1217708247

E32

ИАЭ-2497

Ордена Ленина Институт атомной энергии им. И. В. Курчатова

И. Н. Аборина, Г. Л. Лунин

Спектры нейтронов в решетках ВВЭР

Москва 1975

ОРДЕНА ЛЕНИНА ИНСТИТУТ АТОМНОЙ ЭНЕРГИИ им. И.В.КУРЧАТОВА

И. Н. Аборина, Г. Л. Лунин

СПЕКТРЫ НЕЙТРОНОВ В РЕШЕТКАХ ВВЭР

Москва 1975 Ключевые слова: спектр, нейтрон, распределение, поток, спектральный индекс.

Проводится анализ надтепловой и тепловой частей энергетического спектра нейтронов в решетках ВВЭР, основанный на экспериментально определенных спектральных индексах восьми изотопов. Полученные значения тепловых спектральных индексов сравниваются с рассчитанными по программам ЯМКА (метод Монте-Карло), *ТНЕКНОЗ* и вариантной программе РОР. Совпадение данных, полученных по первым двум программам, между собой и с экспериментальными результатами хорошее (исключение составляют решетки с наиболее жестким спектром нейтронов); программа РОР предсказывает слишком жесткие спектры.

Экспериментально получено, что поток нейтронов в надтепловой области энергий спадает медленнее, чем 1/Е-зависимость.

I. ОБЩИЕ ФОРМУЛЫ

Результаты измерений спектральных индексов детекторами из диспрозия, лютеция, плутония, европия, индия, золота и марганца в решетках ВВЭР приведены в работе [1]. Используя их, сделана попытка представить энергетический спектр нейтронов в виде ряда по степеням E^n , $E^n e^{-\alpha E}$ или полиномов Легерра. Однако для восстановления спектра, не прибегая к какой-либо теоретической модели, восьми изотопов недостаточно - точность реконструкции слишком мала. Поэтому проведен раздельный анализ и сравнение с результатами расчетов тепловой и надтепловой частей спектра.

Использованные изотопы можно разделить на две группы: чувствительные к тепловым нейтронам с энергией от 0 до 0,55 эВ – диспрозий-164, лютеций-176, плутоний-239, европий-151 и индий-115, золото-197, лютеций-175, марганец-55, имеющие резонансы в надтепловой области энергий. Последние имеют сечения активации в тепловой области энергий, близкие к 1/V -зависимости, а преобладающую чувствительность в энергетических группах 0,55 - 3,3; 3,3 - 8; 8 - 60 и более 60 эВ. Это позволяет выделить надтепловую часть спектральных индексов и определить соответствующие четыре группы спектра нейтронов.

В каждой энергетической группе спектр нейтронов предстаним $\eta' \mathcal{E}$ -распределением

$\Phi_n(E) = \lambda_n / E,$

где $\lambda_{n} = Const$ характеризует спектр в группе (n = 1, 2, 3, 4). Для спектра Ферми во всем энергетическом интервале от 0.55 до бесконечности $\lambda_{1} = \lambda_{2} = \lambda_{3} = \lambda_{4} = Const$. Спектральный индекс S_{i} , нормированный на тепловую эктивность марганца-55, можно представить в виде

