

Ю.Н. Днестровский, Д.П. Костомаров, С.Е. Лысенко

Энергетический баланс в больших установках типа "Токамак"

A14

ОРДЕНА ЛЕНИНА ИНСТИТУТ АТОМНОЙ ЭНЕРГИИ им. И.В.КУРЧАТОВА

Ю.Н.Днестровский, Д.П.Костомаров, С.Е.Лысенко

ЭНЕРГЕТИЧЕСКИЙ БАЛАНС В БОЛЬШИХ УСТАНОВКАХ ТИПА "ТОКАМАК"

> Москва 1975

Ключевые слова: токамак, термоядерные реакции, плазма, баланс энергии, расчет.

На основе одномерных уравнений энергетического баланса проводится анализ нагрева плазмы в больших установках токамах поколения 80-х годов. Типичные размеры рассматриваемых установок: R = 400 см. Q = 150 см. \checkmark

В расчетах используются "псевдоклассическая" и "бомовская" модели теплопроводности. Учитывается нагрев плазмы с помощью инжекции пучка быстрых нейтралов, охлаждение за счет притока холодных нейтралов из вакуума, передача энергии
— частиц плазме, циклотронное и тормозное излучение.

СОДЕРЖАНИЕ

		FUMP DAMANDA	3
		В ЭНЕРГЕТИЧЕСКОМ БАЛАНСЕ	27
8	5.	ХОЛОДНЫЕ НЕЙТРАЛЫ И ИХ РОЛЬ	
		для большой установки (12)	25
9	4.	модель "Бомовской" теплопроводности	
		МОДЕЛИ ДЛЯ "БОЛЬШОЙ" УСТАНОВКИ (12)	11
8	3.	вычисления по "псевдоклассической"	
		"МАЛОЙ" УСТАНОВКИ (11)	9
8	2.	РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ ДЛЯ	
9	1.	СИСТЕМА УРАВНЕНИЙ	5

§ 1. СИСТЕМА УРАВНЕНИЙ

Пля описания энергетического баланса плазмы в настоящей работе используется упрощенная система уравнений, не учитывающая диффузии частиц и тока в процессе разряда:

$$\frac{\partial T_{i}}{\partial t} = \frac{1}{nx} \frac{\partial}{\partial x} \left(xn \chi_{i} \frac{\partial T_{i}}{\partial x} \right) + P_{ei} + k_{g} P_{g}$$

$$\frac{\partial T_{e}}{\partial t} = \frac{1}{nx} \frac{\partial}{\partial x} \left(xn \chi_{e} \frac{\partial T_{e}}{\partial x} \right) - P_{ei} + k_{u} P_{u} +$$

$$+ (1 - k_{g}) P_{g} + P_{joule} - P_{torm} - P_{ce} .$$
(1)

В системе (1) x=7/q, $T_{i,e}(x,t)$ – температура ионов и электронов в электронвольтах; $n = n(x) = n_{max}(1 - 0.8x^2)$ - плотность плаэмы в единицах 10^{13} см⁻³; ${\it R}$ и ${\it Q}$ – большой и малый радиусы плаэменного тора в см, ${\it t}$ – время Для коэффициентов теплопроводности 🔏 🕻 , е используются две модели:

(1) "псевдоклассическая" модель [1, 2]:

$$\lambda_i = \lambda_i^{neo} , \quad \lambda_e = 7 \quad \lambda_e^{neo}$$
 (2)

и (2) модель "бомовской" теплопроводности;

$$\chi_{i,e} = \frac{1}{2} \chi_{i,e}^{B} , \quad \chi_{i,e}^{B} = \frac{1}{16} \frac{c T_{i,e}}{e H} , \quad (3)$$

řде **H** - напряженность продольного поля.

При вычислениях распределение тока по радиусу предполагалось параболическим. P в уравнениях (1) обозначены различные источники и стоки тепла:

$$P_{ei} = \frac{470}{P} \frac{n}{T_e^{3/2}} \left(T_i - \overline{I_e} \right) \tag{4}$$

кулоновский теплообмен между электронами и ионами (/ приведенная масса ионов) ,

$$P_{\alpha} = 6.10^{6} n \frac{1+7\theta_{i}^{3/4}}{\left(1+242\theta_{i}^{13/4}\right)^{4/2}} \cdot \frac{\xi_{d} \xi_{t}}{T_{i}^{2/3}} \exp\left(-\frac{200}{T_{i}^{4/3}}\right)$$
 (5)

- мощность потока энергии α -частиц, получающихся в результате α - ξ -реакции [3]. Здесь θ_i = T_i /93800, ξ_{α} и ξ_{ξ} - относительное содержание дейтерия и трития в плазме. Далее,

$$P_{ce} = 0.53.10^{13} H^{5/2} T_e^{5/2} (an)^{-1/2} \left(1 + \frac{710 a}{RT_e^{1/2}}\right)^{1/2}$$
(6)

- мощность циклотронного излучения электронов $[4 \] \ ,$

$$P_{tozm} = 7.2 \cdot 10^{-4} \, n \, \sqrt{T_e} \, \left(1 + \frac{1}{2} \, z^2 \right) \tag{7}$$

- тормозное излучение на ионах плаэмы и примесях, заряд примесей,

 $P_{jou(e} = \frac{1.28 \cdot 10^{7} I^{2}}{n T_{e}^{3/2} a^{4}} (1-x^{2})^{2}$ — мощность джоулева нагрева продольным током, I — ток в килоамперах, $P_{i,e}$ — энергетические потери, связанные с перезарядкой на остаточном газе и охлаждением при его ионизации:

$$P_{i} = -9.10^{9} N (T_{i} - T_{N}) [(\sigma_{ex} + \sigma_{ii}) v_{i} + \sigma_{ie} v_{e}],$$

$$P_{e} = -9.10^{9} N (T_{e} - T_{N}) [(\sigma_{ii} v_{i} + \sigma_{ie} v_{e})],$$
(9)

 σ_{ex} , σ_{ii} , σ_{ei} — сечения перезарядки и понизации ионами и электронами, N и T_N — плотность нейтрального газа (в 10^{13} см $^{-3}$) и его температура (в электрон-вольтах).

Для нахождения мощности P_{g} , передаваемой от инжектируемого пучка горячих нейтралов плазме, в процессе интегрирования системы (1) решалась также задача об ионизации, перезарядке и захвате горячих частиц. С этой целью вдоль луча ин жекции решалось уравнение для плотности пучка и проводился анализ траекторий образовавшихся горячих ионов. Если траектории проходили через стенку камеры, соответствующие частицы выбывали из игры. В принятой модели энергия частиц, траектории которых покализованы внутри камеры, мгновенно передавалась плазме на той магнитной поверхности, на которой образовались частицы. Распределение этой энергии между ионами и электронами плазмы определялось множителем k_{g} [2,5], зависящим от энергии пучка E_{o} и температуры электронов T_{e} :

$$k_{g} = y \left\{ \frac{\pi}{3\sqrt{3}} + \frac{1}{3} \ln \frac{1 - \sqrt{y} + y}{(1 + \sqrt{y})^{2}} + \sqrt{\frac{2}{3}} \operatorname{azctg} \frac{2 - \sqrt{y}}{\sqrt{3y}} \right\}$$

$$\text{The } y = E_{1}/E_{0} , E_{1} = T_{e} \left(\frac{3\sqrt{\pi}}{4} \right)^{2/3} \left(\frac{m_{c}}{m_{e}} \right)^{1/3}$$

При расчетах предполагалось, что плазма состоит из равнокомпонентной смеси дейтерия и трития. Вычисления проводились для "малого"

$$R = 300 \text{ cm}, \quad Q = 100 \text{ cm}, \quad H = 80 \text{ u} 40 \text{ kg}$$
 (11)

и "большого" варианта установок:

$$R = 400 \text{ cm}, \quad a = 150 \text{ u} 100 \text{ cm}, \quad H = 40 \text{ u} 30 \text{ kg}.$$
 (12)

Предполагалось, что в плазму в ходе разряда по хорде инжектируется пучок нейтралов с энергией E_0 = 100 кэв и эквивалентным током \mathcal{L} ампер. Максимальная плотность плазмы \mathcal{R}_{max} в дальнейшем для краткости обозначается через \mathcal{R} . При геометрических размерах (11) или (12) и плотности \mathcal{R} = 5 в плазме ионизуется, перезаряжается и захватывается практически весь пучок (\sim 99%). При \mathcal{R} = 5 энергия пучка относительно равномерно распределяется по сечению плазмы, при \mathcal{R} > 10 ионизация и захват происходят в основном в периферийном слое, однако скинирование энергии не слишком велико, и значительная доля мощности $\mathcal{P}_{\mathcal{R}}$ поступает и во внутренние слои (рис. 1).

