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ABSTRACT -

From a discussion of the disruption process, it is 

concluded that this process plausibly consists of the onset 

of a fine grain turbulence. This turbulence must be able to 

produce the large values of the inductive electric field 

— which are associated with the reorganization of the 

poloidal flux yJ(H and the current density I(r) on the magnetic 

surfaces of radius r. it is then plausible that the turbulence 

belongs to a class of "rippling" modes, in trie presence of 

which the Ohm law takes the form 

i 2T -. , i _ l ( r K H 
c l b I r^r N -&r 

The anomalous term — /rK-£ijmay explain the experimental 
yyj. r7>r\ zr> 

values of __i ÈjL for magnetic perturbations corresponding to 
c ït 

a substantial radial ergodicity of the flux lines. The 
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stability of the modes in the presence of such an ergodicity 

is accordingly considered. It is found that the modes may be 

unstable even in collisionless regime, the ergodicity playing 

a role similar to the resistivity to partially remove the 

M Ii. D. constraint. 

D'une discussion du processus de disruption, il ressort 

que ce processus consiste probablement en l'apparition d'une 

turbulence à grain fin. Cette turbulence doit être capable de 

produire les valeurs élevées du champ électrique inductif 

_ 4 O y , associées â la réorganisation du flux poloidal yCr) 
e -ifc 

et de la densité de courant I(r) sur la surface magnétique de 

rayon r . Il est alors plausible que la turbulence consiste en 

des modes "rippling" en présence desquels la loi d'Ohm prend la 

forme 

1 IV = r) I _ J_ (rK±L) 

Le terme anormal-ï— (rk — i peut expliquer les valeurs consta-

tées de _ 1. z-jL si la perturbation magnétique réalise une subs-
« "ït 

tantielle ergodicité radiale des lignes de flux. Il est montré 

que les modes sont instables en présence d'une telle ergodicité 

même en régime non collisionnel, 1'ergodicité jouant un rôle 

analogue à celui de la rësistivité pour atténuer la contrainte 

M.H.D. 
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I - DISCUSSION OF THE DISRUPTIVE PROCESS -

The disruptions associated with the surface q =1 and 

the soft disruptions associated with the surface g = 2 , as 

they ars detected through soft X ray emission/-^ Z f S J, 

consist of a sudden [ So -Joo Usjpartial flattening of the 

temperature profile in a large domain on both sides of the 

resonant magnetic surface where the safety factor q = 1 or 2 . 

They are generally preceded by the relatively slow onset of 

an oscillating structure which has been identified to magnetic 

islands in the case Q~ 2 / ^/ 4 y . Owing to the strong analogy 

of the X ray signal (in space and time) in the case q = 1 and 

q = 2 , this interpretation is also plausible for the disrup­

tions q = 1 . Eventually the oscillating structure persists 

after the disruption. Near the end of the disruptions q = 2 

a very strong and short negative voltage pulse around the major 

axis appears /" 5 J . Such a negative spike is absent in the 

case q = 1 . This is not surprising oving \.o the fact that the 

effect of the disruptions q = 1, while significant relatively 

far from the resonant magnetic surface, does not reach the 

plasma edge. The presence of the voltage spike in the case 

q = 2 means a sudden variation of the poloidal flux embrassed 

by the magnetic surface at the plasma edge. It is likely that 

the poloidal flux 2ïïR. "IWJ") embrassed by the surface r (.see 

Fig. (I) ) varies by a quantity of the same order in the domain 

affected by the disruptions. Assuming that this variation takes 

place progressively during the disruption process, this means 

the existence of an inductive toroidal electril field _ A. £_i 
c -fet 

significantly larger than the normal value of the resistive 



effect 1) J . This conclusion is plausible also in the case of 
the disruptions o r 1 / £ j • Assuming that the variation of 
llTfr) during the regeneration periods between two disruptions 
(caused by the rotational part of the electric field »ff) S(r) ) 

is cancelled out by the variation of iTfr) caused by the dis­
ruptions, the value of - "* -2—C during the latter is ,> 3 V\ 1 . it 
must be noted that disruptions q = 1 may exist without magnetic 
activity on the surface q = 2 and vice versa, and therefore 
that the coupling between the two types of perturbation, 
however interesting, do not play a major role in the disruption 
mechanism. 