 $S_{L}' = \frac{S_{L}'}{1 - 1/R_{cd}^{M_{n}}} = \frac{\int_{0}^{\infty} \frac{G_{al}(E)}{G_{al}(2200)} \phi(E) dE}{\int_{0}^{955} \frac{G_{al}(2200)}{G_{aM_{n}}(2200)} \phi(E) dE} \cdot \frac{1}{g_{c}(T_{o})} =$ $= \frac{A_i^{th} + \sum_{n=1}^{4} \lambda_n I_{in}}{A_{Mn}^{th}} \frac{1}{g_i(T_0)} = S_i^{th} + \frac{1}{g_i(T_0)} \sum_{n=1}^{4} \varphi_n I_{in}.$ (1)Здесь $S_{i}^{\prime} = \int_{0}^{\infty} \frac{6ai(E)}{6ai(2200)} \phi(E) dE / \int_{0}^{\infty} \frac{5aMn(E)}{6aMn(2200)} \phi(E) dE - полный$ спектральный индекс С -го изотопа (непосредственно измеряемая величина); RC кадмиевое отношение марганца; $G_{a,c}(E)$ - сечение активации c'-го изотопа; $A_{i}^{th} = \int_{G_{a,c}(E)}^{55} \underbrace{G_{a,i}(E)}_{G_{a,c}(200)} \phi(E) dE$ - активация \dot{c} -го изотопа тепловыми ней- $I_n = \int_{E}^{E_n} \frac{G_{ac}(E)}{\overline{G_{ac}(2200)}} \cdot \frac{dE}{E} \quad .$

Разделяя тепловую и надтепловую активность изотопов второй группы, можно определить \mathcal{Y}_n , а затем и \mathcal{S}_c^{th} изотопов первой группы.

П. НАДТЕПЛОВАЯ ЧАСТЬ СПЕКТРА НЕЙТРОНОВ

1. Решение системы уравнений

Формулу (1) для изотопов второй группы (¹¹⁵*Г*, ¹⁹⁷*и*, ¹⁷⁵*Lu*, ⁵⁵*Ми*) можно переписать в виде

$$\sum_{n=1}^{4} f_n I_{in} = g_i (S_i - S_i^{th}) = B_i$$
(2)

Вследствие того, что сечение активации этих изотопов в тепловой области энергий очень близко к закону 1/2-, значения тепловых спектральных индексов можно оценить из расчетов по какой-либо программе или из измерений кадмиевого отношения, а в мягких спектрах нейтронов принять их равными 1. Использовались значения $S_{2n,Au}$ рассчитанные по программе ЯМКА, $S_{AB} = 1$, а для марганца $B_{Mn} = 1$ ($M_{CM}^{Mn} - 1$)экспериментально определенная величина,

Таким образом, имеется система из *п* линейных уравнений с неизвестными \mathscr{Y}_{n} . Значения \mathcal{I}_{in} рассчитывались из известных энергетических зависимостей сечений активации. Энергетические группы выбраны с таким расчетом, чтобы в каждой был основной резонанс (резонансная группа) одного изотопа из набора.

Групповые относительные резонансные интегралы вычислялись: для индия и лютеиия-175 по формулам и данным работы [2]; для золота – интегрированием данных ENDF/B-II; для марганца в первых двух группах из условия, что сечение активации пропорционально I/V, в третьей – постоянно, а в четвертой группе, как разность полного относительного резонансного интеграла и суммы значений в первых трех группах. Полученные групповые значения нормированы так, чтобы полный относительный резонансный интеграл каждого изотопа был равен значению, оцененному в работе [3] (табл. 1).

Таблица 1

		Энері	тетический инте	ервал, эВ	
Изотоп	0,55 - 3,3	3,3-8,0	8,0 - 60	>60	0,55 - 🗢
	Iit	Ii2	I.3	Ii4	St. Tin
¹¹⁵ In	16,7725	0,2334	0,2851	0,0590	17 , 35 <u>+</u> 0,45
¹⁹⁷ Au	0,4976	14,3540	0,1062	0,7422	15,70 <u>+</u> 0,04
¹⁷⁵ Lu	3,4430	7,9279	17,3616	2,3643	31,10 <u>+</u> 1,70
⁵⁵ Mn	0,2482	0,0632	0,1218	0,6198	1,053 <u>+</u> 0,00

Групповые относительные резонансные интегралы

Запишем систему уравнений (2) в матричной форме

 $\psi \cdot I = B$.

