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ABSTRACT.

The drift modes energized by trapped electrons are
discussed in the case where the azimuthal transverse wave num-
ber is of the order of the inverse ion thermal Larmor radius.
For the usual values of the chear, the parallel wave number is
then larger than 1/gR in the maior part of the radial interval
where the mode escapes ion Landau damping. The tine during
which the trapped electrons remain coherent with the mode is
reduced and the Kadomtsev dissipative mechanism is less effi-
cient. The critical shear for the onset of the instability and
the induced electron energy transport coefficient at a given
level of the density fluctuation are estimated.

RESUME.

Les medes de cériv. rendus instables par les é&lec-
trons piégés sont étudiés dans le cas ol leur nombre d'onde azi-
muthal est de l'ordre de 1'inverse du rayon de Larmor des ions.
Pour des velevrs normales-du cisaillement magnétique, le nombre
d'onde le long du champ est alors supérieur & 1/gR dans la plus
grande partie de 1l'intervalle radial ol le mode é&chappe &
l'amortissement par effet Landau des ions. Le temps pendant
lequel les électrons piégés peuvent &tre cohérents avec le mode
est réduit et le mécanisme de dissipation de Kadomtsev est moins
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efficace. Le cisalllement critique qui déclenche 1'instabilité
et le coefficient de transport pour 1'&nergie des &lectrons
induit par le mode sont estimés.

I - INTRODUCTION.

In this note, we discuss the drift modes energized
by trapped electrons in Tokamaks when the azimuthal transverse
wave number Ke and the thermal Larmor radius of hydrogen ions
Cene verify Ke Ethi” 1. Our motivation is to check if the
density fluctuations which have been recently detected by the
microwave scattering technique /" 1_7, / 2_7, and which have
in fact a wave number Ke~ ethi-l’ could consist of drift modes,
and, assuming it is the case, if the electron energy flux resul-
ting from the balance for electrons can be justified by the
measured levels of the density fluctuations. The microwave
diffusion technique gives the spectrum in frequency and trans-
verse wave numbers of the electron density fluctuation
Sn(i t ) . Some hypothesis must be made to estimate the trans-
port coefficients from the experimental data. It is natural of
course to assume that the turbulence originates from the conven-
tionnal drift modes driven unstable by electrons. We then have

—e SYE,E) dn(E €

~
=

: e

T
where Sql().(., l:) is the fluctuating electric potential and

n, T=m Vti /2 are the density and the temperaturz of electrons.
{charge e and mass m "eth = Vth IeB/mC‘ -1) . We make a more
stringent assumption, namely that the turbulence consists of

modes which approximatively retain their structure in the linear
range. In this scheme the modes are stabilized at a saturation

level by some non-linear mechanism allowing the hydrogen ions to hecome
resonant /3 / -Due to the large value of the scale time involved

in the unperturbed parallel motion of electrons (namely the

transit time (K, vth)-l or the trapping time ¥, ), such a



mechanism is not likely to affect the resonance of electrons.
We may then calculate the irrever-ible action of the turbulence
on electrons, e.g. the transport coefficients or the power
density exchanged with the modes, by a Zd order perturbation
theory.{The transport coefficients ror ion energy <cannot be
calculated, however, without stating the e:zact nature of the
non linear process which saturates the turbulence).

Let us consider a simple mode specified by a poten-
tial of the form (see Fig. (1) )

Syih = $E epiwt p e 2 g(r) ep LQ‘\q;.q.?@ +wt) 4 c.c.
2)

where ¢ is the angular coordinate around the major axis, 8is

defined by & = @/q(x) ( glr) = r Bo / RBy) along a flux

line on a magnetic surface of radius r and © =0 in the equa-

torial plane. The mode may exist in the radial interval QI

where the parallel wave number X, 2 (r) = |R-1 (M +‘0/q(r))l

is small enough to prevent ion Landau damping, i.e. where

K” ? (ry <\ / Vthi’ Usually the electron g.ensity n(r), the

temperature of hydrogen ions Ti(r) =my Vg /2 and the safety

factor q(r) satisfy T;~ T, bh/n?r ~ T [T OT N }q/cl rar!

We then have W~ Kg vfﬁ"-f’khi/"; with Ke.\,e/r.The interval Q,l
is centered at the radius r = x:e such that

R K, (‘:g) T M, Q/c,(r” =0 {(3a)

and is specified by

~ Ls  ~ 1R
[roml < &~y ke ey (24)

where
-l
Lo -[L 2(4) )~ L
R or'14 qR
The next mode exists in the interval % ’centered at
*

r = re+1 and

r = b 4 3c)




We assume that ke €ini~1 . so that P~ n»(r/qR) A ., The conse-
quence is that the neighbouring modes strongly overlap. On the

other hand

~ r-ry _ r-or 4
Ko = Ky T - z { IR

s
This yelds Klll(r) qR,v 4 for (r - r‘i),qe , and
K,,e("lqR»l qR/r when[r__ r‘_tl,q A . Thus we have K, p(r) qR » 1
over tae major part of c-}i! .

Let us consider the set of electrons with an energy
F4 =mv72 on a magnetic surface labelled by r. Some of them
are trapped ; let the frequencies
. € YnVL-f

- £
(J.)S = wgkh = i wgel\ - —'eBe 72 RE (4 e
i %
- £ . . LV r
Wo = Wow (&) 5w IR T =) (4 &)
-3f2 4
. £ . _o2ame’ (AaZet) Log A R
Ve ® Yew & 7 fekn T mE v,3 7). Les. T te)

be their precession frequency around the major axis, their
bounce frequency between the magnetic mirrors and their col-
lision rate for detrapping. The mode may irreversibly transfer
a power W to the circulating electrons of this set by Landau
resonance and to the trapped electrons by a bounce resonance
of the typeW+ pw, + MW, =0, with p#£© , or by the dissi-
pative Kadomts4'/ezv mechanism ‘;:o) . SAs Mwﬂl‘.h /wbkh ~

Ke Pur q(R/f‘} ~ (‘m /m;)vz a(ﬁ/r)/l “« 1 , we may neglect
l"\Wa with respect to W, }.

