I that the bounce resonances U) + fc> W, + M jj _ c 

..JJ-1_ „ -I n T.. i-J j £ ° 

.% lA 
with p j* 0 are only active if 

M> ub and t l < Kt(ln cfR < (—) % & 

The corresponding transferred power W^ to the considered set is 
then given by W b ^ A |<fy(r}|a (r( R)^/{u>b K„t[r) <}«) ,i.e., 
W^/uNrV . Therefore the power W, + W, , and generally the trans
port coefficients associated with the Landau and the bounce reso
nances, may be approximatively calculated as due to the Landau 
mechanism, if we include the case (5) in the domain of activity 
of the latter. This domain then becomes 
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and [ V ( o ^ ^ u ^ M , _ £ L ) or *„,(».),«> ( f ^
4 

or /n)l > W b ] (6) 

This simplification is justified by the fact that in practise 

the power W T + W, appears to be small compared the power W„ 

transfered to the considered set by the Kadomtsev mechanism. 

This means that the effect of the Landau and bounce resonances 

is comparatively small and that we may content ourselves with 

a rough estimation of this effect. 

As compared to the powers VL and W, , the power W„ 

varies as W R w A z"1 £ < / % V*)'1 {rf Hf^ \< f^lT) >f 
where u)' r tû + IA u)„ l<* IfS.(r)> / is the bounce averaged value 
of li< (rj txf> t̂ fl+/*\<Bj and T is the time during which a 

trapped electron remains in phase with the mode. On a magnetic 

surface where ^n-fM £ "2/^ft ?as generally considered ^ 5, 6_7< 

we havel<Y^(r) >/ ~/ | ̂ ( r ) f and X is of the order of the 
time which is necessary for the amplitude A of the bounce motion 

of a trapped electron to increase beyond ofyi.e. Vnj J£-~' . 
We have in that casi W k ^ A(r/K)~'A (lfy(r;|* Y £ /(id1* + Y£*) . 
If K^(rj » -l/=f « , we have | <y^rj > | ~ | ^ (K(//(r; Aj vĵ (pj | „ 
|*f>t»"J/ (K„Ar) c)(?f'S • Also, the time T: is now the 
time necessary for the amplitude of the bounce motion to vary 
under the influence of collisions by a quantity <~> -i / fc h(r) 
rather than<\j qR. Therefore we. have £~lj 

and finally 

W K 

(Knt(n 9*. 



"H 
It then appears that the power W R is dominant compared to 

W + w, only if we have 

and the Kadomtsev mechanism has only to be considered in that 

case. Assume that y, <{J. and |u)'( m [UI\ . If |<«l)<y. / the 

Kadomtsev mechanism takes place for y, /uk •£ K,,«(r)Q^ < (U). /g ) '"* 

but in fact, owing to the strong decrease of \vv ~J 
A ÇW \%lr»V% O W 1 ̂ ' J fcr K̂ (rj 9/? » * , 
it is only active for k„^(fj«jf^^ ~i . (See Fig. (2a) ). 
If |lJ|>y% the Kadomtsev mechanism takes place for |Wj/tOb ^ 

^it-t(-r) Q ̂  <1 ^u/t-) > b u t i s e s s e n t i e l l y active for values 
of K„f(ri OR »J (\w)/f y< corresponding to U) C-w 1. (See 
fig. (2b) ). 

The growth rate of the drift modes in the linear 
range and the averaged induced transport coefficient at a given 
level of the fluctuating potential are the sum of the contri
butions of the Landau and the Kadomtsev mechanisms, under condi
tions (6) and (8), respectively. The Landau contribution is pro
portionnai to the integral Tz Jdr l<D.(r)\ / ^n^M over 
the radial interval where it takes place. The trapping effect 
simply reduces this contribution by reducing I. In this article 
we focuse our attention on the Kadomtsev mechanism. We estimate 
the critical shear (3o Ja d r) (given by (36) ) for marginal 
stability and the averaged flux V (given by (37) and (43) ) of 
electron energy across the magnetic surfaces due to this mecha
nism, for a mode of the following form, more realistic than the 
form (2) 

à^(x\ t) = ex{,lu)b ex/,;«cp y(r,e) +C.C. fa a.) 
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We compare the estimated values of T associated with the 

measured level of density fluctuations to the values consistent 

with the electron energy balance, in the case of the TPR 

expriment. 