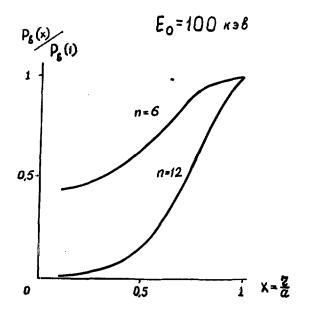


Рис. 1

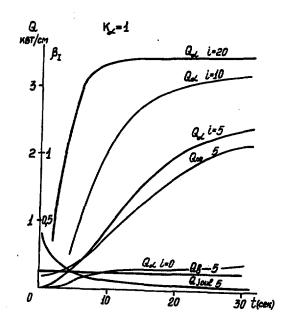


Рис. 3

R=300, a=100, H=80, n=5, q=2 I=6700, E==100 ks8

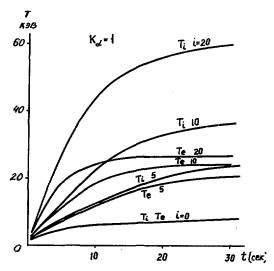


Рис. 2

Рис. 1. Радиальные распределения плотности нейтрального пучка при разных концентрациях плазмы.

Рис. 2-3. Изменение температуры T_e и T_ℓ , мощностей \leftarrow -частиц $P_{c\ell}$, циклотронного излучения $P_{c\ell}$, джоулева нагрева P_{joule} и инжекции P_{ℓ} со временем при разных токах инжекции ℓ , мелая модель.

§ 2. РЕЗУЛЬТАТЫ ВЫЧИСЛЕНИЙ ДЛЯ "МАЛОЙ" УСТАНОВКИ (11)

В этом случае вычисления проводились только для "псевдоклассической" модели (2). На рис. 2 приведены зависимости максимальных температур ионов и электронов T_{imax} и T_{emax} от времени t (сек) при n=5, $k_d=1$, t=80 кэ, t=6700 ка (t=0) и различных токах инжектируемого пучка (t=0, 5, 10, 20 а). Инжекция пучка проводилась в течение всего времени разряда.

При отсутствии дополнительного нагрева температуры ионов и электронов через 30 сек оказываются на уровне 8 кэв. При этом энергетическое время жизни $\mathcal{T}_{\mathcal{E}} \sim 5$ сек, $\mathcal{N}_{\mathcal{T}_{\mathcal{E}}} \sim 2,5.10^{14}$ и критерий Лаусона формально оказывается выполненным. Однако разогрев плазмы происходит крайне медленно и для выхода температуры ионов на уровень $\mathcal{T}_{\mathcal{E}} \sim 12$ -15 кэв требуется время порядка нескольких минут.

При наличии пучка нейтралов уже весьма небольшие дополнительные мощности нагрева ведут к быстрому росту температуры ионов и зажиганию реакции. В рассматриваемом режиме при T_e > 20 кэв основным источником потерь является циклотронное излучение. Оно останавливает рост температуры электронов на уровне $T_e \sim 20$ –25 кэв. При этом $P_{c} \sim P_{c}$, т.е. вся энергия \sim -частиц, переданная электронам, сразу сбрасывается на стенки через циклотронное излучение. Температура ионов превышает температуру электронов за счет энергии пучка P_e .

Анализ рис. 2 показывает, что для вызода плазмы на уровень $T_i \sim 15$ кэв за время порядка 3-5 сек нужно ввести в плазму дополнительную энергию $W \sim 6.10^6$ дж. Для характеристики баланса энергии введем величину $Q_d = \int_{\mathcal{C}} P_d(x) \times dx \cdot 2\pi a^2$ мощность на погонный сантиметр длины тора. На рис. 3 приведены зависимости Q_d (и аналогичных величин Q_{CC} , Q_{JOUC}) от времени для тех же параметров, что и рис. 2. Мощность, выделяемая пучком при токе i = 5, постоянна и отмечена горизонтальной линией. Мощность джоулева нагрева быстро падает с ростом температуры. Мощность Q_d быстро возрастает при $T_i > 10$ кэв, а затем выходит на насыщение.

Модель с полной кередачей энергии α -частиц плазме (k_{α} = 1), по-видимому, является завышенно оптимистической. Представляет интерес рассмотреть и другие модели. На рис. 4-5 приведены результаты для другой крайней модели с k_{α} = 0 (энергия α -частиц не передается плазме). В этом случае установка работает, как усилитель мощности, без какого-либо "самоподдерживания". Из рис. 4, 5 видно, что в этом случае для достижения температуры $T_{\ell} \sim 15$ кэв необходим ток инжекции $\ell > 10$ а, т.е. вводимая мощность должна быть на уровне 2 Мвт. При этом выход мощности из плазмы за счет $d-\ell$ -реакции только по каналу α -частиц составит α 4 Мвт.

e andre andre alle all the state of the second of the second

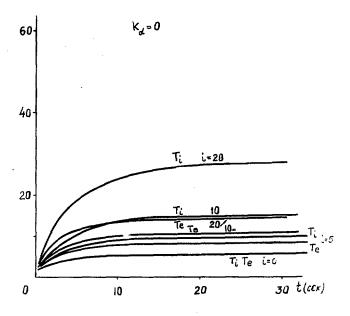


Рис. 4

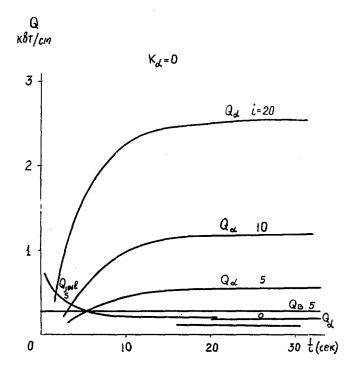
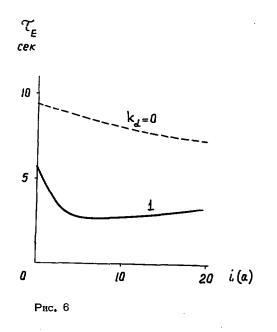


Рис. 5

Рис. 4-5. Изменение температуры, мошностей **< −**частиц, джоулева нагрева и пучка в системе без нагрева **< −**частицами при разных токах инжекции.

Из рис. 2-5 видно, что за время $t \sim 30$ сек разряд практически переходит в стационарный режим. На рис. 6-8 приведены зависимости стационарных значений \mathcal{E}_{E} (рис. 6), \mathcal{T}_{imax} , \mathcal{T}_{emax} (рис. 7), \mathcal{Q}_{e} , \mathcal{Q}_{b} , \mathcal{Q}_{joule} и $\mathcal{G}_{I} = 8\pi n \frac{(T_{e}+T_{i})}{H_{I}^{2}}$ (рис. 8) от тока инжектируемых нейтралов для двух моделей: $k_{e} = 1$ (сплошные кривые) и $k_{e} = 0$ (пунктирные). Из рис. 8 видим, в частности, что нагрев пучком превышает джоулев нагрев уже при токах $i \sim 2-3$ а.