где

$$\varphi = \begin{array}{c} \varphi_1 \\ \varphi_2 \\ \varphi_3 \\ \varphi_4 \end{array}, \quad B = \begin{array}{c} B_1 \\ B_2 \\ B_3 \\ B_4 \end{array}$$

а матрица I приведена в табл. 1. Так как матрица I – неособенная (**|I|** = 0), то решение системы (3) запишется в виде:

$$\varphi = BI^{-1}$$

где \hat{I}^{-1} - матрица, обратная матрице **1**:

(3)

$$I^{-1} = \begin{pmatrix} 0,05985 & -0,00043 & -0,00097 & -0,00148 \\ -0,00086 & 0,06995 & -0,00017 & -0,08439 \\ -0,00845 & -0,03176 & 0,05924 & -0,18714 \\ -0,02221 & -0,00072 & -0,01127 & 1,65941 \end{pmatrix}$$
(4)

При отыскании решения системы (3) встает вопрос о точности решения, так как элементы матриц коэффициентов и свободных членов известны лишь с какой-то неопределенностью. Для того чтобы решение системы мало изменялось при малых изменениях коэффициентов и свободных членов, необходимо, чтобы матрица 1^{-1} была устойчивой. Определитель матрицы достаточно велик, $\mathbf{1} = 2520$, что дает основание предположить, что 1^{-1} будет устойчивой. Были рассчитаны отклонения элементов обратной матрицы в зависимости от отклонения \mathbf{AI} ст исходной матрицы 1 [4]

$$\Delta I_{kl} = \sum_{in} I_{ki} I_{nl} \Delta I_{in} \,. \tag{5}$$

В основном $\Delta I_{kl}^{-7} \simeq M_{in}$, максимальное отклонение $\Delta I_{kl}^{-7} = 1,5 \Delta I_{in}$. Таким образом, малым отклонениям элементов исходной матрицы соответствуют малые отклонения элементов обратной матрицы и, следовательно, погрешность решения системы (3) того же порядка, что и погрешность коэффициентов.

2. Результаты

Кроме поправок при измерении активности, описанных в работе [17, исследовалось самоэкранирование резонансов. Детекторы из золота и марганца (индиевые детекторы очень тонкие [5]) облучались в кадмиевом чехле пакетом по 2 и 3 одновременно, при этом определялось также кадмиевое отношение этих детекторов. В пределах погрешности измерения ±1% самоэкранирования резонансов не обнаружено.

Полученные значения \mathscr{G}_{2} приведены в табл. 2. Погрешности вычислены как средние квадратические погрешности сумм, определяющих значения \mathscr{G}_{2} . Учтена неопределенность свободных членов и элементов обратной матрицы. Установлено, что основной вклад в погрешность \mathscr{G}_{2} в вносят самые большие по абсолютной величине диагональные элементы матрицы \mathbf{I}^{-1} ; \mathbf{I}_{23}^{-1} в погрешность \mathscr{G}_{2} ; \mathbf{I}_{32}^{-1} и \mathbf{I}_{34}^{-1} в погрешность \mathscr{G}_{3} ; \mathbf{I}_{41}^{-1} и \mathbf{I}_{43}^{-1} в погрешность \mathscr{G}_{4} .