II - PRINCIPLE OF THE CALCULATIONS. 

When acting on a given particle species p (ions or 

electrons), the potential o*^ giv?n by (9a) produces a charge 

density 5(° of the form 

£>p (x, t) = ex/» iu>t e x/»r>\9 e(u,r,0) (<o a.) 

where p Lo, r, 0J is a linear fonctionnai of y^, 9) . It is conve

nient to consider the bilinear form in <p(r, 6) and <£;£>•, B) defined 

by l'8_7 

r l (io bj 

We obviously have «o/w, /*l >̂ ŷ /s a when W, M and uV corres

pond effectively to a self consistent mode. The frequencytJ may 

be determined by this equation when the geometrical structure of 

the mode, i.e.W and l/^f^Sl^is known. The fonction kp(f", fid may 

be determined by expressing that the fonctionnaiô& is an extremum 

with respect to yV * , a condition obviously equivalent to 

the equation 2L 0 = o . The power .. which is irrever-

sibly transferred by the mode to the species p, i.e. the time 

averaged quantity 

where W = fie (lo) •# W , is given by 
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W p =_-2to It», fê (̂  , M, y, *̂J) 

The angular momentum P around the major axis which is irreversi

bly transfered per unit time to this species has the value 

As explained above, we will admit that these formulae are valid 

for electrons even when the modes form a stationnary turbu

lence. In fact, the quantity Tmfot_g\for electrons will appear 

in the form of an integral over the radius of the magnetic 

surface and the energy £ of the particles 

It is easily proved that the momentum which is transfered per 

unit time from the mode to the particles in the range dr e/f is 

equal to 2/A L(r ,t) dvdt • This momentum must be cancelled by 

the Laplace forces associated with a radial motion of these 

particles across the magnetic field . It results that the 

average fluxes P and f\. of elecfont and electron energy across 

the magnetic surface r are given by : 

F = .£ i « (t-(r,£) dt 2r> ^L i ~ _ _S_ 12. (Ur,E) de— 
e J L ' dp S eu . R J v êr\ 

e rs J = „ « i n r 

f . s i i H (l{r,i) êdtzx,^ ± a - ^ . i&(Ltr,i)tdt-d (\z) 
c e J l ' d0 S e a 4 R J *' J znKzrir l y 

where d <f> i s the polo ida l flux between the magnetic surfaces r 
and r+dr , of area S. 

I l l - CALCULATION OF THE FUNCTIONNAL ^(U),!*., <p, fll. 

Assuming t h a t the phase ve loc i t y W/ ^K Ç(r) -

03 R./^ + -t/ttfr)) of each component <K(>V «*J*;(PB + /* f + " ty 

of the p o t e n t i a l oV-1 (see Eq. (9b) ) i s l a r g e r than the thermal ion 
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velocities, the charge density for the ion species is readily 

calculated by the usual integration along the unperturbed trajectories/^/ 

The f unctionnal £- . , t reduces in fact to the 

term oê p_; corresponding to hydrogen ions if we have 

fi r r m- p m^i 

M. m; >> Z. m p / n p / 

where p' labels the impurity species (density n , charge 

•£ i /g) and mass m ^ , ) . We then obtain 
P ' 

fa r (on jpect« r v ' v 

where, assuming to simplify that = ° 

r tu 

p - V**' : w, . = _ _ f T. .2>L_ 
Lthi l^ft/rn.cj ' =*' \e\ Kg R. U r 

We have omitted in the expression of cj£- cross terms of the 

form J (ne.l/7; ) Ofr / f t J ( ( ^ f^p^^j^uRzvrdr which, i n 
our opinion, play a minor role in what follows. By assumption 

each <L/(r) is localized in the inteivalaàD specified by (3). 
re ° 
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To calculate the electron contribution «6„., to the 

functionnal to , we put as usual ̂ ~5_7 the distribution function 

3- for electrons in the form 

S"z F _ ±tt F +{Z afyt r,&) e*f>(>u>t +."/*»(pJ + e. C. ) 