Поскольку циклотронное излучение электронов возрастает, как $H^{5/2}$, а джоулева мощность не играет существенной роли в балансе энергии (при токах $\iota > 10$ а),
уменьшение продольного магнитного поля оказывается весьма выгодным. На рис. 9-10
приведены примеры режимов с меньшими значениями магнитного поля (H = 40) и продольного тока (I = 3350, I = 20) с импульсным введением дополнительной
мощности нагрева. В этом случае ток I = 3350, был отличен от нуля при I = 100 сек,
а затем отключался. Для передачи энергии от I = 100 сек плазме принималась
"оптимальная" модель I = 100, в этом случае параметры плазмы уже не удовлетворяют критерию Лаусона и температура при I = 100 сек спадает. Однако характерное время спадания температуры оказывается весьма большим (I = 100),
т.е. I = 1000 сек подания оказывается "почти самоподдерживающейся".

§ 3. ВЫЧИСЛЕНИЯ ПО "ПСЕВДОКЛАССИЧЕСКОЙ" МОДЕЛИ ДЛЯ "БОЛЬШОЙ" УСТАНОВКИ (12)

Увеличение объема плазмы в 3 раза по сравнению с "малой" установкой ведет к существенному увеличению необходимой энергии дополнительного нагрева. При плотности плазмы $\mathcal{N}=6$ вычисления проводились для тока $\mathcal{L}=15$, 30 и 60 а и энергии пучка $\mathcal{E}_{\mathcal{O}}=100$ кэв. На рис. 11-18 приведены зависимости $\mathcal{T}_{\mathcal{C}}$ темах $\mathcal{T}_{\mathcal{C}}$, $\mathcal{T}_{\mathcal{C}}$ и $\mathcal{F}_{\mathcal{C}}$ от времени. Различные рисунки соответствуют трем моделям передачи энергии от \mathcal{A} -частиц плазме: $\mathcal{K}_{\mathcal{A}}=1$ (рис. 11-14), $\mathcal{K}_{\mathcal{A}}=0.5$ (рис. 15-16) и $\mathcal{K}_{\mathcal{A}}=0.01$ (рис. 17-18). Магнитному полю $\mathcal{H}=40$ кэ при $\mathcal{G}=2$ соответствует ток $\mathcal{I}=5600$ ка.

Если дополнительный нагрев отсутствует (ℓ = 0), то температура плазмы за время 10-15 сек устанавливается на уровне $T_{\ell} \sim 3$ кэв (рис. 14). Для достижения температуры $T_{\ell} \sim 12$ кэв за время 5-10 сек требуется ввести дополнительную энергию $W \sim 3.10^7$ лж.

При большом токе ℓ = 60 а нагрев происходит существенно быстрее, однако стационарные значения параметра β_{I} (\sim 3) в случае k_{α} = 1 (рис. 13), по-видимому,

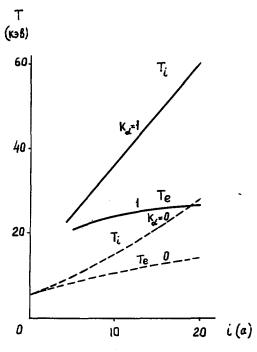
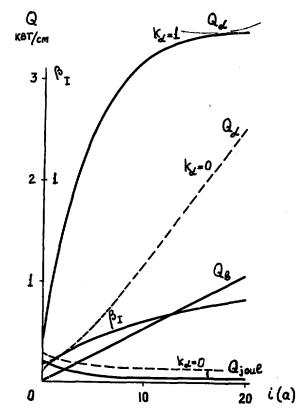



Рис. 7

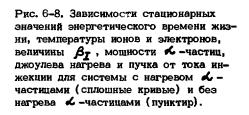
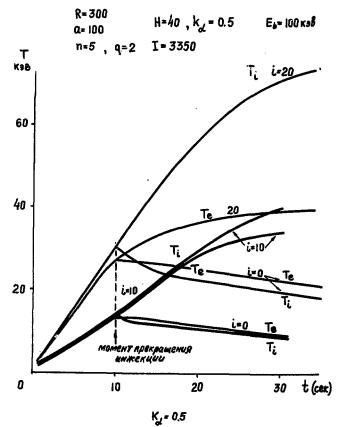
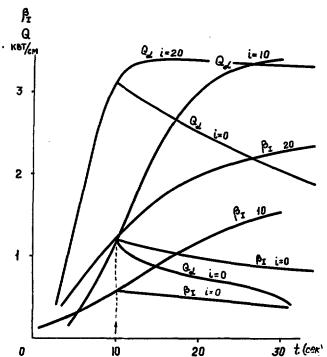
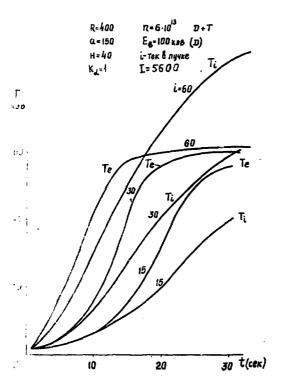


Рис. 8


Рис. 9

and which the manufacture of a

Pnc. 10

Рис. 9-10. Малая модель с меньшим полем, импульсная инжекция и стационариая, изменение температуры, мошности об -частиц, джоулева нагрева и пучка, величины русс временем при разных токах инжекции.

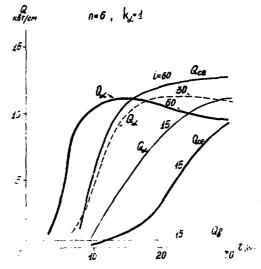
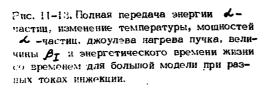
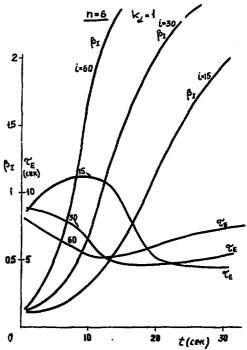




Рис. 12

Pnc. 11

Pnc. 13

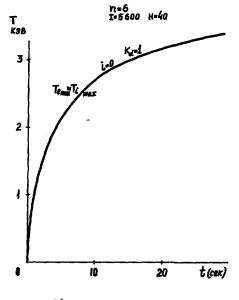


Рис. 14

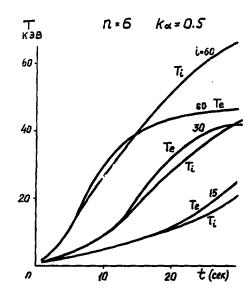


Рис. 15

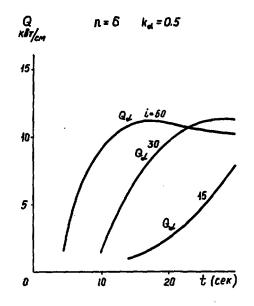


Рис. 14. Изменение температуры со временем в большой модели без нейтральной инжекции.

Рис. 15-16. Половинная передача энергии \mathcal{L} -частии. Изменение температур $\mathcal{T}_{\mathcal{L}}$ и $\mathcal{T}_{\mathcal{L}}$, мощностей \mathcal{L} -частии $\mathcal{P}_{\mathcal{L}}$ при разных токах ::и-жекции.

Рис. 16

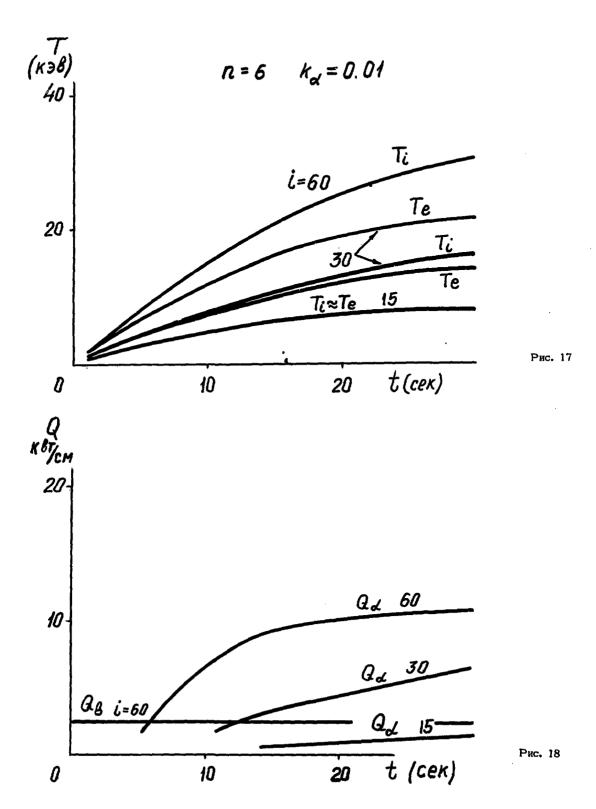


Рис. 17-18. Модель "усилителя мощности", K_{cl} = 0,01. Изменение T_{e} . T_{i} и Q_{cl} со временем.