Погрешности элементов обратной матрицы определены по формуле

$$\Delta I_{kl}^{-1} = \sqrt{\sum_{in} (I_{ki} I_{nl}^{-1} \Delta I_{in})^2}.$$

2	
Таблица	

Значения $arPhi_{\mathcal{R}}$

Решетка, измерения	место	в	Yz	J3	q,	(AMKA)	Sup (THERMOS)
4,4-11	Ŧ	0,536 ±0,018	0,503 ±0,010	0,838 ±0,077	0,825 ±0,044	0,6580	0,6388
4,4-12,7	Ē	0,301 ±0,009	0,2917 <u>+</u> 0,0086	0,443 ±0,037	0,408 ±0,034	0,3613	0,3542
	ф	0,245 ±0,008	0 , 24 54<u>+0</u>,0069	0,384 ±0,031	0, 352 <u>+</u> 0,023	0,2831	0,2783
3,5-11	μ	0,377 ±0,014	0,396 <u>+</u> 0,010	0,618 ±0,070*	0,621 <u>+0</u> ,040	0,5451	0,5255
3,5-12,7	Ч	0,226 ±0,009	0,221 ±0,0076	0,335 ±0,030	0,372 ±0,036	0,2970	0,2924
	щ	0,1950±0,0081	0,214 ±0,0065	0,302 ±0,024	0,335 ±0,0280	0,2421	0,2382
3 ,5 - 13,6	H	0,1675±0,0070	0,1557 <u>+0</u> ,0061	0,291 <u>+0</u> ,027 ^{x.}	0,282 <u>+</u> 0,025	0,2394	0,2346
	'n	0,1514±0,0060	$0,1380\pm0.0058$	0,256 ±0,024*	0,244 ±0,023	0,1936	0,1896
3,5-16	Ļ	0,1092±0,0052	0,1017±0,0058	0,185 <u>+</u> 0,018 [*]	0,185 ±0,015	0,1507	0,1518
	е ц	0,1000±0,0051	0,0958 <u>+0</u> ,0057	0,169 <u>+0</u> ,016*	0,157 <u>+</u> 0,012	0,1175	0,1189
3,5-19	Ч	0,0797±0,0034	0,0736±0,0022	0,130 <u>+0</u> ,011 [*]	0,127 ±0,008	0,1048	0,1046
	ш	0,0694 <u>+0</u> ,0026	0,0631 <u>+0</u> ,0022	0,115 <u>+</u> 0,010	0,114 ±0,010	0,0840	0,0797
2-11	Т	0,291 <u>+0</u> ,010	0 ,2 66 <u>+</u> 0,010	0,416 ±0,043	0,439 <u>+0</u> ,025	0,3365	0,3341
2-12,7	Ļ	0,1569±0,0057	0,1533 <u>+</u> 0,0080	0,239 <u>+</u> 0,029	0,220 ±0,018	0,1892	0,1882
	ш	0,1387 <u>+0</u> ,0053	0,1357 <u>+0</u> ,0062	0,236 ±0,029	0,195 <u>+</u> 0,014	0,1663	0,1564
2-16	H	0,0834 <u>+0</u> ,0033-	0,0744 <u>+0</u> ,0034 [*]	0,153 <u>+0</u> ,014	$0,1183\pm0,0051$	0,1010	0,1005
	£	0,0726±0,0024	0,0637±0,0021	0,112 ±0,010	0,1097+0,0052	0,0872	0,0854
2-19	H	0,0578±0,0023	0,0529 <u>+0</u> ,0013	0,0866 <u>+0</u> ,0090	0,0830+0,0038	0,0717	0,0712
	ጧ	0,0514 <u>+0</u> ,0017	0,0478 <u>+</u> 0,0013	0,0695 <u>+</u> 0,0084	0,0739±0,0036	0,0587	0,0594
0,7-13,6	H	0,0590±0,0033	0,0553 <u>+0</u> ,0017*	0,0799 <u>+0</u> ,0074	0,0994 <u>+0</u> ,0092	0,0795	0,0806
	£	0,0498 <u>+0</u> ,0026	0,0413 <u>+0</u> ,0014	0,0823 <u>+0</u> ,0075	0,0861 <u>+0</u> ,0068	0,0736	0,0751

.

.

^{*} Эначения получены по экстралолированным величинам спектральных индексов, поскольку последние не измерялись, Соответственно увеличена погрешность.

Как видно из табл. 2, $\varphi \neq const$: в интервале энергий 8 эВ — $\varphi \varphi$ больше, чем для энергий 0,65 – 8 эВ.