T -r y 
where F is the local Maxwellian and each term t in 2L is the 
linear response to the potential ^«(r) e*k,ï{& • SrfA' u>f + < "I tf) 
The functions g. (v*,r,6) verify in the trapped domain the Fokker 
Planck equation 

(b) a e»y>H0 + d&e*K^inf) - i fci+ MW.) 4 1 <Wr; f,ctf&,,»?) 
Jf T dt ' T 4 

where d/dt is taken along unperturbed trajectories and 

U).z-Z± Til* + 11.-1)31.) /£» »WW*/*J 

The charge density fr,_e a
n d the functionnal «*£„_e specified 

by (10a) and (lOb) are given by 

et - I d,V (F ^ 1 > +Ze%(?,r.a;j 

«é 'r f... £ Z e J {$ r, 0 j ^ ( r j Cx/, /f'<?j ̂ ^ ^ , . ( 1 Si) 

Again we have omitted in the expression of «o cross terms «v 

We describe the phast space for trapped alectrono 

by the magnetic moment /*- c( *>v*/2&)(t+ 0{rfn;) = (i/^J [l + o(r /|?H ; 

the radius r of the magnetic surface/ the angular coordinate 

m around the major axis which specify the trace in the equatorial 
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plane of the flux line where the particle stands, the amplitude A 
of the bounce motion along flux lines and the phase 9 of this 
bounce motion. For values of/ 6\-£ "/& , i.e. A * "1*A , we 
may write 

2 
A 

f -- f * £ sm 

8 r -£- S<n <f 0<«) 

(U fcj 

The time derivatives d<p /ddtd and &p/dt: (Jg are the bounce 
and the precessionnil frequencies given by (4a) and (4b). The 
constant of motion A is a function of r, U. and V. , n«mely 
of r, ft and (see Pig. (1) ) 

£''.., i m v ' . U /,.ii = ±mV.f- + 2UBJL s^e (U t) 

For $ Sn/j we have <£'= m o/2.A /.2 . We may wr i t e the v a r i a b l e s 
expi({0+ M p) , a (y?; r, 6) exf>!fA<f a n d Cfa e*j>f*<p) in the 
trapped domain 

r •£)> 

q(ytr, 6) **/» >>? -- «*.'« f -£ ̂  (h, r, A) e,/. : f, <pb (n b) 

The Fokker Planck equation (14) becomes 



tJ ' z. OJ+Mu) 

The Kadomtsev mechanism has to be considered fehen 
the conditions (8) are satisfied. We anticipate that these 
conditions imply that the variable g. (V,r,S). expiM» inside 
the trapped domain is dominated by the term p = 0 of the series 
(17b) and is larger than in the circulating domain. In these 
conditions the variable g. expiMffls; g /f», r,Aj expi A ^ at 
a given position, i.e. for given r, ̂> , and 6, is more localized 
in the Vff direction than in the V, direction, and we may 
state 

where <oVji > is the diffusion coefficient in the V direc

tion, which for trapped electrons is readily found to be 

^ - S v ' x -i gfrve^ (Site * i) °&i A 

where of course the v a r i a b l e g (le, I-, A] i s considered as 
inction of \ / , v r & . 

For values of Attlqfi/i we may use (Ifib) to obta in 

w V T>>. i»£ X 

1 

where "àj./àJ and "à g. /&** are the normal partial derivatives of 
the function a /fJ, r, /I _) • W e obtain from (16a) the expression 
of )V pvf as a function of it, c, -* ; Cj» 
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flto _ f^îA cos*? + 2lh. d. « _ « . * • \\< 

and it then results from (19) that the variable C (L.1 rt A.) 
specified by (17c) is given by 

On the other hand substituting the values of ffl and & given by 
(16a) in the phase factor expi &9 expiM» we obtain the 
variable 5 /Ly r, A) specified by (17a) 