The Landau resonance with the circulating electrons
is active for small enough va}ges of Kue(f') , such that the
frequency gap K,plr) V (f‘ /R associated with the trapped
electrons is smaller than either the mode frequenuy ¢ or the



Landau resonance broadening SLO . This is the case when
b

K o(r R < 1 or K,s(r)gR < £
e 9 w, wt(r) 9 wy

2 4
if we take into account / 4_7that §u N(K"P(r) v) /3 ‘)c /3 where

\’C""E r/@ is the collision rate for 90° deflection of the consi-
dered electrons.OF course the Landau resonance occurs only

if Y <« Kpg(m v, Le., K qR > (r‘/R)'vz js/wb %
Also, we must have (w] =[k"'(,-’ vl < '<uf(” v, "-e-,’ﬁ,t(f')qR>(l’/R) llwl/wb. .
The Landau resonance is also active for large values of K"e(r) ¢
such that the circulating and trapped electrons can hardly be

distinguished by the wave. This occurs when the parallel velo-

city change ov experienced by a trapped electron due to the

mirror effect over a distance ~ 2r1/ KIIP(” is small compared

to the wldth of the Landau resonance 6w/K"£(r) .As &V

()“/R)"/Z V/(K”p(f') 9qR) this condition writes k”e(r)qR >€‘Jb/b's)%

It is readily shown (see appendix I} that when the
magnetic field, the profiles n(r) and T(r) and the values of
M and W are given, the power W. transfered to the electrons of

L
the considered set by the Landau effect, when it is active,
2 .
varies as W~ A l%(r}{ /(K,{("‘J V) . It is also shown in

the appendix I that the bounce resonances (0 4 pty 4+ M, =0
with p # 0 are only active 1f

and @i %
Wiz w, and 2 K0 qR 5(;’?) &

-

The corresponding transferred power Wy to the considered set is
then given by W, ~ A [Gin|® (/ A)T2/w, Kylr) 9R)  Liee.,
Wb"’WL . Therefore the power W + Wh' and generally the trans-
port coefficients associated with the Landau and the bounce reso-
nances, may be approximatively calculated as due to the Landau
mechanism, if we include the case (5) in the domain of activity

of the latter., This domain then becomes



<t aR > Sup(fr)Rlel ¥ Xy

Ye W
and [ KM qR < Sup (’_‘:2 , Etl) or Kk, o(MqR> (_Xs.)

%

or  {wl>w, ] (6)

This simplification is justified by the fact that in practise
the power WL + Wb appears to be small compared the power WK
transfered to the considered set by the Kadomtsev mechanism.
This means that the effect of the Landau and bounce resonances
is comparatively small and that we may content ourselves with

a rough estimation of this effect.

As compared to the powers WL and W, the power WK
varies as WKN A T _:-2)—.1 (r/ ﬂ)"/' < \U r) >[z
where w'= w4 MW, ”<tp (r))[ is the bounce averaged value
of \P (r) axp v @&,m and T is the time during which a
trapped electron remains in phase with the mode. On a magnetic
surface where K”[(r) < 1/9R 4 as generally considered [-5, 6_7,
we have{(l,l{e(r} > ~ “Ué(r)f and T is of the order of the
time which is necessary for the amplitude A of the bounce motion
of a trapped electron to increase Be ond RJ. e. Tw 3’& .
We have in that cas: W, A(l"fR)"/é l\P ("')' Y /(‘LO”'-.- }’a}
If ”e(r‘) 5 1/q R , we have { <\p_‘e(r) >l ~ l.:l' (KII{’(” ) \P‘l(r) , ~
H,[ "} (k"e(r) q ) . Also, the time T is now the
time necessary for the amplitude of the bounce motion to vary
under the influence of collisions by a quantity ~~ 4/ k”e(r)
rather than~s qR. Therefore we have / 7_/

=1 4
T ~ —_—
% (knd (1) qR) ()

and finally

' 2
W oo Je (Rue®ar) _ (_r_),/2
w'? 4+ Xsa(k,,e(r)qk) K. (r)qR (R

=i
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It then appears ‘that the power WK is dowinant compared to
W+ W, only if we have

Jwll = (W Mw?\ < W,
f - 4
ndsup (Lo, 2 ) <l qR < (%_,_)A @

and the Kadomtsev mechanism has only to be considered in that
case. Assume that Y <(Jbandlw'{ ww] L1 W< Y  the +

s 2
Kadomtsev mechanism takes place for Xs/wb < kue(r)qﬂ < (&)b /a’E )
but in f_!a/ct, owinzg to the strong gecrease of Wy, ~

2
AIR)72 [P0 )/ (Ye (<ue™ R )  for K pmqR»T
it is only active for k,,[(f'Jq £ 1 . (see Fig. (2a) ).
1f (Wi )XE the Kadomtsev mechanism takes place for [LJ] /wb <
/3 - :

K"‘{(r‘) q R <« wb/yi) » 1;>xt is essentielly active for values
of  K,p(r! qR ~ (lw’/xe) 2 corresponding to W Twl. (See
fig. (2b) ).