Был поставлен контрольный эксперимент по определению значений \mathcal{V}_n теми же детекторами в чистой воде. Получены следующие значения:

$$\begin{aligned} \varphi_{1} &= 0,01041 \pm 0,00055 \\ \varphi_{2} &= 0,00956 \pm 0,00062 \\ \varphi_{3} &= 0,00953 \pm 0,00076 \\ \varphi_{4} &= 0,00841 \pm 0,00084 \end{aligned}$$

Таким образом, в чистой воде значения ψ_3 и ψ_4 не возрастают по сравнению с ψ_1 и ψ_2 , и, следовательно, рост ψ_3 и ψ_4 в исследуемых решетках нельзя объяснить несоответствием исходных данных или неучтенными систематическими погрешностями. Кроме того, были проведены контрольные эксперименты в полномасштабной критической сборке для проверки, не является ли рост ψ следствием неасимптотического потока нейтронов в высокоэнергетической области из-за малых габаритов подкритической сборки [7]. Измерения спектральных индексов выполнены в решетке 4,4 – 12,7, полученные эначения приведены в табл. 3.

Таблица З

Сравнение спектральных индексов S_{L} , измеренных в полномасштабной и подкритической сборках

Спектраль-	Подкритическ	ая сборка	Полномасши	абная сборка
ный индекс	твэл	вода	твэл	вода
S(In/Mn)	4,572 <u>+</u> 0,049	4,028 <u>+</u> 0,032	4,66 <u>+</u> 0,14	4,092 <u>+</u> 0,038
5(¹⁷⁵ Lu/Mn)	9 ,287 <u>+</u>0,098	8,41 <u>+</u> 0,11	9,27 <u>+</u> 0,13	8,52 <u>+</u> 0,20
S(In/Dy)	6 ,3 95 <u>+</u> 0,087	5,394 <u>+</u> 0,049	6,47 <u>+</u> 0,12	5,48 <u>+</u> 0,10
(125 Lu/Dy)	12,99 <u>+</u> 0,18	11,26 <u>+</u> 0,14	12,63 <u>+</u> 0,20	11,46 <u>+</u> 0,24
(Mn/Dy)	1,378 <u>+</u> 0,011	1,306 <u>+</u> 0,011	1, 34 1 <u>+</u> 0,02	1,32 <u>+</u> 0,15
Red	3,507 <u>+</u> 0,073	3,947 <u>+</u> 0,040	3,47 <u>+</u> 0,12	3,89 <u>+</u> 0,10

Как видно из табл. 3, совпадение спехтральных индексов, измеренных в подкритической и критической сборках, хорошее. Вероятно, рост \mathscr{G} объясняется тем, что эпитепловой поток нейтронов спадает медленнее, чем зависимость 1/Е. Отсутствие монотонного роста \mathscr{G} можно объяснить поглощением нейтронов ураном-238 в области основного резонанса.

В табл. 2 приведены также эначения Ψ , полученные в результате расчета тепловой части спектра по программам ЯМКА и **THERMOS** и представления надтепловой части в виде 1/E:

 $\begin{aligned}
\varphi &= \frac{\Lambda}{\int G_{0} N_{R}(E) / G_{0} N_{h}(2200)} \cdot \varphi(E) dE', \\
\int G_{0} N_{R}(E) / G_{0} N_{h}(2200)} \cdot \varphi(E) dE', \\
f &= \frac{1}{f \leq s} \cdot \frac{V_{s}}{V_{h}}; \quad V_{s} = obsem coothetctby outer 30 Ha sterikke; \quad V_{h} = obsem boda.
\end{aligned}$

где $\Lambda = \frac{1}{f\xi_s} \cdot \frac{1}{V_H}$; V_c - объем соответствующей зоны ячейки; V_H - объем воды. Расчетные величины Ψ имеют некоторое среднее значение по сравнению с экспе-

риментальными \mathscr{G}_n , чем, по-видимому, и объясняется хорошее совпадение экспериментальных и расчетных значений полных спектральных индексов [1].