%n * J

0 ( k»f <r> -» ) ( " ^ t o - £ ( * + ^/wj ) ted 

The equation (18) for p = O may be written 

fu'g ^(U+KW^^L (̂r; J(K-̂ (rĵ j = 

This equation accept as a solution 

X - ± <^v" > - J!. <S *̂> Ji 

is given by (4c). This solution is acceptable for values of 

K|,p(rJ9l? JL> "i because it is small in that ~ase for 
A>rrqr?/Z : this is consistent with the use of (16) and with 
the condition that a (y,r, G) sxpi Mf a= 9 fu, r,A) e*£.'Alâ ~ , 
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it. the fronteer of the trapped domain. 

For Kl;£ (r) q R <Sr 1, the variable J^ Q /JU, r, Aj 

consistent with this-constraint may be approximated as 

% fc'*"1) = A(f.,r) fe'-'i) 
where £ r£f*Siy<? i s the value of the variable €.' specified by 

(16c) at the fronteer of the trapped domain. The variable /Y[*, r) 

may be adjusted by multiplying both sides ef Eq. (18) for 

p =•- 0 by (a, (U, r, X)\ and integrating over V„ and âin 

the trapped domain, for given L. and r. Noting that 3i = f in 

thf.- present case, we.obi.ain 

: ( W , M W j ) [fifr, rf I (£'_ tlf JY„ de 

_ i (w + M«j) ££ <l>[r) A*f^r) }(e'-£o) olv„ de = 

° (22) 

The last integral have the same value if we substitute the 

variable C fy &/!»• M. <p) to its bounce average C. Cx/»'Atf • 

It then comes, using (19) 

ii c-f0 %: « " . d e - ^ ^ % : d e d w » -

][**> &'-e'0) 5w * « «/v, <w 
where we have used the fact that (S66 Eq. (16c) ) 

~1 

http://we.obi.ain


- 16 -

The Eq. (22) becomes 

A(|*,r> (lu' [Ifl'-C'jév,, 4a) + *>*> (l^.e> %^9)d*,d9)) 

r \ (UH- w « J J - ^ VR(T> ( If (*'- < ) d v « d 6 

The integrals / / o/v;, de are easily calculated replacing 

dv„ da by ^ ' d6/*nvll = dt' ds I {2* (t.e^ sWe/i )) Vz. 
We obta in f i n a l l y , for K j (H <3 ft << -1 

I t w i l l be not iced t h a t for A < norÇ/fc 

(2 Î bj 

The expression (21) of Q va l id for k e(r) 9 ^ >>-f j o in s 
the expression (23) v a l i d for KyjfrJ^R <f-1 when fc^ «(|-J ^ (̂  «v -J . 
These expressions are therefore va l id for Ku*£r-j3^ > "1 a n < ^ 
K (.»(r) a <? < •J , r e s p e c t i v e l y . 

—» 
Outside the trapped donain,- the variable g ' v , f > B ) is of the order of 

Ins ide the trapped domain, the terms a a re of the order 
of ff»É° 

-tlffo T (i)4 0 (W 6j 

It is readily verified that the condition» Q . > Ci 

and a > Q are equivalent to the conditions (8). 
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The functionnal specified by (15b), with each 

2_(v, <-, 8J e*p'ii*\cp i q /Ju.,r, J)e» ,̂ I 'MÎ proportionnai to <b If) 

has the form 

&-. Z / * * * K it) d,(r) <f," (r) J n # M r Wr (2^) 