The simplest idea to interpret the disruptions is 
that they consist of the development of the magnetic islands 
initially present near the resonant surfaces q = 1 or 2. which 
would invade in particular the domain inside the surface q = 1 
or the domain outside the surface q = 2 , while keeping roughly 
their topology. In the case of the disruption q = l , this idea 
has been encouraged by the fact that the tearing mode which is 
at the origin of the magnetic island has a relatively large 
linear growth rate. In fact tnere are serious objections to this 
interpretation. For instance it is difficult to understand on 
this basis why the action of the disruptions decreases progres­
sively with the distance from the resonant surface,, or why the 
oscillating structure may persist after the disruption, or why 
the disruptions q = 2 induce a large voltage spike during 
a time which is short compared to duration of the disruption. 
The major objection is however that the assumed topology change 
of the flux lines seems impossible in the very short time of 
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the disruptions, Let us consider for instance the case of 

a disruption q = 1 , depicted on Fig. (2). Let y be the flux 

between the closed flux lines (a (initially the helical neutral 

line of the magnetic island) and JO (initially the magnetic 

axis). We have 

Jj> 
c dé J% ->t 

where L. and "t are the component of the electric field and the 

abscissa along the lines JJ or if, and * n . I J are the 

i s ' /if ' JB' e 
values of the resistivity and the current density on 3^ and Ï?. 

The line 3, which is reminiscent of the plasma center is likely 

to be hotter than the line G , and therefore 1Q ^ 7 * -

It then results from (1) that 

Before the disruption,the value of at is equal to the difference 

CP - 9 « of the toroidal flux (j> and the poloidal flux 

(p , embrassed by the surface q = 1 of radius r = r . After the 

disruption, assumed to have a duration at , the value of Œ 

is 0 .We then obtain from (2), assuming a paraboJic profile 

for the initial density current 

c dt it zc r H"> n » <?' 

where g is the initial value of q on the magnetic axis and B is 



"1 
the static field. On the other hand, the magnetic energy which 

is initially disponible for the process has the form iL L(i _ J ) 

and t.nG magnetic surface g = 1, and L i s a coefficient of sel :: 

induction. During the disruption, a magnetic energy H~ L - jz 

will appear, with the coefficient !•' obviously of the same 

order as L. The energy conservation imposes that 

/ ! -
1 L ! V , l > i i'\iA- h 

and it then results from (3), noting that J 0 - J, 2 2 1 /i . ^ j 

*(è 
Typically, in the T.F.R. case, the L.H.S. term of this inequa­

tion arises to 200 volts, to be compared to a value of 

ZftR f\ 1 <^£ 2 volts. The process is therefore incompatible 

with a value A/ "1 . 

U 

We may then consider as plausible that the disruptions 

are due to a fine grain turbulence. This turbulence must induce 

a reorganization of the poloidal flux 2nR*LJ[f') and the current 

density I(r) {now taken of course in the average at the scale 

of the turbulence), corresponding to an inductive electric 

field - 1 JL_L larger than the normal value of *) X . R first possi-

bility is that the turbulence induces anomalous values of the 

resistivity ft . However the disruptions take place for values 

of the temperature T, density n and current density which 
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are by no means critical for the onset of such an anomaly. 

It is more likely that the anomalous f ield _ 2. iSL is produced 
c St 

by an electromagnetic effect, namely an effect of the type 

" y — associated with a magnetic perturbation «6and a 

velocity perturbation both transverse to the static field. 

The turbulence may then be specified by a potential vector SA 

parallel to the static field B and an electrostatic potential 

%y so that 

S& = <7 « &b . SA // & ; %£z _ 1 lia. _ vty (U 

The electric field £(, along the perturbed flux lines, averaged 

at the scale of the turbulence (symbol ) is then given 

by 

-sfe 

- i>t 

ft 

(SA) 

As the vector g&̂ tfi may vary only in the radial direction along 

which inhomogeneity exists and as, in the average at the scale 

of the turbulence, we must have En = f\ J , we obtain from (5a) 

an equation which may be considered as the new Ohm law in the 

presence of the turbulence. Unstable electromagnetic modes of 

the form (4) which exhibit a non vanishing value of ô/â fl!^> 

are somewhat similar to the "rippling" modes which have been 

investigated by Turin. Kti°en and Rossenbluth / j 7. For conve­

nience we will also call them "rippling" modes. Actually it is 



mausibLe that the turbulence we have in view consists of modes 
o~ rn.t- class. We will consider them in some detail in tne nex 
s.viicr.s, i-i'e noce simply here that if such a turbulence exist.-
; ,;v •moiuar Deviation of the magnetic field produces a rran~-
'.'i-rsL. eji3ctror. current o ± rj _[--^—which builds up a charqe 
oensitv j cilv % I o!t /j - i _2f ^ r c/p - The latter is likely 
to DO neutralized by a charge density _ / °t hfi at corresponding 
to tne presence of the potential &j£> , the quantity of being a 

prooer constant. We then have %tL «t L \zl iztand the Ohm 
law (5b) becomes 

The turbulence liberates a fraction of the magnetic energy W 
associated with the poloidal field D . We have in fact 

0 

The second term represents the power which is liberated by the 
turbulence and which is disponible to maintain its amplitude. 