III. ТЕПЛОВАЯ ЧАСТЬ ЭНЕРГЕТИЧЕСКОГО СПЕКТРА НЕЙТРОНОВ

Тепловые спектральные индексы изотопов, чувствительных к нейтронам тепловых энергий, можно определить, зная ψ_{rr} в четырех энергетических группах, по формуле

$$S_i^{th} = S_i^{t} - \frac{1}{g_i} \sum_{n=1}^{4} \varphi_n I_{in}.$$

Групповые относительные резонансные интегралы вычислены для ${}^{176}Lu$ и ${}^{151}Eu$ по формулам и данным работы [2], для ${}^{239}Pu(n, f)$ по данным работы [8] и представлены в табл. 4.

Таблица 4

Групповые относнтельные резонансные интегралы детекторов, чувствительных к тепловым нейтронам

Детектор	I _{i1}	Iiz	Ic3	I _{:4}	Ī
¹⁷⁶ Lu	0,2438	0,0832	0,1500	0,0070	0,488
²³⁹ Pu	0,0876	0,0175	0,2102	0,0867	0,402
¹⁵¹ Eu	0,1794	0,1028	0,0867	0,0371	0,406

Полученные эначения тепловых спектральных индексов сравниваются с рассчитанными в табл. 5-7. Расчет по программам ЯМКА (метод Монте-Карло), *ТИЕКМОЗ* и вариантной программе РОР описан в работе [3].

Слектральный индекс лютеций-176/марганец. Значения тепловых спектральных индексов $S^{2/2}(176 Lu/Mn)$, рассчитанных по программам ЯМКА и THERMOS, в пределах погрешности \mathfrak{S} совпадают с результатами эксперимента. Спектральные индексы, рассчитанные по программе РОР, в среднем на 3,5%

Таблица 5

\sim
Ľ
Ś.
3
J.
\mathbb{Z}
f
10
Υž
19
U
¥
ð
4
-
Ð
Ħ
11
ъ.
5
69
5
a
=
0
-

Решетка, место		Эксперименталь- ное значение	Pacu	етное значение по п	рограмме	Отношение] экспе	расчетного значени риментальному	H K
инәдәмен			AMKA	THERMOS	дОд	AMKA	THERMOS	POP
4,4-11	÷	1,738 ± 0,032	1,770 ± 0,021	1,760 ± 0,018	1,864 ± 0,019	1,018 ± 0,032	1,013 ± 0,028	1,073 ± 0,030
	đ		1,667 ± 0,019	1,653 ± 0,016	1,778 ± 0,018	ı) 1
4,4-12,7	H	1,564 ± 0,021	1,583 ± 0,019	1,564 ± 0,016	1,621 ± 0,016	1,012 ± 0,024	1,000 ± 0,023	1,036 ± 0,024
	Ð	1,435 ± 0,016	1,458 ± 0,017	1,443 ± 0,014	1,494 ± 0,015	1,016 ± 0,024	1,005 ± 0,024	1,041 ± 0,025
4,4-13,6	F	ı	1,497 ± 0,017	1,409 ± 0,015	ı	·	1 1	
	æ	I.	1,382 ± 0,016	1,375 ± 0,014	1	ı	ı	ı
4,4 - 16	۴	ı	1,400 ± 0,016	1,386 ± 0,014	1,400 ± 0,014	1	1	ı
	đ	I	1,269 ± 0,016	1,259 ± 0,012	1,290 ± 0,013	,	ı	ı
4,4-19	۴	'n	1,308 ± 0,015	1,314 ± 0,013	1,312 ± 0,013	ı	1	ı
	Ø	ı	1,189 ± 0,014	1,185 ± 0,012	1,207 ± 0,012	1	ŀ	1
3,5-11	÷	1,674 ± 0,041	1,714 ± 0,020	1,694 ± 0,017	1,833 ± 0,018	1,023 ± 0,038	1,012 ± 0,035	1,085 ± 0,038
	Ø	1	1,604 ± 0,019	1,588 ± 0,016	1,757 ± 0,018	1	1	1
3,5-12,7	÷	1,482 ± 0,033	1,499 ± 0,017	1,497 ± 0,015	1,543 ± 0,015	1,011 ± 0,035	1,010 ± 0,033	1,041 ± 0,034
	đ	1,372 ± 0,028	1,402 ± 0,016	1,401 ± 0,014	1,461 ± 0,015	1,022 ± 0,033	1,022 ± 0,031	1,065 ± 0,032
3,5-13,6	÷	1,401 ± 0,031	1,452 ± 0,016	1,441 ± 0,014	I	1,037 ± 0,035	1,028 ± 0,033	1
	£	1,281 ± 0,027	1,355 ± 0,016	1,336 ± 0,013	ł	1,058 ± 0,034	1,043 ± 0,033	1
3,5-16	H	1,269 ± 0,029	1,316 ± 0,015	1,339 ± 0,013	1,348 ± 0,013	1,037 ± 0,036	1,055 ± 0,035	1,063 ± 0,035
	đ	1,208 ± 0,031	1,213 ± 0,014	1,234 ± 0,012	1,258 ± 0,012	1,003 ± 0,038	1,022 ± 0,037	1,041 ± 0,038
3,5-19	÷	1,206 ± 0,026	ŀ	1,255 ± 0,012	1,262 ± 0,013	ı	1,040 ± 0,033	1,046 ± 0,034
	đ	1,156 ± 0,035	ı	1,168 ± 0,012	1,185 ± 0,012	ı	1,011 ± 0,040	1,026 ± 0,041