Mn ttldr i III 3 y,,r) n e t / T jn^nrdr ^ r V 

and the space integral ffl is performed between the 

magnetic surfaces r and r + dr. We may replace the variable 

expi expiM^ by i t s bounce average S^ ; ^ * , r,JJ ft^î AI <p 

specified by (17a), obtaining 

y'"l*i*'-:;':^&j^-'» ^ 
For val 

n r dr 

alues t = •£ such that ^uMt") <* "J/flrt,we have 5. = I and 

J is given by (23). We may calculate A » , in that case repla

cing djx Jj V by 

infi i n r dp in V. dv. ^ £ * r f g / 

(with-IK'S </7 and o <• l' < £' ilU-8 f/gV We obtain 

In fact the integrand in (25) is localized inside the trapped 

domain, and a reasonable estimation of A.,/ may be obtained 

by reducing the integration to the region \8]^lyî. • Using the 

expressions (20) and (21 

replacing d j * d 4 y by 

J!n« i n r d r * n v/ dv, (JL ) ̂  _dj£[±_ 
ff «?*«' 
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(with A in the interval ( o, n^fi-/Z ). we obtain 

A.,/(r) r [o+*«* *^ il] ̂  /£l# 
-" i «' -.' /e Xf r T lr' 

"I 
For |/V|^frj+ £f = ^ f r ; <?* « I a n d 

J z •£ , we recover nearly the expression o£ A. »» (r) 

given by (26), justifying the use of (27) for small values 

of lMq(rl+?l or l/*[y(f) + S'l • We will accordingly retain 

the expression (27) for S,„ (r), with of course the constraints 

on £ and t imposed by (8). 

It results from (27) that the quantities h-pj/(r) 

are non null and have essentially the same sic,-n for values 

of the difference pt - -t I of order of 

unity. For fixed t., •( ' F the functions AjW(r) is localized in 

an interval near the radii i , r• , (specified by (3a)) 

(p.r f /| «, jr-r^ ^ f / 

where the quant i ty |/"1 < (̂f) + t / < j | / 1 1 0 r + £ / i s e i t h e r ^ 1 

or «/(tj 'f / y J# Therefore 

where P nj P i s defined by ( î b ) . V& note t h a t 



where -C and £ verify (8). We replace 

0 * * o 

and split the summation £ in the form 

•e 

•e,X{<-i.s JXf>-i.s * 

We then obtain 

Where 

a M . (».« U j , & f 6 « j £ ) * ^ ( ^ j * i£4) I ( ^ j . 

Let us note also that 

In, (J Z yrMr). 1»(Z A,,̂ ,, -
-oo 

I M "^(r>,J/}r| 

I M ^<?M/<J' 
fofj É1 (3o) 
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IV - STABILITY OF THE MODE. 

The potential <p(r,9) - £ 'hi1') expi?<9 may be 

determined by expressing that the functionnal <xSYw,A\, ^j V J 

is an extremum with respect to lp (r,#). This means that the 

functionna 1 -é: + «d, as it is given by (13), (15a) and 

* i.2lj) , is an externum with respect to each if* (r) . It results 

that 

We assume that the solution of the set (31) may be sought in 

the form 

where the function f(r*) (inside the interval \ f {•< b specified 

by (3) ) is approximatively constant for (r |< A' , and the 

range Û ' is larger than the rangf Ç ' of the function J£ ^-f'f \-t + r > ^ 

It results that in the summation ^- , the 

functions fe/ (f) are approximatively equal to ifal 

The system (31) then becomes 

= fto) ̂ Z A /r. +r<) ^ t &-*) S 0 i J 

This equation has the usual form of the equation specifying 

the radial structure of drift waves ^~10_/, with the term 

responsible for amplification in the R.H.S. The real part of 

this term plays a negligible role in the destabilization process. 

Its imaginary part is maximum, and the mode is the most instable, 

if the phase shift à gives the maximum value to the quantity 

Jw I. Aglfi h + f 'I **f> ' ft'- ?) % -As the useful values 



i»»' nave tne same sign, this is the case if 0 = 0, i.e. if 

all the components </j (r) fx/»i (8 of the potential ^{r,6l are 

in phase in the equatorial plane &~ 0 . 

The R.H.S. of (32) is then equal to (JI/T) F(O) 2-f A.,. (TQ + r ') 

and is localized in the interval I f'l < Ç' . 

For (\"'l > e 1 , the R.H.S. of [ZD 

vanishes and the solutions of this equation may be related to 

the hypergeometric i/unction, as explained in the Appendix II. 