II - RIPPLING MODES IN THE LINEAR REGIME -

It is convenient to introduce, for a given applied 
electromagnetic perturbation 

SA; (0.(50 e*f>?»* + €*»(.. 4 ,^ . ) ^ O^o.'/,... ) 
l^-[yCx) e^'nat + f„«f. ft»,/-) + 0 (la![... ) 

W 
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the following set of quantities 

1°) The first order current and charge densities 

W 

as they appear from the action of the field on each 
é 

plasma species. The field J(x) , pfc) results from the field 

a.S() \h fc) by a linear transformation which depends analyti­

cally on the frequency^ , 

2°) The bilinear form in the fields afof (f,fc) end û."fe) f <J> ÙK 

which is specified by 

iff! JJI 
. . . • ' * ' 

^ - P *<*) d. 

which again depends analytically on(J. It is readily verified 

that if the field a» p and the frequency 0) represent a self 

consistent mode, the Maxwell equations (neglecting the displa­

cement currents) which must be verified byc.y, and (J are 

equivalent to stating that the formoG in an extremum with 
* v 

respect to all variations of the field a. , <Li . This implies 

thatc& = Q , an equation which gives the frequency Li when the 

geometrical structure <3-(*) ;t|)f) is known. Also, it may be 

verified that a field of the form (7), with oO real, 

assumed to be created by oscillating charges and currents independent 

of the plasma, provides a powerW to the system consisting of 
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the plasma and the magnetic field inside the boundary surface, 

given by 

UT - _ ! td dm. {câ(0ù; CL , p ; a*, f^ 

Let us firs'- consider the case of a collisional 

plasma with negligible temperature, and a mode ( See Fig. (1) ) 

afo ; a (r) e*f» (; (B + \ m <p ) } c, \l & 

exhibiting along unperturbed flux lines the wave number 

y - ^L fyn J. _ ) • The ion contribution to J is then given 

by 

~ " "it 

where n is the plasma density, e is the electron charge. 

£ = • £ and C. is the Alven velocity associated with 

the static field. On the other hand the electron contribution 

to I is readily found to be 

d i & a* 

A 1 = _±JL 2£_ -, 
Using the charge continuity equation (10 P + duT Jiftto calculate 

p, and noting that lVX Q.\ f& /V 0-] • w e ° D t a i n 
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'<W-â M* <• £ R n1 o 

By putting \L/*U)<p for W real we transform ce as 

The bilinear form A in ( t , ^ « , ^ may be analytically 

continued in the plane U. The system of equations which determine 

the field 0.,^ and the frequency W is equivalent to stating 

that «o is extremum for all variations of 6- t If-1 . For O real 

this system •s equivalent to state that f\is extremum for all 

variations ct a, iL . This equivalence is valid in the complex 

plane Ct> if A las been analitically continued. For i W : J real 

we obtain 

* (is; 
The form A is real in that case., Therefore, if considered as an 

hermitic form in CL if/ , it must be extremum for aJ 1 variations 

of fl.1 ̂ . It is then obvious that a field a., ̂  which makes 

A ^o for a value of Y > o guarantees the existence of an uns­

table mode with a growth rate > ")f. 
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The tearing modes corresponds to a trial filed CL, (/-> 

I ~4 
satisfying the M.H.D. constraint ^ - • Q. outside a thin 

C K,| 

singular layer including the resonant magnetic surface r = r 

where K„ = o . Inside this layer we may take a. = constant and 

interpolate the values of <p . The true rippling modes of 

FORTH et al. correspond to o-= 0 and HJ localized in a thin 

layer on one side of the resonant surface. The rippling modes 
t Lty 

we have in view correspond to a field 0, / <\> - -£— symétrie 
o 

with respect to the position r = r , with the field a and 

localized in radial intervals S and % , respectively. Such a 

field is depicted on the figure (3). We then ob*.ain from (15), 
assuming that —*> — and 0 < ° 

r % 

where t̂  „. A. ~W &'. We will assume that ."dJ ^j ~ï>&9 ^j 

it ^ _-t_ . We then find A > o if 
ifir r 

where T- r „ , Z„ = — I — and C is the Alfven velocity 

associated with the field S . The new Ohm law (6a) is easily 

obtained from (5b) in the form 

~T* ...2 
^ r /Jlf r 2 

/ 0/ ^ J 
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A value off- i ." ' I significantly large than n J" implies 
that 