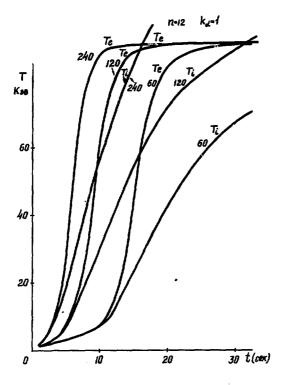
превышают критические значения, определяемые из условий равновесия: $\beta_{\mathcal{I}} < \mathcal{R}/q$.

Отметим, что энергетическое время $\mathcal{T}_{\mathcal{E}}$ (рис. 13), как и для "малой" модели, определяется циклотронным излучением и находится в тех же пределах 5-7 сек.

Для достижения температуры $T_i \sim 15$ кэв в модели "усилителя мощности" ($k_d = 0.01$) требуются большие токи $i \sim 60-100$ а (т.е. мощности порядка 10 Мвт).

Рис. 19 – 26 относятся к более плотной плаэме $\mathcal{N}=12$. Токи инжекции здесь соответственно увеличены: $\dot{\iota}=60$, 120, 240 а, значения параметра \mathcal{K}_{α} гыбраны прежними: $\mathcal{K}_{\alpha}=1$, 0,5 и 0,01. Основная проблема, которая здесь возникает, — это чрезмерно большие значения $\beta_{\mathbf{I}}$ (плотность и температура велики, а ток \mathbf{I} относительно мал из—за условия $\mathbf{Q}=2$). Даже при $\mathbf{K}_{\alpha}=0$,5 для $\mathbf{t}\sim10$ –15 сек $\beta_{\mathbf{I}}>5$. По-видимому, для надежной работы установки при $\mathbf{N}=12$ требуется увеличение значения магнитного поля до значений $\mathbf{H}\sim60$ кэ. При этом $\beta_{\mathbf{I}}$ уменьшится по двум причинам:

- 1. Снизится температура плазмы из-за большого циклотронного излучения электронов.
 - 2. Увеличится тороидельный ток в соответствии с условием 2 = 2.


Рисунки 27-30 относятся к импульсному режиму нагрева плазмы. Ток инжекции отпичен от нуля при $t < t_i$: 5 сек и равен нулю при $t > t_i$. Рис. 27-29 соответствуют плотности плазмы n = 6 и вводимой энергии $n = 3 \cdot 10^7$ дж (рис. 27) и 5.107 дж (рис. 28-30). Приводятся зависимости n = 1 и 0,5 в момент прекращения инжекции нейтралов параметры плазмы находятся выше лаусоновской кривой и реакции продолжают развиваться. При n = 1 и 0,5 в может прекращения инжекции нейтралов параметры плазмы находятся выше лаусоновской кривой и реакции продолжают развиваться. При n = 10 температура спадает с характерным временем

20-30 сек. На рис. 29 приведены зависимости Q_{α} , Q_{δ} и Q_{joule} . Видно, что роль джоулева нагрева в общем балансе ничтожна. Параметр $\beta_{\mathbf{I}}$ (рис. 30) при N=6 во всех моделях не превышает критических значений.

Иная ситуация имеет место при большой плотности $\mathcal{N}=12$ (рис. 31-32). Энергии нагрева $\mathbf{W}_{\boldsymbol{i}}=9.10^7$ дж достаточно, чтобы к моменту $\mathbf{t}=5$ сек удовлетворить критерию Лаусона, однако развитие реакции ведет в этом случае к весьма большим значениям $\boldsymbol{\beta}_{\boldsymbol{I}}$. И здесь, по-видимому, для устойчивости потребуется увеличение продольного магнитного поля.

При введении в установку бланкета или защиты от нейтронов малый радиус тора уменьшится, что существенно ухудшит условия самоподдерживания. На рис. 33-35 приведены результаты расчетов для "большой" установки с уменьшенным малым ра-диусом и магнитным полем с параметрами

$$R = 400, \quad \alpha = 100, \quad H = 30$$
 (18)

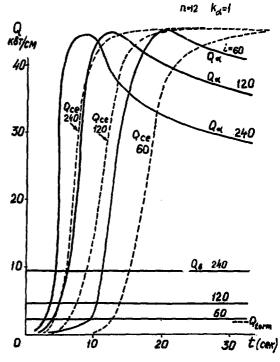


Рис. 19

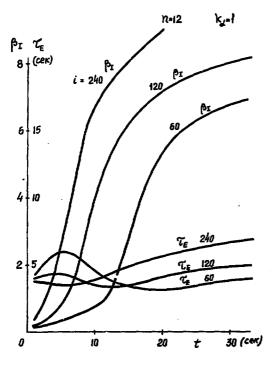
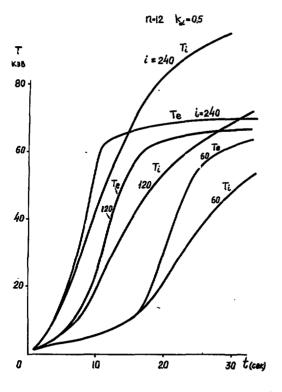
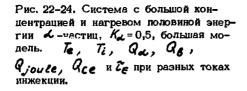



Рис. 20

Рис. 19-21. Система с большой концентрацией и нагревом α -частицами K_{ϵ} = 1. Большая модель. T_{ϵ} , T_{ℓ} , Q_{ϵ} , Q_{joule} , Q_{ce} , Q_{I} и Z_{E} при разных токах инжекции.


Рис. 21

Qd_ 120 Q_ 60 240 40-30 Qce 240 Qce 120 20 10 240 30 t (cek) łĠ 20 Рис. 23

k_=0.5

Рис. 22

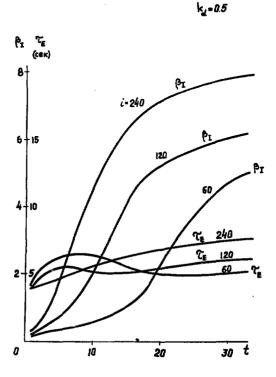


Рис. 24

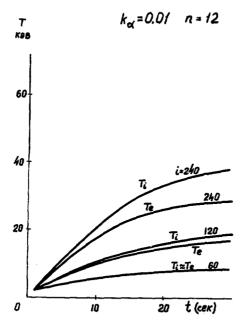


Рис. 25

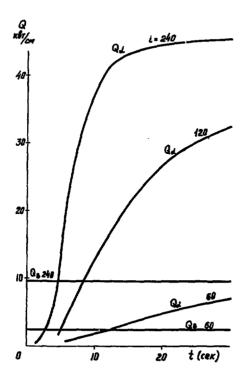


Рис. 26

Рис. 25-26. Система с большой концентрацией и $\mathcal{K}_{\mathcal{L}}=0.01$. Большая модель. $\mathcal{T}_{\mathcal{L}}$, $\mathcal{T}_{\mathcal{L}}$, $\mathcal{Q}_{\mathcal{L}}$

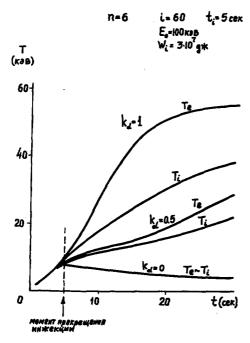
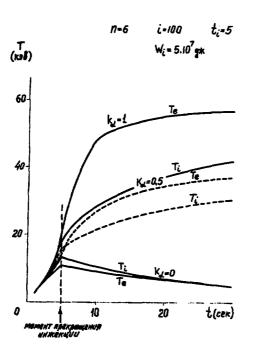



Рис. 27

Pnc. 28

Рис. 27-28. Система с импульсной инжехцией. Большая модель. Временной ход температуры ионов и электронов $\mathcal{T}_{\boldsymbol{\epsilon}}$ и $\mathcal{T}_{\boldsymbol{\epsilon}}$ при разных энерговиладах $\boldsymbol{\epsilon}$ -частиц и разных токах инжехции.