We must select the solution which is consistent with total 

absorption at r' = + J• This means that f(r') behaves for 

(r'/->*> as (e,/) «• h. r'l/z ) /{r'i'6 where 

This solution (see Appendix II) may be considered as constant 

for values of r' in the interval 

M <*<-. ^ ^(11JVM; 

Taking into account (28), the range û 1 is larger than A * as 

long as w/fe*. * Ofatyr), a condition which is satisfied in 

present experiments. If the mode is weakly unstable, the 

function F (r') decreases outside this interval (for large 

values of r') according to the law 

ffr'j = JT« F(ol \ j L \ * 

For small values o£ir\<?A< , it exhibits a logarithmic 

derivative 

(3 if a) 

I * 



- 22 -

where 

If the mode has a strong growth rate or if it has reached a 

saturation level in presence of a non linear damping effect, 

the function f(r" ) may still be considered as constant for 

IT I ^ Û • However it could decrease in that case more rapidly 

outside this interval. In fact we will not use the structure 

of f (r1) for /r'/ >. Ù '. 

The function M r ' ) selected above for |r |> Ç , 

must join smoothly through the interval ( f'l <*P where the 

R.H.s. of (32) is finite. This means that the logarithmic 

derivatives given by (34a) must be consistent with the 

equation 

.ol/|^-l - 1-̂ -1 ) 
8 CWU \\p ir' h'z +o [fîc'/r':-. / 

obtained by integrating the two sides of (32) over the interval 

|r'l < f'• Using (34a) it results that 

Y f * ^ e,K--^) k (£tki±^L)*s 

i l Juf J S A (r) olr) 

This equation determines the frequency U) of the mode. The 



marginal stability is obtained forJlJAfjl, i.e., takinq into 
account (34b) 

A + II- - u =o i^) 
T 

and for ,^ . 

We calculate JM jf^ ^ 7 *Pffi($ **T f r o j n ( 3 0 > a n d ( 2 9 b > ' 
retaining the term which is proportionnai to d"J/2>ronly. 

Using also (33a), we obtain the critica.i shear which stabilize 
the Kadomtsev mechanism 

where the function Z(x,y,z) is given on Fig. (3) and V ft t Oj 

may be estimated from (13b) and (35). 

V - FLUX OF ENERGVT ACROSS THE MAGNETIC SURFACES. 

The imaginary part of the functionnal °&. (W; M , <f , ^ J 
as it is given by (15) (24), with the functions KL> (r) 

equal to the function f (r-rp) considered above, takes the 
value 

Assuming again that the radial range £' around f\ *u C> where 
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the function An «i (r) is localized is smaller than the range 
A' where ?/[>_ f. I = P/T- f\ /] = fyj w e obtain 

and using (29a) 

J* ^ r J/ L(r,e) clr cfi 

L(r,£) = - M 2 an* snr a(r, £) ± |P(o)|* 

where tt(P, F/ is given by (29b). The average radial flux 
of electron energy induced by the mode through the Kadomtsev 
mechanism is then given by (12). We obtain the term proportion-
nal to-!i— in the form 

where the function Z" (x,y,z) is given on the Fig. (4). The 
contribution of the Landau and bounce resonances to JT- ftaking 
into account the limitations (6), verifies 

n r _ n K 
K < s e-2 

T-8 4 f* 
.2 

A crucial point is to estimate r (o) from the 
measured level of density fluctuations S H (TI &) at radius r 
ang angle &, associated to the mode. We have from (9) and (1) 
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We assume that at each radius r, the number of components 
y^L (f) of A^ (r, 6J which are effectively in phase is equal to 
a number N. We may write 

f= -.., - N, a, N, int... 