This condition means that the transverse magnetic perturbation 
Sois large compared to the transverse component of the equili­
brium field which is created by the shear in a radial interval 
equal to the scale % of the magnetic turbulence. 

Let uS now assume that the electrons have a finite tem­
perature T and the collision frequency \J is small. Except 
in a relatively small layer near the resonance surface we have 
in that case 

z 
é 

The electron contribution to j results from the integration of 
the Vlasov Equation. Neglecting the gradients of the tempe­
rature and of the density n, we obtain instead of (13) 

I 
he. 

J ± I1 ± ± a. (13) 
r c Dr ô *„ 

! z T V*a. 
Assuming to simplify that the ion have no temperature so that 
the Eqs. (12) are still valid, it comes 
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''his expression of°fc>, valid in the domain where (18) is satisfied, 

does, not contain the terms proportionnai to \0. <±- -t- Q -̂ J 

which appear in the expression (14) and which are responsible 

for our rippling instability. In fact, in the domain where K H 

is too small for the condition (18) to be satisfied, the expres­

sion of«S changes progressively from (2Û) to join (14) in 

the small layer where | «,, V, £ j ^ I j CO I ^ d ] • The 

thickness of this layer is larger than the seal. 0 given by 

(16) if I *fy I y IJ.Z \ '* .It may be shown that our rippling 

medes then persist as in the collisional case depicted above. 

III - STABILITY OF THE RIPPLING MODES IN THE PRESENCE OF THE 

TURBULENCE -

We have seen in the preceding section that the rippling 

modes are able to produce the large inductive electric fields 

J ! zJ- k (II characteristic of the disruptions if the magnetic 

perturbation satisfies the condition (17). It is then natural 

to ask the question : are our rippling modes still unstable 

in these conditions ? We may answer this question by the same 

technique as in the linear regime^by considering a perturbation 

of the form (7), calculating the response in current 



and charge density of the form (8) in the presence of the turbu-

le.ic--, then calculating the bilinecr form <k»/ti) t a., \{j a* <fs J 

specified by (9) which may be used in fact to determine the 

modes as in the linear case. To simplify the problem we will 

assume that the linear response of ions is still valid in the 

presence of the turbulence, focusing our attention on the elec­

tron response and neglecting again the density and temperature 

gradients. We will assume also that the condition (17) is largely 

satisfied so that the field 0-,^ exibits a wave number <H 

w C , nJ — -Si— fj T 2L. along perturbed Tlux lines which is 

large. (The quantity Ji„ must bt> of course distinguished from 

the linear value K -\Yt\.+ i— \ \ • We assume in particular 

that the condition Jf y > l̂ jj \7 , similar to (18) is 

satisfied and that 

K < M » | ^ ( (*4V 

The condition (22b) may be verified a posteriori. 

We first consider the electron contribution to 

in the absence of a gradient — of the averaged current density 

Ï. The electron response to the field 0,<^ in that case essen­

tially consists of reaching the new thermodynamical equilibrium 

along flux lines, in which, because of the condition (21b), the 

electrostatic potential plays the major role. This response then 

ne.7-essentially consists of the charge density ps—i-ï- Q) . 

Taking into account the definition (9), the corresponding value 
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/ IP/ 0£ X .He now calculate 

y T TT 
the term ofc£ which is proportionnai to £± a. • This needs the 
calculation of that part J of the electron current response 

*yf~ • / 
which is proportionnai to Si. a. . The current I may be obtained zr ° 
by integration of the Vlasov equation, and in fact is trans­

parent on (19). We have 

The presence of the turbulence makes the integrand in / -
J fft» fime. 