The growth rate of the drift modes in the linear
range and the averaged induced transport coefficient at a given
level of the fluctuating potential are the sum of the contri-
butions of the Landau and the Kadomtsev mechanisms, under condi-
tions (6) and (8), respectively. The Landau contribution is pro-
portionnal to the integral T = jdr {(He(r”z / k"_e(r‘) over
the radial interval where it takes place. The trapping effect
simply reduces this contribution by reducing I. In this article
we focuse our attention on the Kadomtsev mechanism. We estimate
the critical shear (39 /q af‘]c (given by (36) ) for marginal
stability and the averaged flux ‘l-'E (given by (37) and (43) ) of
electron energy across the magnetic surfaces due to this mecha-
nism, for a mode of the following form, more realistic than the
form (2)

5\}4()'(" by - exp twt exhimq '\P(",B) +¢.C. (Qa)

(r.o = _?"— t%(r) exhi b @s)



We compare the éstimated values of FE associated with the
measured level of density fluctuations to the values consistent
with the electran energy balance, in the case of the TFR

expriment.

IT - PRINCIPLE OF THE CALCULATIONS.

When acting on a given particle species p (ions or
electrons), the potential S\b givan by (9a) produces a charge
density SC’P of the form

be.F &) = expiwt exkime g (w,r,0)  (Hoa)

where P 6.0 r, 9) is a linear fonctionnal of \P(" 9) . It is conve-
nient to consider the bilinear form in (PQ‘ and tp'b' B) defined
by /8.7

Aflw,m, v, ¢*) = & & (M p p*
( )= & 4 + {ob)

a’pp,,é»d,l"\, ¥, 5!.)'):- ﬂ ep(w,r, 9) (P"é‘,e) a’s*

We obviously have aé(w' M, t,b’ 507=awhen W, M and l'U corres-
pond effectively to a self consistent mode. The frequency « may
be determined by this equation when the geometrical structure of
the mode, i.e.M and Y(r, ©), is known. The fonction \p(r, § may
be determined by expressing that the fonctionnalog is an extremum
with respect to kp“ , a condition obviously equivalent to
the eguation %'_ f‘ =0 . The power o which is irrever-
sibly transferred by the mode to the species p, i.e. the time
averaged guantity

ﬂ/ o x (LP (r, o) e;:h[(af«h"\qJ)q.C‘C.)(—('l;) e, exp (s M) c.c.)"

where « = Re W) # w , is given by



The angular momentum P_ around the major axis which 1is irreversi-
bly transfered per unit time to this species has the value

oD -
F, =_g W,z 2M Im (aé’r(w,m, w, "))
As explained above, we will admit that these formulae are valid
for electrons even when the modes form a stationnary turbu-
lence. In fact, the quantity Im(uﬁp:g)for electrons will appear
in the form of an integral over the radius of the magnetic
surface and the energy £ of the particles

Im (o8, (0, m, ¥, j{dr de L(r,s) (1)

It is easily proved that the momentum which is transfered per
unit time from the mode to the particles in the range dr d£ is
equal to 2M L(r,f_) drdg . This momentum must be cancelled by
the Laplace forces associated with a radial motion of these
particles across the magnetic field . It results that the
average fluxes I ana PE of electront and electron energy across

the magnetic surface r are given by :

I .e_f.ur\ /L(r,z) de an 4t 4 o < ZM_(L(rs} E—

dg s ~ Teg, 2n Rznr
. ¢ de 4. _ c_ .(
fe' S 2M fL[r,cJ edzznﬂ -5, &fL@'z)ed (IZ)

where dq6 is the poloidal flux between the magnetic surfaces r

and r+dr, of area S.

III - CALCULATION OF THE FUNCTIONNAL 0 (tJ,m, W, @Y

Assuming that the phase velocity U/K,,g(r) =
wR fm 4 4/q(r)) of each component \P (r expilfe+ Mm@+ w
of the potential 8¢ (see Eq. (9b) ) is larger than the thermal ion
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velocities, the charge density for the ion specles is readily
calculated by the usual integration along the unperturbed trajectories/ 2]
The functionnal Z_—_“ species L reduces in fact to the
term a‘GP : cottesponding to hydrogen ions 1f we have
'z
" X n 2y )1)}2-’1‘.&_)_
P’ P P m; mpi

nm oy X mo/ng/
PP F

where p' labels the impurity species (density np, charge
ZP’ {e} ~and mass mp,) . We then obtain

Z'°"5Ncles l’gf'(l"‘, m ‘PI \P.) = °(:£(“’IMI N o) ‘P*)
A (“' M (e ) (p ol

w*R? an
+X{ ..K”{ ) 2aR 20 r dr (13&)
: - DT _
where, assuming to simplify that :b_f' =z e
xnapl Lrmi (s
w
y= - Wermui d2(sh
w d st @3 b)
LY = enpl- ) T,(E5); 5=k | ko =/ L= M)
= &x (_2_ °(z ’ 6 Cin: i 6 r -(—r—'l
_ Yihi . L= c T. Ahn
Con “fensme) 0 Y lefBgR * "hOF

We have omitted in the express1on of a@ cross terms of the

form f(h.e"/ ;) olrR) (‘P_t &P_Pﬁ.p- (‘Z’HYZE) 2nRzardr which, in

our opinion, play a minor role in what follows. By assumption
each (/(r) 1is localized in the intezvalg_e specified by (3).
4

g
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To calculate the electron contribution of -e to the
functionnal of , we put as usual / 5_7 the distributﬂm function
F for electrons in the form

F - r__e_;f_‘t‘*r (2 %(c’r,a; explit +img) 4 c.c )

where F is the local Maxwellian and each term Pin is the
linear response t?. the poteniial tP-? (r e.],,’t’e . e,/,(.'wt+im¢)
The functions g,(v,r,8) verify in the trapped domain the Fokker
Planck equation

W g, exping + _‘J%M e muyy L) eftsing)

= C(g‘a e;'.(imq,) ay,

where d,/dt is taken along unperturbed trajectories and ‘

=S T(Ah L fE_ 3y 2T = mv’
Wr e Tt (E- D) H) (e mvR)