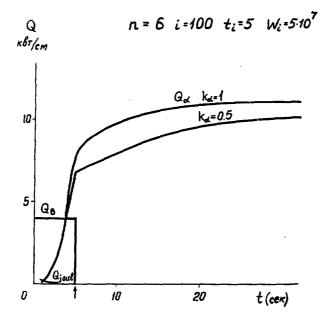


Рис. 29

$$n=6$$
 $i=100$ $t_i=5$ $W_i=5.10^3$ g/s

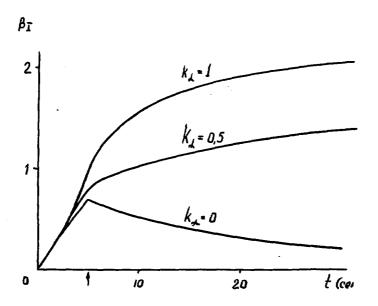


Рис. 30

Рис. 29-30. Система с импульсной инжекцией. Большая модель. Временной ход мощности \mathscr{A} -частиц $\mathscr{Q}_{\mathscr{A}}$, джоулева нагрева \mathscr{Q}_{joule} н пучка $\mathscr{Q}_{\mathscr{E}}$ и величины \mathscr{F}_{T} при разных энерговкладах \mathscr{L} -частиц.

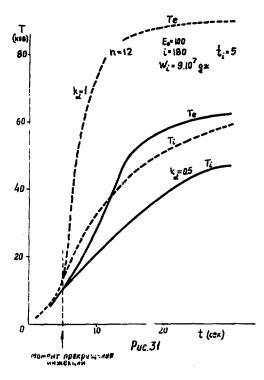
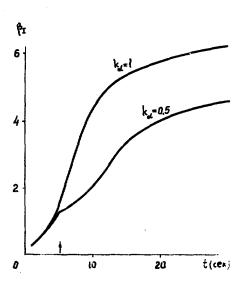



Рис. 31

Pmc. 32

Рис. 31-32. Система с импульсной инжекцией. Большая плотность, временной ход температуры и величины $\beta_{\mathcal{I}}$ при разных энерговиладах « -частиц.

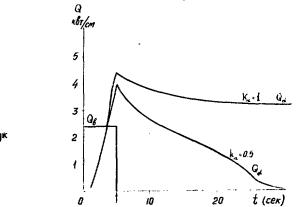
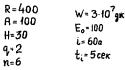



Рис. 34

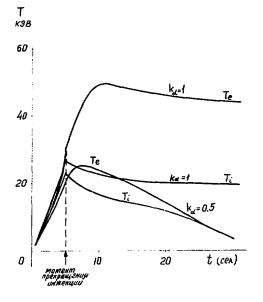


Рис. 33

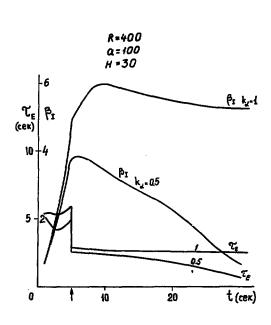


Рис. 35

Рис. 33-35. Система с импульсной инжекцией. Уменьшенный малый радиус и поле. Временной ход \mathcal{T}_{e} , \mathcal{T}_{i} , \mathcal{Q}_{d} , \mathcal{Q}_{b} , \mathcal{B}_{I} и \mathcal{T}_{E} при \mathcal{K}_{d} = 1 (сплошные кривые), \mathcal{K}_{d} = 0,5 (пунктир).

при Q = 2 и n = 6 для двух значений $\mathcal{K}_{d} = 1$ и 0,5. Пучок с энергией $\mathcal{E}_{0} = 100$ кэв и током $\dot{c} = 60$ а инжектировался в течение $\dot{c} = 5$ сек, так что полная энергия, введенная в плазму, $\dot{w}_{c} = 3.10^{7}$ дж.

Отметим существенные черты процесса в уст новке (13). После выключения инжекции при $T_i \sim 25$ кэв ионы перестают нагреваться даже в оптимистической модели $K_{cc} = 1$. Реакция в этом случае идет на грани самоподдержания. При $K_{cc} = 0.5$ реакция гаснет. Характерное время спада температуры составляет 10-15 сек. Малые значения продольного магнитного поля определяют большую величину параметра $\beta_1 \sim 4-6$ (рис. 35).

Наконец, рассмотрим еще один вариант "большой" установки с уменьшенным магнитным полем

$$R = 400, \quad A = 150, \quad H = 30.$$
 (14)

Рисунки 36 – 38 содержат результаты вычислений для установки (14) при \mathbf{q} = 2, \mathbf{I} = 4200, \mathbf{n} = 6, $\mathbf{E_0}$ = 100, \mathbf{i} = 60, $\mathbf{t_i}$ = 5, $\mathbf{W_i}$ = 3.10⁷ дж.

Сравним кривые на рис. 36 и 27. Уменьшение магнитного поля приводит, с одной стороны, к уменьшению циклотронного излучения и возрастанию температуры электронов. С другой стороны, уменьшение тока приводит к увеличению коэффициентов теплопроводности и снижению ионной температуры. Условия самоподдержания становятся более критичными – при $\mathbf{k}_{\mathbf{K}} = 1$ реакция развивается хорошо, а при $\mathbf{k}_{\mathbf{K}} = 0.5$ реакция "тлеет", очень медленно разгораясь.

§ 4. МОДЕЛЬ "БОМОВСКОЙ" ТЕПЛОПРОВОДНОСТИ ДЛЯ БОЛЬШОЙ УСТАНОВКИ (12)

В настоящее время неоклассический режим "бананов" еще не получил подтверждения в эксперименте, поэтому заслуживают внимания и другие модели теплопроводности. Общепринято сравнивать теплопроводность и диффузию с "бомовской", когда

$$D^B \sim \chi^B = \frac{1}{16} \frac{cT}{eH} \tag{15}$$

Известно, что в нормальных режимах на токамаках ($\overline{\mathcal{N}} \sim 3.10^{13}$, $\overline{\mathcal{T}}_{e} \sim 10^{3}$ эв, $\overline{\mathcal{T}}_{i} \sim 500$ эв) теплопроводность ионов χ_{i} в 20-30 раз меньше χ_{i}^{B} .

В режимах с более разреженной плазмой энергетическое время жизни достигает 80-100 бомовских времен. Представляет интерес ответ на вопрос: во сколько раз коэффициенты теплопроводности в "большой" установке должны быть меньше бомовских для того, чтобы пошла самоподдерживающаяся реакция?