The quantities Flf. ft) , ••• / rfr.f* IV-i) n a v e appro
ximative^ the same value and are phase shifted by the same 
angle « /f-f») specified by 

111 

if we have have 

We obtain in these conditions 

The angle (̂/"'J is smaller than 1 for [r'l < &'*• j Ç * & l?thl 
sv A i.e. in the major part of the interval f ^ & where 
f(r') exists. For large values of 8, BnjIyZ say, we may 
therefore neglect 1l(r0 in (40). Replacing &i-nlN6/i. by 1/2, 



we obtain for such angles 

the other hand, the angle is smaller than 1 in the On 
interval V '<" £ ' where f (r'l ~ f (o). It then results f-ora 
(40) that 
iterval V < ^ ' where f ( r ' l ~ f (o). I t then results f-

lo)\*> ±àl Nl\f&\* CHJ 

We obtain from (41) and (42) the upper limit of N 

\ 4' ml' ' 
where & z^j(r,C)\ /[ty(r, /4j/ l s t h e balooning effect 
exhibited by the mode. We finilly obtain from (41) and (39) 

^ _ o"nfr,oj 
T* - ^ - **' ** fr3J 

where /> and A may be estimated from (4)^(33, and (13b). The 

condition f>/(><^'is fulfilled if 

VI - APPLICATION TO THE TFR EXPERIMENT. 

The microwave scattering experiment £~\, tijin the 
TFR device has allowed an esti mation of k_ and Stl^fr, n/l.) 
at the radii 10 and 15 cm (limiter radius=20 cm). The balooning 
coefficients has not been measured. We will assume that 3-^ 70. 
an upper limit which is consistent with the measurements made 
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on ATC l~2_7. In these conditions, «e obtain from (37) and (43) 

J<£ <r 8do cm /sec a.t r r to Cm. 

J< <: 80 c m V s ^ at f* : tScm. 

The values of *K L corresponding to the Landau effect (see Eq. (38) ) are smaller 
at least by a factor 3 at 10 cm and is equivalent at 15 cm. 

The energy conduction coefficient deduced from the over all balance are 
3 2 = 2-r-3 10 cm /sec. Therefore, our calculations and the measurements made in T.F.R. 

show that, specially at 15 cm, the drift waves hardly explain the anomalous conduction 
of electron energy (even if a substantial balooning is present). These calculations, 
however, has been made assuming that the turbulent modes approximative^ retain their 
structure in the linear regime and that the electron transport coefficients may be 
calculated by a second order perturbation theory. 
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APPENDIX I. 

The power W may be calculated as the limit for 

Im Ct)-?-o of the quantity 

j> dk 

... Sf j£iief fx4,V= iu &((... F. e^df,* 4v) 

where o F(x,v, t) = F (x,v) expi(Jt + £-C is the perturbation of 

the equilibrium distribution function F and £ is the domain 

of phase space where the particles of the considered set are 

localized. For circulating particles, the variable 

varies along an unperturbed trajectory as &*{rjt) £xp L \b}t + 

Knf(r) V„tj (see Eq. (2) ). Assuming to simplify that the 

equilibrium distribution function F corresponds to thermody-

namical equilibrium at temperature T, the Vlasov equation 
dF dSF , . .. . jr = - -jr implies that 

T dt T \ dk lib > 

so t h a t 

F - . l e y + L e * + u 

+ T + T w + Ktttn v„ 

(If F corresponds to a confïed plasma, the frequency 0) must be 

replaced by Cd+Mt^where OJ, i s the diamagnetic 

fre^ueftfij ) S u b s t i t u t i n g in (44), 

i s a c t i v e • 3 

n SL+ KKt(F)V,) 
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As the quantity \(. p {r) Yfl varies by a quantity *v PC(/ O (r) V 
in j^, we have 

..(/.-»-*i«^-.vK^ij 
For trapped particles, we have along an unpertubed 

trajectory e <V -e<̂ .(r) Z. »̂. e«V Î l^w + M W j fc where the coef

ficients a£ , the bounce frequency ui and the precession fre
quency 0i„ are constant. We now obtain from the Vlasov Equa
tion the value of F along this trajectory in the form 

F, = _ I e \L + L evt (r) Z. —^—fie e*i i(i>wi+>KJfc 
We note that the value of the integral J ... F e "•/i*-
d, x d, V is equal to /-- <f+ C vi. * > d3 x d3 V where 