a stationnary randon function with a small coherence leugth 
j ' I '1 

-— . Therefore J is the S U M of a small value <»J y rj 

'! P ->T J ** " 
_i. — -2i_ _ — a. coherent with the field ft, ̂  , and 

f B7>r £%„ 

of a series of balistic terms. These terms are incoherent with 

the field A , ^ and have not to be known to calculate the expres­

sion of o6 . Finally we retain only the current *c J > estimated 

above and the current J . Calculating through the charge conti­

nuity equation the corresponding charge density 

tu ^ " à,, d W fa, (. U „ } + J ê T r -

and using (21a), we obtain from the definition (9) the desired 

part of £ proportionnai to Jïi Q. in the form 

i// r W S 
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To calculate the term ofoî which is proportionnai to-5- Y , 
"Si" 

we may use the fact that the power which is added to the plasma 

by a perturbation 0., ty t £j , with W real, must tend to 0 when 

W tends to 0, i.e., for a static perturbation. Taking into 

account (10), this means that Ci tends to 0. This determines 

the desired part of«6 in the form 

I Id- lî y a* A,-. 

It finally results from there arguments that the expression of 

Jj in the presence of a strong turbulence is given by 

r u>6 ir \ r > .• 

The essential difference between the expressions (22) 

and (20) ofoC is that we have recovered in (22) the terms propor­

tionnai to -£— [(X\h •+ Q y) w n i c n appear in the collisional 

expression (14), and which are responsible for our rippling 

instability. It must be noted that the origin of this situation 

is the fact that the current J considered above has a small 

component coherent with the field *, «A . This cancellation is 

fundamentally linked to the existence of balistic terms of J 
"il 

incoherent with the field û ; y* . in fact these terms necessarily 

generate torsionnal Alven type modes which represent a damping 

mechanism for the mode <\ , (̂  . This damping effect is automati­

cally taken into account by the variationnal technique of the 
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form «G . In the present collisionless case, it partially removes 

the M.H.D. constraint and allows the onset of unstable rippling 

modes. Indeed, by putting Usz U) <JJ and transforming the form 

J(, U); 0.) 1^ f a* f1*) into ^•(u)/ °L,H^> a*j ̂  J a s explained 

in the § II, it is readily shown that unstable modes with a growth 

rate ~£ exist if there exists a trial field O., ip ' such that 

the hermitic form 

-, 1 ™ (a f " + a- f ' J ) 

takes a positive value. Unstable rippling modes with a, and \1, - JLÎE 

r 
localized symmetrically on both sides of the resonant surface 

in the same interval o exist by taking 

<? A. r r r:A 

The Ohm law then becomes 

* S - ^ ; /•...= -5- T^ # 

ftz 

The poloidal magnetic energy liberated by unit time by the 

turbulence - S^ is given by (6b). The scaled must be large 
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Ill Vj C Oj X . This condition imposes a lower limit 

enough for the power » X— to be larger than the «rule losses 

to S , namely 

M 

The turbulence produces an anomalous inductive field 

_ i £ i _ n I larger than M I if we have 
C th I I 

8<Z > S Jkû. 

IV - CONCLUDING REMARKS -

The turbulence could exist in the disruptive form, 

with o&» b m • "
e i and accordingly produce anomalous inductive 

field _ d-àjcTs^Yi Ï • It could be triggered by the singularity 
(• T>t _ / 

of the slope ̂ i at the separatrix of the magnetic islands 

tr 
initially present on the resonant surface, and propagate explo­

sively in the plasma as explainfi/in / 4 a J . 

It is possible also that the turbulence exists in the 

non disruptive state of the plasma at the minimum scale à - 0^ 

and the minimum level . In that case the diffusion 

coefficient should roughly have a value rJ "^ } nj W C ( which 

is not inconsistent with experimental data. The new Ohm law 
(with now_ fcff/c'&t - y r only a fraction of 7 •?) 
Could stabilize the tearing modes in the linear range on the 

surface q = 2 by preventing the singular current layer to appear. 

A critical density, beyond which this stabilization is not 

effective enough, and soft or hard disruptions are triggered, 

could correspond to a critical ratio of the growth rate of the 



tearing mode on the surface q = 2 to the inverse scale time 
y of the turbulence. The new Ohm Law should also result in 
anomalous skin effects and anomalous acceleration of Runaways. 
Such effects, if present, could be a proof of the presence of 
the turbulence. 
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FIGURE CAPTIONS -

Figure (I) - Tokamak Geometry. 

Figure (2) - Hypothetical disposition of magnetic island at 
the beginning (I) and the end (2) of a disruption 
q = 1. 

Figure (3) - Trial field 0. ^ for a rippling mode in the 
collisionnal case. 
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