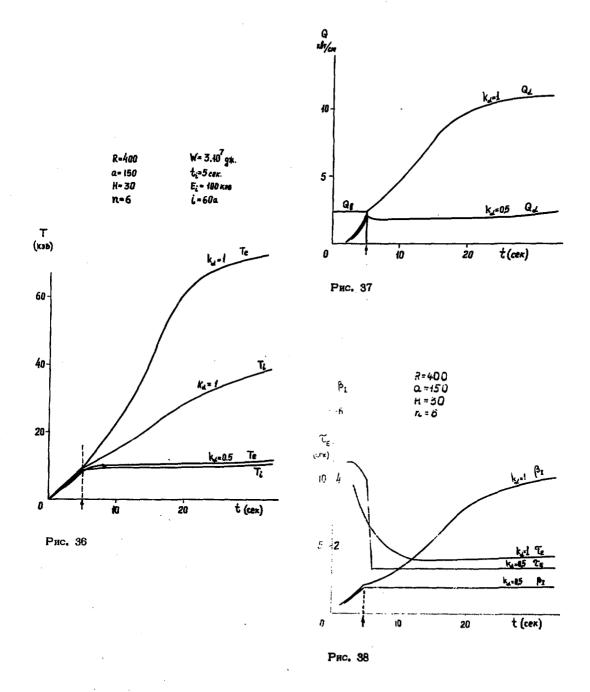


Рис. 36-38. Система с импульсной инжекцией. Большие размеры и малое поле. Временной ход Te , Ti , Q_d , PI и T_E при $K_d=1$ (сплошные кривые) и $K_d=0.5$

Для выяснения этого вопроса проводилось интегрирование системы (1) с коэффициентами теплопроводности, определяемыми формулами

$$\chi_{i,e} = \chi_{i,e}^{neo} + \frac{1}{2} \chi_{i,e}^{B}$$
, (16) где \mathcal{Z} - феноменологический параметр, а $\chi_{i,e}^{neo}$ неоклассические коэффициенты. Вы-

さんこうきを含めるとない。 ではなった 総数を改めることになる

Рисунки 39-41 показывают временной ход процесса при $\mathfrak{E} = 400$. Здесь нанесены кривые для $T_{imax} \equiv T_i$ и $T_{emax} \equiv T_e$ (рис. 39), T_E (рис. 40) и $Q_{\mathfrak{A}}$ (рис. 41) при различных токах инжектируемого пучка $\dot{\iota} = 30$, 50 и 100 а.

Нагрев плаэмы в ходе разряда приводит к падению энергетического времени жизни $\mathcal{T}_{\mathcal{E}}$ (15). Из рис. 41 видно, что при выбранной плотности $\mathcal{N}=6$ реакция не является самоподдерживающейся, поскольку даже при температуре $\mathcal{T}_{\mathcal{E}} \sim 12$ кэв $\mathcal{Q}_{\mathcal{E}} \sim 0.5\,\mathcal{Q}_{\mathcal{E}}$. В этом случае $\mathcal{N}_{\mathcal{E}} \sim 8-9.10^{13}$. При большей плотности плазмы условия самоподдерживания доляны улучшиться, так как $\mathcal{X}^{\mathcal{B}}$ от плотности не зависит (15).

На след эших рисунках приведены зависимости стационарных значений \mathcal{T}_{imax} (рис. 42), \mathcal{T}_{E} (рис. 43) и \mathcal{Q}_{α} (рис. 44) от параметра \mathfrak{X} при различных токах в пучка. Из рис. 44 видно, что энергия, выделяемая с \mathfrak{X} -частицами, сравнивается с энергией пучка при $\mathfrak{X} \sim 600$ – 700. В этом диапазоне значений \mathfrak{X} при плотности $\mathfrak{K} = 6$ и $\mathfrak{K}_{\alpha} = 1$ реакция становится самоподдерживающейся.

На рис. 45 в качестве примера приведены распределения ионной температуры и коэффициента ионной теплопроводности χ_i по пространству при $\mathfrak{X} = 400$. $\dot{\iota} = 00$. $\dot{\iota} = 00$. $\dot{\iota} = 10$ сек. Отдельно нарисована величина χ_i Видно, что бомовский член в формуле (16) остается определяющим и при χ_i = 400. На периферии его величина сильно падает, что приводит к появлению теплоизолирующей "шубы" и большим температурным градиентам возле поверхности плазмы.

§ 5. ХОЛОДНЫЕ НЕЙТРАЛЫ И ИХ РОЛЬ В ЭНЕРГЕТИЧЕСКОМ БАЛАНСЕ

Для отыскания плотности нейтралов $\mathcal{N}(\boldsymbol{x})$ в плазме использовалась плоская модель, описанная в работе $\begin{bmatrix} 6 \end{bmatrix}$. В этом случае функция $\mathcal{N}(\boldsymbol{x})$ удовлетворяет интегральному уравнению

$$N(x) = N_0(x) + \int_0^x K(x, \xi) N(\xi) d\xi,$$
 (17)

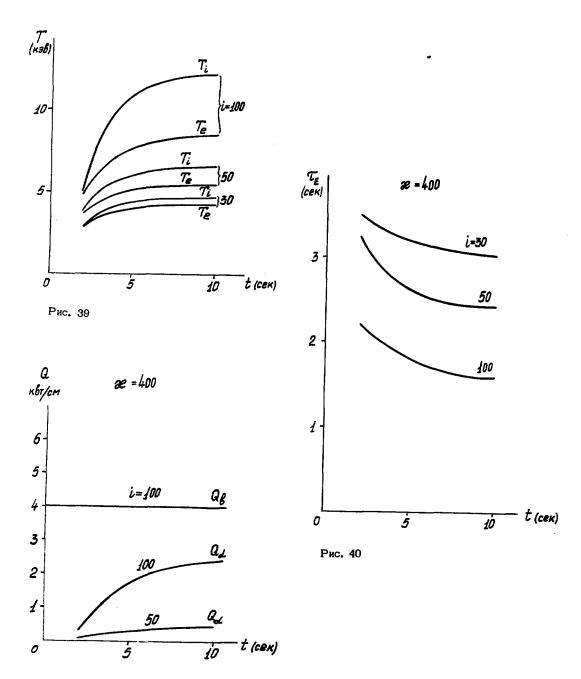


Рис. 41

Рис. 39-41. Вомовская теплопроводность. Большая модель. Временной ход температуры $T_{\mathcal{E}}$ и $T_{\mathcal{C}}$, энергетического времени $T_{\mathcal{E}}$, мощности \mathscr{A} -частиц $\mathscr{Q}_{\mathcal{E}}$ и пучка $\mathscr{Q}_{\mathcal{E}}$ при разных токах инжекции.

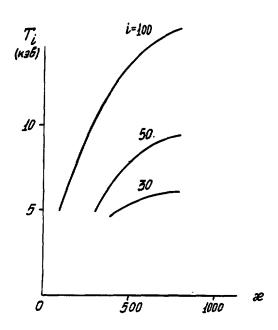
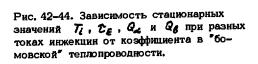



Рис. 42

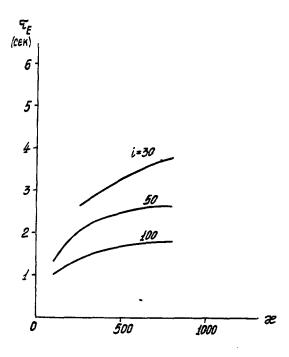


Рис. 43

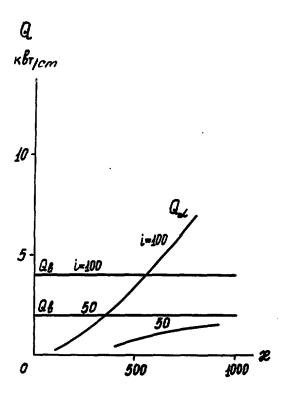


Рис. 44

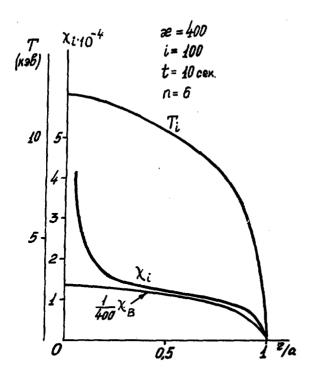


Рис. 45. "Бомовская" теплопроводность. Радиальные распределения ионной температуры \mathcal{T}_i и ионной теплопроводности χ_i при разных токах инжекции.