The charge density ep:e and the functionnal u'éF= e specified
by (10a) and (}0b) are given by

- -~ z\P("ﬁe) ,
Y PULET R

"ée: f_%_g.z %. ‘t/?(r)lz R anrdr _ &7 (Isa)
”gl’/'" —(Z'?S' 336{?* ri®) ($pr) ek "f/"")k IV oy x.(155)

Again we have omitted in the expression of °dccross terms ~
e
ne r » 4 amrR 2ar dr.
j’-,- O(,'a') ('I“'g Lf‘.e.,. + '"lb{ lP-e-H)
We describe the phasezspace for trapped zlectrons
by the magnetic moment fe =( Vi /ZB)(H o(r/R;} = [£/R) {1+ 0(" /@});
the radius r of the magnetic surface, the angula:: coordinate
¢ around the major axis which specify the trace in the equatorial
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plane of the flux line where the particle stands, the amplitude A
of the bounce motion along flux lines and the phase ? of this
bounce motion. For values of |[Bl< A/2 | i.e. A« "1‘?/2 , we

may write

Q= ?'.,._le'ls[mql

9: —L Sv
7 " % (1¢a)
V" = A W, Cﬂb?b ,
A y2 2 22
D R /I 9 R (“ b)
Wbl
The time derivatives d(p /dl‘ s4 and dé/dl' U are the bounce
and the precessionnal frequencies given by (4a) and (4b). The
, numelj

constant of motion A is a function of r, ,.4. and V,

of r, b and (see Fig. (1) )

/ 2 )
€ Imy "Pﬂ"é'é) = }mvf,. 2hBL .smaze_ (‘léc)

For B/ <nf2 we have &'-m w:,l 2/,2 . We may write the variables
expi ({64 M p) , 3€(‘;' r; 6) expis@ and C'(? expim@)  in the
trapped domain ¢

e- i = ; J .

bikOempy = aping E S (knn) ebirg  (17a)

GO0 ekings epimG Z g (kr,y) ekipy (1)

CG exbime) = esping 2 G (liry epipg  (14c)

The Fokker Planck equation (14) becomes

= C (%)

[(wl_,_f,wb)aer_i(w.;.de)%ftfé(r} si’h 2
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!
where W = w*““’g

The Kadomtsev mechanism has to be considered when
the conditions (8) are satisfied. We anticipate that these
conditions imply that the variable g (V,r,ﬂ). exp:LM('o inside
the trapped domain is dominated by the term p = O of the series
(17b) and is larger than in the circulating domain. In these
zonditions the variable 9% expim@z g G‘, yA) expi Mt? at
a given position, i.e. for givenr,gp , and 6, 1s more localized
in the \/” direction than in the V_,_ direction, and we may

C@e pimMp) = C(gea(}«,r,,l) exhi ™ )
= 1"_<SV,,1> %%1—(3?0(/.‘.,:-,4)) expimg fa

2
where <8 Yo > is the diffusion coefficient in the V|, direc-
tion, which for trapped electrons is readily found to be
4 snnet Zur+ 1) bog A
2 m2 v

< SV,,‘) =

and where of course the variable 3 G‘ r,A) 1s considered as

a function of V r &.

II) ’

For values of Aznqﬂ/; we may use (l6b) to obtain

‘b - 29 0 Vl/
2V (?&7) DA w}

DAZ A 24 WFA

g [ Ve VP 8 4 _ g, W el
avz(ﬂéo/ ( 0(4)*% U _“T)qz

WA

where ')3‘, /b,l annge /3,| are the nurmal partial derivatives of
the function 33 (P;" A) . We obtain from (16a) the expression

3
of)j&/a\l,f as a function of f, F, A, ¢,
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z ] 2
2792, - (3ﬂfa Co,‘ﬁ + 0%, :._ H- o cpb)\_i_
2V, A A
and it then results from (19) that the variable C‘foG" r, A)
specified by (17c) is given by

/ _ o4 <8vE [ 0 ¥4, 1
Cp i) = F e (5 a2 )

On the other hand substituting the values of ¢ and @ aiven by
(16a) in the phase factor expi €8 expiMg@ we obtain the
variable 'Sfa(P' r, A) specified by (17a)

S = ke ) (el = 2 (ne 4raey) @0

The equation (18) for p = O may be written

iw 9, —ifwemwy) ;F lILe(r‘) T, (i, (r) )

<6vu> ('bﬂpo 4 %ifo)

+ —
L wg PAE 4

Tiis equation accept as a Ssolution

) = /‘ (.(wfmwd)
ﬁ&(h e 3, (K l) \b("J iw + Yg (Kepl) 9€)7
(24}
where
¥ -4 <5v5 P IAL
E 4 wlq®R? 2 vy=or

is given by (4c). This solution is acceptable for values of
ue(r-J qR » 1 because it is small in that ~ase for

As nqﬁ/z ¢ this 1s consistent with the use of (16) and with

the condition that 3 (v r, 0) zapi Mep = 3{’0 (f“" rA) exp: Mo
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at. the fronteer ‘of the trapped demain.

