

Université Scientifique et Médicale de Grenoble

INSTITUT DES SCIENCES NUCLEAIRES DE GRENOBLE

53, avenue des Martyrs-BP 257 + 38044 Grenoble Cedex Tél. 87 71 41

FRARO 7896 ISN 77.29 June 1977

89/2 PROTON-HOLE AND h11/2 PROTON-PARTICLE IN ODD-A Cs NUCLEI

N. YOSHIKAWA, J. GIZON and A. GIZON

Presented at the International Conference on Nuclear Structure, Tokyo, Japon, September 5-10, 1877

Laboratoire associé à l'Institut National de Physique Nucléaire et de Physique des Particules N. Yoshikawa, J. Gizon and A. Gizon

Institut des Sciences Nucléaires, IN2P3 - USMG, BP 257, 38044 Grenoble Cedex, France

The rotor-plus-particle model originated from observation of decoupled bands in odd-A La isotopes 1) and many subsequent experiments have verified its applicability in the transitional regions.

Results are reported here on similar band-structures observed in 1: ,123,125Cs nuclei produced by 112,114,116 Sn(12C.p2n) reactions at the Grenoble variable energy cyclotron and identified mainly by means of p-y coincidences.

. We observe cascades of strong stretched E2 transitions which we assign, in disagreement with earlier work 2), to the h11/2 decoupled band generated in the cesium isotopes from a proton in the 1/2 (550) orbital. As expected, the favored members of these AI = 2 bands have energies (relative to the 11/2 isomer) very similar to the ones of the ground-stage band in eveneven Xe cores (fig. 1). In addition, a AI = 1 band (fig. 2) is found here for the first time in odd-A Cs isotopes. This band is believed to originate from a hole in the Sq/2 proton shell. Such an assignment agrees with the observation 3) of a 9/2 isomer in 121Cs. This new band is characterized by rotation-like spacings (fig. 2) and by M1+E2 transitions having positive 6(E2/Mi) mixing ratios typical of a proton-hole configuration. The experimental results for both h_{11/2} and g_{9/2} bands imply prolate shape for the odd-A 121-129Cs nuclei 4). References: 1) J.R. Leigh et al., Nucl. Phys. A213 (1973) 1.

- 2) J. Conrad and R. Repnow, Z. Phys. A276 (1976) 403.
- 3) G. Ekström et al., Proc. 3rd Int. Conf. on Nuclei far from Stability, Cargèse (1976) p. 193.

4)	Data relative to				3205 <u>31</u> -						
	129Cs are from		<u>2916 31</u> -	10+ <u>3030</u>	2						
	J. Chiba et al.,									!	
	Univ. Tokyo,	8+ <u>5099</u> <u>5100</u> <u>57</u>	9100 27 -	6+ <u>2217</u>	2330 <u>27</u> -					j	23/2 2228
	Progr. Report									21,2 1860	
	UTPN-50 (1974)			-14/17	1529 23		1699 <u>23</u> 2				19/2+_1499
	p. 44.	6+ <u>1396</u>	1373 23°	6" <u>140/</u>	2						
		4+ <u>795</u>	_258 <u>19</u> *	4+ <u>829</u>	844 19-	4+ <u>879</u>	<u>939 19</u> -	4+ <u>1033</u>	<u>1052 19</u> -		17/2
											15/2+824
		24 -322	284 157	o+ 331	321 15-	2+_354	366 <u>15</u> -	z+ <u>443</u>	<u>448 15</u>		13,2+
			10) 41-		10) 41-		2		(0) 44-		11/2+
							(0) 11 2				%2 ⁺ (0)
		¹²⁰ Xe	^{IZI} Cs	¹²² .Xe	¹²³ Cs	¹²⁴ Xe	125Cs	128Xe	'''Cs		¹²¹ Cs