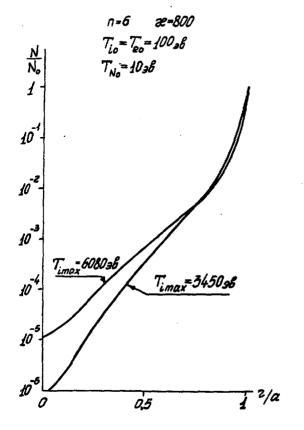


Рис. 46. Радиальные распределения плотности нейтралов при разных ионных температурах.

$$K(x,\xi) = \frac{1}{2} \frac{F(\xi)}{v_i(\xi)} \left\{ \Phi(\xi,x,v_i(\xi) sign(x-\xi)) + \Phi(0,\xi,v_i(\xi)) \right\}$$

$$+ \Phi(0,\xi,v_i(\xi)) \cdot \Phi(0,x,v_i(\xi)) \right\}$$

$$F = 10^{13} n \, \sigma_{ex} \, v_i \quad , \quad v_i = 1.4 \cdot 10^6 \, \sqrt{\frac{\tau_i}{P}} \quad .$$

$$\Phi(\xi,x,v) = \exp(-\frac{1}{v} \int_{\xi}^{x} s \, dx') \quad .$$

$$s = 10^{13} n \left[(\sigma_{ex} + \sigma_{ii}) v_i + \sigma_{ie} \, v_e \right] \quad , \quad v_e = 0.6 \cdot 10^8 \sqrt{T_e} \quad .$$

$$N_0(x) = A_0 \left\{ \Phi(x,\alpha,v_o) + \Phi(0,\alpha,v_o) \cdot \Phi(0,x,v_o) \right\} .$$

$$(19)$$

Функция $\mathcal{N}_0(\boldsymbol{z})$ соответствует плотности нейтралов в плазме без учета вторичных нейтралов, появляющихся в результате перезарядки. Если характерная длина перезарядки и и ионизации не слишком мала по сравнению с радиусом плазмы \boldsymbol{Q} , то естественно искать решение уравнения (17) в виде ряда

$$\mathcal{N}(x) = \sum_{K=0}^{\infty} \mathcal{N}_{K}(x), \qquad (21)$$

каждый член которого соответствует нейтралам, появляющимся после **К** -кратной перезарядки.

В современных установках токамак плазма не является оптически толстой для "теплых" нейтралов, имеющих температуру порядка максимальной температуры ионов. Существенную роль на периферии играют холодные нейтралы "нулевого" поколения %, пришедшие со стенок камеры с температурой порядка нескольких электронвольт, а в глубинных слоях - нейтралы первого и второго поколений. Однако, когда размер малото радиуса шнура превышает 50 см (при плотности % ~ 5), ситуация существенным образом меняется. В центральной части плазмы теперь преобладают нейтралы более высоких поколений (~ 10) с большой энергией и малой концентрацией. Это обстоятельство требует сохранения достаточного числа членов в сумме (21). Выяснение роли нейтралов в балансе энергии становится более сложной задачей. Наконец, интерпретация спектров выходящих нейтралов для нахождения максимальной температуры ионов становится очень неопределенной.

Для выяснения этих вопросов были проведены вычисления для "большой" установки (12) с "бомовской" теплопроводностью (16) при **2** = 800 и **7** = 6.

На рис. 45-46 приведены распределения плотности нейтралов по радиусу в логарифмическом масштабе для различных температур ионов T_{imax} = 3450 и 6080 эв (рис. 46), T_{imax} = 10^4 эв (рис. 47). Граничная температура нейтралов принималась равной T_{No} = 10 эв, их плотность на границе N_0 = 10^9 см⁻³, граничные температуры ионов и электронов T_{io} = T_{eo} = 100 эв.

Из графиков видно, что в периферийном слое ($\mathbf{7} > 0.8 \, \mathbf{a}$), где температура нейтралов не очень велика, происходит быстрый спад плотности на 2 порядка величины. Во внутренних слоях плаэмы поведение плотности хорошо описывается диффузионным приближением [7] (зависимость [7] близка к линейной).

На рис. 47 наряду с полной плотностью нейтралов $\mathcal{N}(\boldsymbol{x})$ приведены плотности нейтралов различных поколений $\mathcal{N}_{\mathcal{K}}(\boldsymbol{x})$. В центре шнура главную роль играют нейтралы с $\mathcal{K} \sim 15$, хотя полная плотность $\mathcal{N}(\boldsymbol{x})$ в центре на 5-6 порядков меньше, чем на периферии.

Из рис. 46-47 видно, что с изменением температуры ионов плазмы распределение \mathcal{N} (\boldsymbol{x}) меняется, однако это изменение в широком диапазоне температур невелико. Для иллюстрации на рис. 48 приведены плотности нейтралов в фиксированных точках $\boldsymbol{x}=0$; 0,5; 0,8; 0,9 в зависимости от максимальной температуры ионов. Видно, что в точке $\boldsymbol{x}=0$,8 плотность нейтралов практически не изменяется при изменении $\mathcal{T}_{\textit{cmax}}$ в 10 раз. При $\boldsymbol{x}<0$,8 $\mathcal{N}(\boldsymbol{x})$ возрастает с ростом $\mathcal{T}_{\textit{cmax}}$, при $\boldsymbol{x}>0$,8 - слабо убывает.

Уравнения (17) - (19) получены с помощью моноэнергетической модели рождения вторичных нейтралов: их температура при рождении принимается равной локальной температуре ионов. Такая модель поэволяет достаточно надежно найти распределение плотности нейтралов по пространству.

Для определения функции распределения и спектра выходящих из плазмы нейтралов модель может быть легко уточнена. Предполагая распределение ионов и рождающихся вторичных нейтралов максвелловским, для спектра выходящих нейтралов будем иметь

$$f(a,T) = \frac{10^{13}}{2\sqrt{\pi}T} \int_{0}^{a} d\xi \, n\left(\xi\right) N(\xi) \begin{cases} \frac{\sigma_{\text{ex}}\left(\xi\right)}{\sqrt{T}} & \left(T < T_{i}\left(\xi\right)\right) \\ \frac{\sigma_{\text{ex}}\left(T\right)}{\sqrt{T_{i}}} & \left(T > T_{i}\left(\xi\right)\right) \end{cases} \times \exp\left(-\frac{T}{T_{i}\left(\xi\right)}\right) \left\{ \Phi(0,\xi,v) \cdot \Phi(0,a,v) + \Phi(\xi,a,v) \right\} ,$$

$$(22)$$

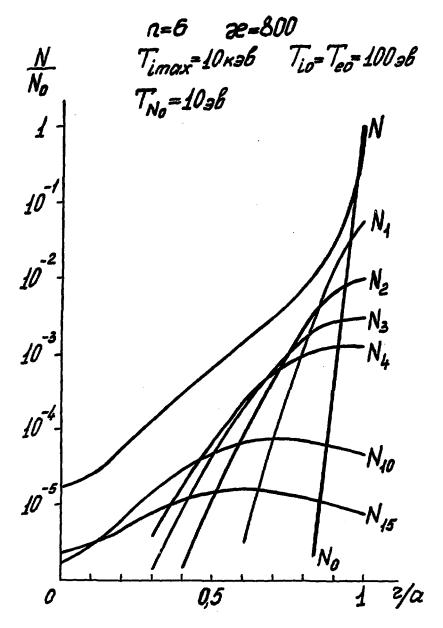


Рис. 47. Радиальные распределения нейтралов различных похолений.

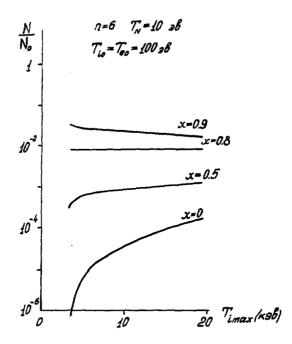


Рис. 48. Плотность нейтралов в разных точках плазмы в зависимости от температуры ионов.