For KI:{ {r) q R «« 1, the variable 9£° (‘_,I r,A)
consistent with this.constraint may be approximated as

a_eo (l"l b)) = A(L,l") ./_L‘:".n €l)

where £ -ZIJ-B"/E is the value of the variable E specified by
(l6c) at the fronteer of the trapped domain. The variable NIL‘, r)
may be adjusted by multiplying both sides ef Eq. (18) for
p=Oby (g, G.‘, r, A )* and integrating over V,, and&in

the trapped dcmain, for given‘l.‘ and r. Noting that 5{0=! in
the: present case, we.ob.ain

e Mg Ak r)f // s) dv, de
mifwemuwy) £E AL A r) € L) oy, a8 =
//C{D v, dp ie: - // C,, xbi M (3{0 apimg) oly,do

@2)

The last integral have the same value if we substitute the _
variable C (3 &piM@P) to its bounce average (o axpiMP -

It then comes, using (19)

1 %44,

* *
ﬂ € 1., oy, do = -<<SV,,> T dody, =

_3_ <8v° // ito) dody, = - _21<5v,,’> [Age,r))

Jam =€) sn?8  dv, db
where we have used the fact that (€@ Eq. (léc) )

oo = AL, r) '3(59 = Afe,r) (2m (€] sn"8 ¥
Aeo - Age, firr @m (£ J)
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The Eq. (22) becomes

Alfe, (iu' (ﬂ(tl- C:)Jdv,, de) + m BV > (ﬂ(g'_ea’ smzzﬁjdv,,d&))

-1 (w., Mw“).:__F %(r) (ﬂ (¢'- z:) dv, dé

The integrals / dV“ dé are easily calculated repiacing y
dv, o6 by de'd®[mV, = de'dd [(2m (g ¢! sintgn )) T2
We obtain finally, for K”‘p r 9 R 4

T WM UJd

. El-g! eF -
, A = Le=8 ST ywin) —_— = (23q)
g-eo()h &l T ¢ ok iw! + ¥,
It will be noticed that for A ¢ nﬁe/a
&-¢' . 4 (vt 200 g%V 4 .4 42 o g/A
St G TR w6
° (23 )

The expression (21) of q . valid for k” g qR S>> 1 joins

the expression (23) valid for k”,(r)qR & 4 when ku{(r)q'e""’ .
These expressions are therefore valid for K"€(r)qR > -1 and
K”‘P(r') qR <4 , respectively.

Outside the trapped domain, the variable gelc 45 B) is of the order of

eBin F wemuwy

4
)
?ec T W o+ O( Kll[(r) VJ (r/R) /z)
Inside the trapped domain, the terms are of the order
of fpto
3 ~ e (k{(") F W MWy
Lpto T W+ 0 ("Ja)
It is readily verified that the i:onditiom q{o > 3_””“
and g > 7 are equivalent to the conditions (8).
2o Le
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/
The functionnal .,ﬁ specified by (15b), with each
3[(—\7, rB) expimg = t}{ Gl..,r,,\)ﬁf. fm§ proportionnal to llé(r)
has the form °

n #
-P f’f e ﬂ,(r) \L{(” ‘P{,(r) 2nR zar dr (24

where
: dyv €3s0(kind) expimg e it B exsi ]
A f’(r) f//:lr 3" /// ‘:.) net/T 2nR2Nr dr tl" o M?f }
and the space integral ///dr is performed between the

magnetic surfaces r and r + dr. We may replace the variable

; R
expl €0 expiM¢@ by its bounce average S{, G..., A ﬂ:/:- MQ
specified by (17a), obtaining °

: o [l T, )
Aol = ff, < Jf 4 _e‘;;) oy Co ) e

/
For values ‘P = -E such that ku{’(” <& 1/qR,we Lave S-fo = | and
31 is given by (23). We may calculate A—\”l in that case repla-
cing d3x dsy by

/
2R 2ar dr 20V, dy, de _2de

27 Qdm(ELElL smtO/a )72

(with -n<@<ii and o¢ &' ¢ £:=zf«.8 I/K) We obtain

A = 4¢ /“’mmw,.- 9*/’(-—9-) e (_)/z (zr %
0 go% s G- T @) :

In fact the integrand in (25) is localized inside the trapped
domain, and a reascnable estimation of A may be obtained
by reducing the integration to the region ﬁﬁ](r}/a_. Using the
expressions (20) and (21),[2. 3) of S—é’o and ¢, and
replacing ds’( dsy by to

2 r% o oAds
20R anrdr 21V d\{L(_R_) o
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(with A in the interval (o’ an/z), we obtain

A o wemay _ £, df 5‘%
é’("'/m st £ T )

7 '
el [T a0ee) Almanetia) da (23]

x
1"

(M q(r) + €| € mgma+t] s 1.8

X, = d if [mglri+fl < .S
For |M 7[r‘1+ ef = M(h) qﬂ &4 and
j: , we recover nearly the expression of A-H (r)
given by (26), justifying the use of (27) for small values
of {Mgri | or Mg « €/l . we will accordingly retain
the expression (27) for A‘B , (r), with of course the constraints
on £ and f imposed by (8).

It results from (27) that the quantities A_.{;ll(r)
are non null and have essentlally the same sign for values
of the difference !,f e l of order of
unity. For fixed e £', the functions A—f /(r) is localized in
an interval near the radii r,, r,, (spec1f].ed by (3a))

4

(F-ro) ~ [r-tp) <!

where the quantlty Mg + 'y w|Mqr, ¢] is either g1
or N({&J’(/ Y'Hm % therefore

pl< S«(e. (h)/‘) (2%

where i i by (2b). We te th
er (04.; eé“ is defined by (2b)} e note at

fe - ~w+M‘4Jd EyvdEr e 7/ 1/2
_g"zf/ NZA ) = {)J—- ) wroiy, xe"- e,/,(__) (T-" 2m (';ze—")
I =
z d
;':;(f J;{K{ 6) %, de, ) /.,. 7,(~8,) §, d«
. z

3
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where € and £ verify (8). We replace
n/s

Vs w
! I (Xé 00) x{o dga where %2 4 b; f I () du 1.
(]

(-]

and split the summation-é? in the rorm
2 d
-t’Z,X(’(-.i.S * L!>1,sx'f
We then obtain
« olf
Im(.ge, A_H,,(P)) = { a(r.g) = (23 o)
Where
af,e) = (Wemuy) expl-£) _6_)7" A “J% I(Ub) 1(%)
! ) o2 E)T = (F v o
e 4 W 2 Y.
(3 e LAty (L) ety (5)* 2o ) ) )
29 &)

T =0 F [xlce ; Tz if |xf> 4

Let us note also that

+00
1 A dr)= A (r, A
dm ({w {Z ,ppl("'J /') IM%/ -é?'(r{")) lM )Cl(rp']/z"l

L ma. (s .‘?/_f 3
[m 240 ar | [ ot % (3

L
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IV - STABILITY OF THE MODE.