<" iv means the time averaged value along the unperturbed 

trajectory passing through x, v. We then obtain from (44) the 

power w = Wi due to collisionless resonances of the type 

t0+ b tO^ + Mliro with p ? o 

Except for very few particles near the circulating domain, for 

which ^A- o, the frequency U}, has a value of the order that 
given by (4b) for particles which bounce near the eqi atorial 

plane» The condition p ̂  o means that W_ exists ̂ i.j.y if 

lu)f£ Uib f» M tOq ] a n d t l i a t t h e sumZ. in (45) extends over 

values of /b/'v/w/ /kJi • An estimation of the coefficients «p 

may be obtained by assuming that the particles have a sinusoidal 

motion of amplitude ̂  A/ S? R along flux lines, namely that 

-19+ M 0 - (£- - M) A. iWl W. f + M W. t 

(ly*) 
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It results that | ̂  j ^ \ Jp (ku £ (r) A ) \ . 
Therefore the power W exists only if k p (r) Q ft. >• ê> ^j \ui\l cj 

We then have \oip | -j "V^ufC1^ 1 &• • W e further note that 
the frequency U varies however inside JJ by a quantity A* <*J 
so that OUi + fztiJ, ) in (45) may be replaced approximatively by 
-i/b Ui, • W e finally obtain 

ao 

W^ » ( / . . . i f f 6J*J1 e 2 o/ax É/JV) 

The term p = o in the L.H.S. of (45) gives the 
power W» assoc ia ted with the Kadomtsev mechanism, r ep lac ing 
( i n t u i t i v e l y ) the func t ion l t^ ( J + M U* J by T" j ^ + M W . J 1 - * 
where t i s the time during which the p a r t i c l e motion remains 
coherent with the wave in s p i t e of the e f f ec t of c o l l i s i o n s . 
We thus ob ta in 

\ 

where/< yWrJ >/ ^ ( 3"0 I*»* ̂  ? J ^(h// is the bounce 
averaged value of ipfâ) • In the presence of collisions, the 
Dirac function n §(u)+f>U>. -f AI ULI which appears in (4 5) 
must also be replaced by ( x"' /ttt-J-f- j* L<JL + M U)g I •* Z ~* ) . 

This adds a further condition for the estimation (46) to be 
valid, namely[cJ/ > C . Taking into account the estimation 
(7), this condition writes K„^(l-j Q& >(I^I/Y£ ) ^ -

file:///ui/l


APPENDIX II. 

The general solution of (32) with the R.H.S. equal 

to 0 writes [-ii. ] 

ffr'l = % ^T(x) 4 o-0 "VTfxj 

where 5C = r' b. ' l and the functions "ViT (x) , TJT (at) 

behave For x ^ o *• 

o 6 

and For x _ «a 

For the function f (r'J to behave as expix^/èfor r'—-><w , we must 

take 

-» • n f ^ i i <;> W * ^ 
The value offof/fdr'J , s i>'* a / a is then given by (34a) . 
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For f—3 aa we ob ta in , 

\ L, it 

Assuming that ei ~ "i , according to the condition (35), we 
have | f(r>) J Ç(o)\ ~ ± - (Tr, |d/ */* 

(Jcl /l 
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FIGURE CAPTIONS 

F i g . (1) 

T O K A K H K GEOMETRY 

Fig . (2) 

Power W irreversibly transfered by a potential 
ty Lr> exjb i(^é?+ M<jO + i<J£J to the electrons of energy 

on the magnet ic su r face r v Thick Ttne : Kadomtsev mechanism ; thin 

lineslandau mechanism. x 4 r S«_f> ( ( r / f t ) ^ * |u>| / W, , ( r / R ) J > k Y_ / l l J f e ) • 

ay |CJ| < y e ; b; |w| > y £ . 

F i g . (3) 

Values of the function Z(^-, J ,^J which appears in 

E q . (36). (x -- \u»/uhtK) i t •- Vttk/^klk ; *= " u

9 t k /">*&) 

Fig. (4) 

Values of the function Z ^•,<flz) which appears in 
Eg. (37).( X : M / W ^ j 3 -_ J f f t f c /W f c M _ / Z= M W . ^ / ^ ) 
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