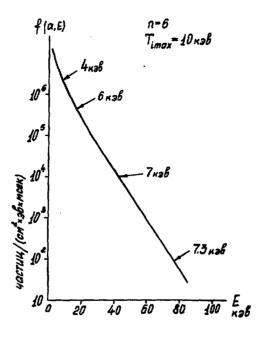


Рис. 49. Энергетическое распределение выходящих нейтралов.

$$\mathcal{Y} = 1,4 \cdot 10^6 \sqrt{\frac{T}{P}} \quad ,$$

$$S = 10^{13} n(x) \left\{ \sigma_{ie} v_e + \left\{ \left[\sigma_{ex} + \sigma_{ii}(x) \right] v_i(x), T < T_i(x) \right\} \right\}$$

$$\left[\sigma_{ex}(T) + \sigma_{ii}(T) \right] v_i(x), T > T_i(x) \right\}$$
(23)

На рис. 49 в качестве примера приведен энергетический спектр выходящих нейтралов при $T_{i,max} = 10\,000$ эв. Малая плотность нейтралов в центре (рис. 46) приводит к сильному "обеднению" спектра в области больших энергий. Цифры, стоящие вдоль кривой на рис. 49, показывают "температуру ионов" T_i , определенную обычным методом по наклону кривой $\log f$.

Видно, что даже в области $T \sim 5 \; T_{i\,\text{max}}$ определяемая по указанному способу температура оказывается в 1,5 раза меньше $T_{i\,\text{max}}$.

Перейдем к выяснению роли нейтралов в энергетическом балянсе. На рис. 50 приведены зависимости максимальной температуры ионов T_{imi} от времени при различных плотностях нейтралов в вакууме N_0 = 5.10⁸, 2.10⁹, 5.10⁹ и 10¹⁰ см⁻³. В плазму инжектировался пучок горячих ионов с энергией E_0 = 100 кэв и током i = 100 а. На рис. 51 для этого же режима нарисованы зависимости энергетического времени жизни τ_{ϵ} от времени. Видно, что, начиная с плотности $N_0 \sim 10^9$ см⁻³, нейтралы начинают играть заметную роль в энергетическом балансе, особенно в периферийной части шнура. Этот факт иллюстрирует профили ионной температуры $\mathcal{T}_{\boldsymbol{i}}$ и температуры нейтралов T_N , приведенные на рис. 52 и 53 для двух плотностей N_0 = 5.10 8 (рис. 52) и $N_0 = 10^{10}$ (рис. 53). При малой плотности нейтралов отвод тепла определяется теплопроводностью ионов. В периферийной части коэффициенты теплопроводности малы (рис. 45) и градиент температуры ионов здесь велик ("шуба"). При большой плотности нейтралов отвод тепла из периферийной зоны определяется перезарядкой и градиенты температуры здесь существенно меньше. Более того, в малой зоне Δ 7 \sim 0,05 а, где плотность нейтралов сравнима с их плотностью в вакууме, ионы плазмы оказываются холодными с температурой порядка граничной температуры ионов и нейтралов.

Зависимости характерных параметров плазмы T_{imax} , Q_{si} , N(0) и T_E в стационарном режиме (при t=10 сек) от плотности нейтралов в вакууме N_0 нанесены на рис. 54. Через Q_N здесь обозначен поток энергии из плазмы через нейтралы. Видно, что в рассматриваемой модели наиболее критично зависят от N_0 температура ионов T_{imax} и энергия d-t-реакций. Легко понять, почему энергетическое время жизни слабо зависит от плотности нейтралов. Дело в том, что в "бомовской"

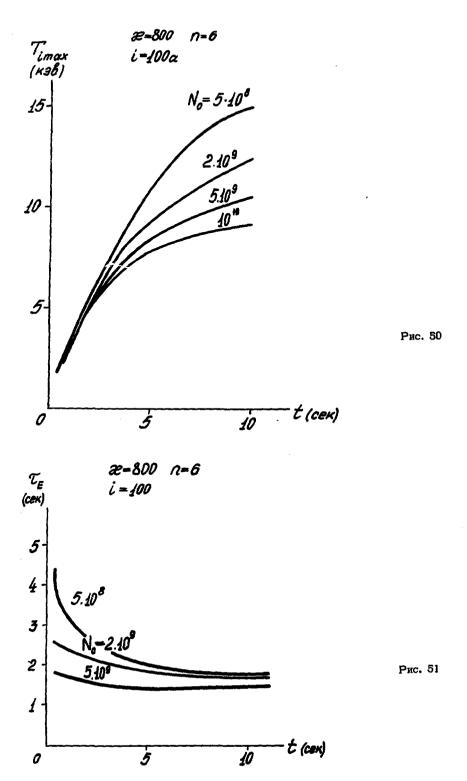
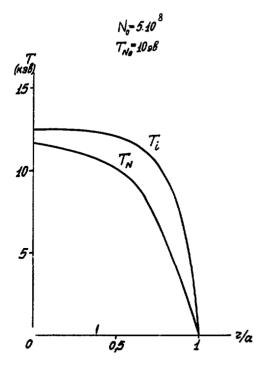



Рис. 50-51. Временной ход температуры ионов и энергетического времени жизни при разных плотностях нейтралов на границе плазмы.

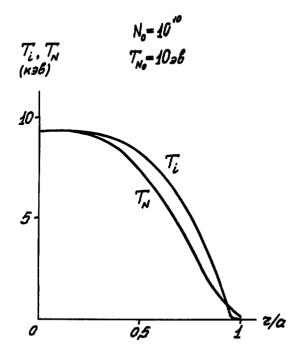


Рис. 53

Рис. 52-53. Радиальные распределения температуры ионов и нейтралов при разных плотностях нейтралов на границе.

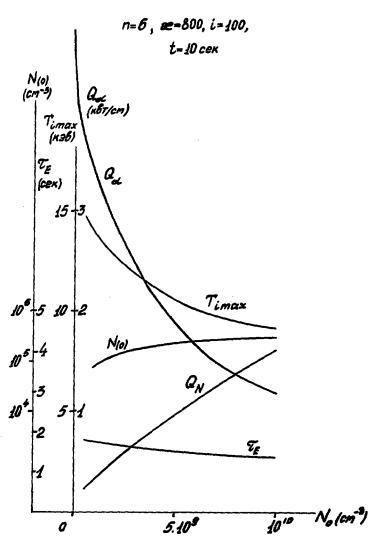


Рис. 54. Зависимости стационарных значений ионной температуры l: , мощности d -частиц Q_d , плотности нейтралов в центре N(0), мощности, уносимой с нейтралами Q_N и энергетического времени жизни T_E от плотности нейтралов на границе.

модели теплопроводности (15) с уменьшением температуры растет энергетическое время. При возрастании N_0 потери по каналу теплопроводности падают, а потери через нейтралы растут, в результате полное энергетическое время уменьшается незначительно (рис. 54). Если использовать для теплопроводности "псевдоклассическую" модель (2), в которой $\chi_{\ell} \sim 1/\sqrt{\tau_{\ell}}$, то падение $\tau_{\mathcal{E}}$ с ростом плотности нейтралов окажется гораздо более сильным.

ЛИТЕРАТУРА

- 1. Ю.Н.Днестровский, Д.П.Костомаров, Н.Л.Павлова. Баланс энергии в установках типа "токамак" с учетом перезарядки. Изд-во МГУ, М., 1971.
- 2. Ю.Н.Днестровский, Д.П.Костомаров. Вычислительные методы в физике плаэмы. Дополнение, иэд-во "Мир", М., 1974.
- 3. Б.Н. Коэлов. "Атомная энергия", <u>12</u>, 238 (1962).
- 4. Б.А.Трубников. Письма ЖЭТФ, <u>16</u>, 37 (1972).
- 5. В.И.Пистунович. "Атомная энергия", <u>35</u>, вып. 7 (1973).
- 6. Ю.Н.Днестровский, Д.П.Костомаров, Н.Л.Павлова. "Атомная энергия", <u>32</u>, 301 (1972).
- 7. О.В.Константинов, В.И.Перель. ЖТФ, 30, 1485 (1960).

36 коп.

がませるのでは、100mmをお客をおりのは、100mmにあると、100mmにあると、100mmにあると、100mmにあると、100mmにあると、100mmにあると、100mmにあると、100mmにある