The potential (,U(r, 8 = Z ¢‘ (rn expi?@ may be
determined by expressing that the functlonnal oé’(bu m, ¢, ¥ *j
is an extremum with respect to \P (r,8 . This means that the
functionnal -g;_ -+ Déc as it is given by (13), (15a) and
(24), is an extemum with respect to each %{* (r}. It results
that

2
(%M_d_/g —V*——a(%pr g_g_) (- ) W)

2 DZLP r.) _ T;.
Y G T S F A0 B0 Go)

We assume that the solution of the set (31) may be sought in

the form

%(r) = fle-1) oxp(i £5)

where the function f£(r') (inside the interval {f‘l{< & specified
by (3) ) is approximatively constant for (f"|< Al , and the

range A' is larger than the range f’/ of the function é] A_(’( (f_’e +rl) .

I+t results that in the summation % . the ,
functions ,L_;, r are approximatively equal to F(o), ex/.» l.‘f s .
The system (31) then becomes

2 z 2 3
;T ! Viae [P 39 /2 / r
v__‘,,.—./_x_/s__“" = L)y r Fﬁ']—Yﬁk.Wi—
\ T wz Rl qi 2r
/ 2
= P(O)—ZA (o +7") exbi IR (32
T o #¢
This equation has the usual form of the equation specifying
the radial structure of drift waves [-10_7, with the term
responsible for amplification in the R.H.S. The real part of
this term plays a negligible role in the destabllization process.
Its imaginary part is maximum, and the mcde is thce moct wnstable,
if the phase shift é gives the maximum value to the quantity

fm-% A{”é’ (l} P exp f(f’- P} ) . As the useful values
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of A yp! have the same sign, this is the case if é = 0, i.e. if
all the components Y (r) €xpt €6 of the potential ¥{r, 8 are

in phase in the eguatorial plane Ozo0 .

The R.d.S5. of (32) is then equal to (T;/T) F©) Z./ A.p@('}?* r)
and is localized in the interval [F/| < @l . <

For ("l > ¢!, the R.H.S. of (32}

vanishes and the solutions of this equation may ke related to

the hypergeometric cFunction, as explained in the Appendix II. .
We must select the solution which is consistent with total
absorption at r' = + 4. This means that f(r') behaves for
[Pl o0 as (?x/) Ibr'¥ ) /lr"{%- where

b :(ﬁ/)%_i 2 éﬂ{m w4 (3
o g [ e W

This solution (see 2ppendix II} may be considered as constant

(338b)

for values of r' in the interval

el <4 f_.,/‘ ,v(.‘i_‘)% Ca:

Taking intp account (28), the range ' is larger thancﬂ' as
long as Wy, < O(qR/r), a condition which is satisfied in
present experiments. If the mode is weakly unstable, the
function F (r') decreases outside this interval (for large

values of r') according to the law

FirY = Tn  Fy l-ﬁ_’/}%

For small values of[r'[ < A! ., it exhibits a logarithmic
derivative
*

o (28w H iy, (g
—ETF')rE-o N (F?r’/rl._.“, eﬁéu )2' —T
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de (4, T W) A 1, T_a) IR B4
2 )5Y@Af A

If the mode has a strong growth rate or if it has reached a
saturation level 1n presence of a non linear damping effect,
the function f(r') may still be considered as constant for

lr’l £ A’ . However it could decrease in that case more rapidly
outside this interval. In fact we will not use the structure
of f(r') for [r'| > al.

The function f (r') selectea above for qu> f’ .
must join smecothly through the interval ! r') <’€/ where the
R.H.S, of (32) is finite. This means that the logarithmic
derivatives given by (34a) must be consistent with the

eguation

Xez()r ) oF ) )
- the (Fbr’ r'z 4o ( Fortlr'=c0
T *
= M .Tm( zZ A, (v dr)
T !:o - {Ie (
obtained by integrating the two sides of (32) over the interval
‘r'\ < f'. Using (34a) it results that

. *
I3 E 1?& . - I‘[é“* E% L:JJ
Y €, Heig) T+ 7id)
o0 4
T 7
=4 In ( J., % A{I{(r‘J olr)

This equation determines the fregquency ) of the mode. The
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marginal stability is obtained for nc,/,:ul, i.e.,, taking into
account (34b)
T; (35)

Ads i _ o =0
T

and for

T +0 A 2 4/24
R P

+od
We calculate JM J[. % A_pl{)(") dr from (30) and (29b),
retaining the term which is proportionnal to)ﬂbronly.

Using also (33a), we obtain the critical shear which stabilize
the Kadomtsev mechanism
ESN ll)%(:l_)%(wf L
q'ar A (T’br r Kg thth X%/&"’/ﬁ’
1&_)1/3_qﬁ z (M B Al ) (30
(M: r Weep, © Wok Wpth

where the function Z{x,y,2) is given on Fig. (3) and Y’ l’j /J w
may be estimated from (13b) and (35).

V - FLUX OF ENERGY ACROSS THE MAGNETIC SURFACES.

*
The imaginary part of the functionnal Dé; (U, M, g, ¢ )
as it is given by (15) (24), with the functions \P (r)
equal to the function £ (r-r‘e) considered above, takes the

value
_Tm(oée):_f._t;_e_aznﬂ gnr Im (Apg/(") F(r.re) F”(f.g,/))dr

Assuming again that the radial range el around ':f ~ ?' where
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the function 2,y {r) is localized is smaller than the range

/' where F(r_ re) = P(f- )— F@) we obtain
Im o, =_.f%e_2 20R 2ar Jm(_p@/ 0,(r) J (F(oj{ dr

and using (29a)

Tm néf; = /L(r,f) dr ofe
LE,o = __n_Fe.Z 20R 2nr  a(r, £) %f__ [F‘(o”z

where a-(f‘, €} is given by (29b). The average radial flux
of electron energy induced by the mode through the Kadomtsev
mechanism is then given by (12). We cbtain the term proportion-
nal to—l in the form

or

'-_nXk 2T

kK 2r

™
1

J(k

im&ﬂ.a K2 (:z v é __r;)% A Zl(lwl , et Ko m __Uﬁ_)
T2 & ‘th th (g Yees Wy Wk Wik
EX))
where the function Z' (x,y,z) is given on the Fig. (4}. The
contribution of the Landau and bounce resonances to f"__.,taking
into account the limitations (6), verifics

- n¥ ?_T

: L

D
th Eh Vea
A crucial p01nt is to estimate F‘(O)2 from the
measured level of density fluctuations Shl(i'. 6] at radius r
ang angleB, associated to the mode. We have from (9) and (1)
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e eet 2 39
= \(J r, o
ne(r) T? el

We assume that at each radius r, the number of components
%(f‘) of ‘\b(f, 8) which are effectively in phase is equal to
a number N, We may write

2 Z— .
}9} = Fl‘_r r r o ‘9 .
NJ(P ! {:_,.,-N, o, N, 2”’.” l ( f) + (l‘ hv) f -

+ Pt ep dWone]”

The gquantities F(f‘- f‘{’ ) eney F(r- rf* N_,) have appro-
ximatively the same value and are phase shifted by the same

angle 7) (r_re) specified by

't?(r‘) x brlfny, -r)= brlpe 72

if we have

_r
Pv 4

Ne £ 2l

We obtain in these conditions v
’ .
]\{J(r, e)}zz fgd_‘: !F(r')jz ]Z-:' exp i p (04 ’](r!))r

/ l |‘ Sim N (8+ Nr3) /Z (ko)

l o+ 9(r)/2
The angle 7)([") is smaller than 1 for ‘f‘" < A""/ e ~ a /ethl
~ A i.e. in the major part of the interval r’< A where

2

f(r') exists. For large values of 3, 2] n/z say, we may
therefore neglect 7(|”) in (40). Replacing sﬁnzNO/z by 1/2,
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we obtain for such angles

g o = /[F‘(r), dr'  (41)

Nf Su\ 3(9/2)

On the other hand, the angle N (r)/z is smaller than 1 in the
interval T < A' where £(r'} > F (o). It then results f.om
(40) that

We obtain from (41) and (42) the upper limit of N
% ( IS )%
A e
2 2
where A= NJ(";O), /(W(r, ‘V!.Jl is the balooning effect

exhibited by the mode. We finilly obtain from (41) and (39)

N

e?|fi) ® < B % PA' Shr, v
T2 A n?
a . o (t3)

dni(r nk)
where @ and A" may be estimated from (4),(33, and (13b). The
condition MP<A'is fulfilled if
j& ?é £ Aj/
~ 8

VI - APPLI _CATION TO THE TFR EXPERIMENT.

The microwave scattering experiment[l, 1Z/in the
TFR device has allowed an esti mation of ke and 5'12(;', n/p_)
at the radii 10 and 15 cm (limiter radius=20 cm). The balooning
coefficient B has not been measured. We will assume that B< 70.
an upper limit which is consistent with the measurements made

e+ et



-

- 27 -

on ATC 4_2_7. In these conditions, «#e obtain from (37) and (43)

Kk < Foo <mz/52c at rziotm

2 . IS¢
J-<'< < &0 cm/ser- ab r:iScm

The values of\F(L corresponding to the Landau effect (see Eq. (38) ) are smaller
at least by a factor 3 at 10 cm and is equivalent at 15 cm.

The energy conduction coefficient deduced from the over all balance are
=223 10° cmzlsec. Therefore, our calculations and the measurements made in T.F.R.
show that, specially at 15 cm, the drift waves hardly explain the anomalous conduction
of electron energy (even if a substantial balooning is present). These calculations,
however, has been made assuming that the turbulent modes approximatively retain their
structure in the linear regime and that the electron transport coefficients may be
calculated by a second order perturbation theory.
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APPENDIX I.

The power W may be calculated as the limit for
Im W--0 of the quantity

2
W: f.-. (F-\\- 5F) d(—}:év-* ¢ SY") a’;x dg vy, =
) .

j BF.?%& dyx d;V= 2w Tm (] w F, esb: dy x =/3V) (b4)
o 4]

where § F (%,V, t) = F, (%,¥) expidt + C.Ca is the perturbation of

the equilibrium distribution function F and D is the domain

of phase smace where the particles of the considered set are

localized. For circulating particles, the variable bﬁb(?’ é)

varies along an unperturbed trajectory as e‘{_@(f’) exp :(‘Uf*'
Ky plrt Vy t) (see Eq. (2) ). Assuming to simplify that the

equilibrium distribution function F corresponds to thermody-

namical cbequilibrium at temperature T, the Vlasov equation
dF _ _ QdF

implies that

aE - " ac

£ dEmvi F(dew_ defy, o 8F

T dr ST \TdE T EA-T
so that

F-_fey £ &% &
t T FOOT wa kP

(If F corresponds to a conf:gd plasma, the frequency () must be
replaced by w-f-MLléwhere wd is the diamagnetic

Ff‘equenc§ ) Substituting in (44),

we obtain the power W = WL due to the Landau effect, when it

is active

Y 2
WL.—.‘{--. zwz(%_;) e er(")f dyx dyV

n S Ryp (MY, )
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As the quantity {r} Y, varies by a quantity a~+ k' (r) V
"e " 174
in J,\, we have

P4

For trapped particles, we have along an unpertubed
trajectory ¢ \h - e\'be(r-) P DIP exh :(wa+ M, ]E where the coef-
ficients o(p, the bounce frrequency wb and the precession fre-
guency W, are constant. We now obtain from the Vlasov Equa-
tion the value of F, along this trajectory in the form

F=-fe Feym 2 Y & ex b i{buy+Mul)t
+ A AR ‘/‘4( P W+ bW+ Ml xp by i)
We note that the value of the integral [ ... ' ey™.

s » ()]
d; x d; V is equal to [b--- <F ey >, a3x a3y where
< >,w means the time averaged value along the unperturbed
trajectory passing through x, v. We then obtain from (44) the
power W = WL due to collisionless resonances of the type

u)+F wb.fM th:o with p # o
W, = f sz_f_ez{q/(r‘)}l Z,’ol Ilng@j_*fwb_*,qw ds)lév
P T T 3}@45’

Except for very few particles near the circulating domain, for
which UJB:.' o, the frequency “}a has a value of the order that
given by (4b} Ffor particles which bounce near the eavatorial
plane+ The condition p # o means that WB exists oun.y if

(UL}’ wb » M W,\ and that the sumX in (45) extends over
values of [valw[ /Ldb. An estimation of the coefficients ¥p
may be obtained by assuming that the particles have a sinusoidal
motion of amplitude ). ~ q R along flux lines, namely that

(4 A s M . &
~£9+M?_(L?_(F)_M)E.Slmwa+ laJs
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2 2
It results that lo(’“, ~ 'J-F (k"e (r) AJ‘ R
Therefore the power W exists only if k”e (}-) qR ’); P ~ [!-d}/

We then have [l’(Plz-u "/k" Kr) qR . We further note that
the frequency &J varies however inside b by a gquantity <« %
so that 5@.,, bub}in (45) may be replaced approximatively by
.4/P wy . We finally obtain

Wb "_V(j e lﬂ sz‘f_ ez O(sx da\,')
D

2
R W, Keg(r)qRr
The term p = o in the L.H.S. of (45) gives the
power WK asscciated with the Kadomtsev mechanism, replacing

{intuitively) the functionngw.pM ws) by T /((W+ M w’)z+ z:’!) ,

where T is the time during which the particle motion remains
-

coherent with the wave in spite of the effect of collisions.

We thus obtain

W -_-(f.-. 2nuwf £ € o(sxdg\/)
K T
3 1
(£) h [ <Yylr)>" ! )
R {(Wa M wg)‘... <~
where[<\ (P) > | fJ’° Ryp(r19 ) lLLe(r«)l is the bounce
averaged value of (P(?) . In the presence of collisions, the
birac function 7 ((.‘J.‘;wa +M LUJ which ':-1ppearsz in (4 5)
must also be replaced by (r"/((w+ /udb.‘;ng) * Z"‘") .
This adds a further condition for the estimation (46) to be
valid, namely[W] » T~/. Taking into account the estimation

(7), this condition writes K,,_e(r) 719 )-({Ld//r:_) EZ
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APPENDIX II.

The general solution of (32) with the R.H.S. equal
to 0 writes [12 ]

e = o ‘\}{(x) + '\]{(x)

where X = r/ I;/z and the function$ .\p- 3] ) '\p. (%)

behave for 3% o i

V{(x): 'i- -21- dx"..,...

'\U‘(x) x . 1 dxt...
and For 3 . e

T nd /3
A elf'(?‘r/zi%){x*)/z cos($4+ fadygx-2- 0

_ 20(3) explnd/s
VCE “,(ifi fdé” x% cos(d '+ Lateyx- 3T . o)

U‘(J)‘ Ar‘g _[Yz‘__‘, _‘d) H 'C(JJ— Arg (£_+_LJJ

For the function f(r') to behave as explx‘/a for 1"-7«: , we must

take
/
M) ap (32, 7(d))

Ce ‘p( _,_:L;d)l

/) .
S k(g o)
3

The value of(b.“/fbr‘)r’.+°= 5 o.o'l (.1e is then given by (34a).

i e —————
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For r’, s we obtain,

F(r’)l _ eI €)<,L._TIC(/3 =y
Floy it + % id) ] Y

Assuming that d::' 1 , according to tl7 condition (35), we
(]

nave | F(rY [ Flo)] = (-f Gn (d]?

xI %
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FIGURE CAPTIONS

Fig. (1)
TOKAMAK GEOMETRY
Fig. (2)

Power W irreversibly transfered by a potential

\P{(I') exp i(f’e.,. M@ + W) to the electrons of energy
on the magnetic surface r, Fhick Tine : Kadomtsev mechanism ; thin

linettandau mechanism. X, = Su_F ((,-/R)“/;’- (w[/wli 5 (r/R)"/‘ Y /Ldb) .
aj 1l < X 5 b)lwl >,

Fig. (3)

Values of the function <Z{=, Y,<Z) which appears in
Eq. (36) - (x = lw;/wbth),- y = XEH\./wbH" ; s ”“’3&/“’5&)

Fig. (4)

Values of the function Z/("-,‘J‘Z) which appears in
Eq. (37).( % = wl/wygy ; Y= Yemn /“’btk ;2= Mw?“‘ /"Jbtl\.)
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