2 -11	t-	1,508 ± 0,018	1,533 <u>+</u> 0,018	1,536 ± 0,015	1,599 ± 0,016	1,017 ± 0,024	1,019 ± 0,022	1,060 ± 0.023
	đ	ı	1,472 ± 0,017	1,474 ± 0,015	1,545 ± 0,015	ı	ł	ł
2 -12,7	÷	1,350 ± 0,018	1,373 ± 0,016	1,371 ± 0,014	1,380 ± 0,014	1,017 ± 0,026	1,016 ± 0,021	1,022 ± 0,024
	ß	1,275 ± 0,019	1,313 ± 0,015	1,308 <u>+</u> 0,013	1,342 ± 0,013	1,030 ± 0,029	1,026 ± 0,026	1,053 ± 0,026
2 - 16	÷	1,249 ± 0,019	1,259 ± 0,015	1,247 ± 0,012	1,249 ± 0,012	1,015 ± 0,028	1.006 ± 0,025	1,000 ± 0,024
	ф	1,165 ± 0,012	1,188 ± 0,014	1,181 ± 0,012	1,192 ± 0,011	1,025 ± 0,023	1,013 ± 0,020	1,022 ± 0,020
2 - 19	(–	1,191 ± 0,017	1,218 ± 0,014	1,202 ± 0,012	1,196 ± 0,012	1,023 ± 0,028	1,009 ± 0,025	1,004 ± 0,025
	a	1,120 ± 0,020	1,138 ± 0,013	1,133 ± 0,011	1,139 ± 0,011	1,016 ± 0,030	1,012 ± 0,028	1,017 ± 0,029
0,7-13,6	÷	1,215 ± 0,021	1,196 ± 0,014	1,193 <u>+</u> 0,012	1,187 ± 0,012	0,984 ± 0,029	0,982 ± 0,027	0,977 ± 0,027
	ф	1,152 ± 0,023	1,160 ± 0,013	1,164 ± 0,011	1,173 ± 0,012	1,006 ± 0,032	1,010 ± 0,030	1,018 ± 0,031
			м. 					

.:.

.

Таблина 6

÷

Решетка, место		Эксперименталь- ное значение	Расчет по п	ное значение	Отношение рас к эксперим	четного значения ентальному
изморения	1		ЯМКА	POP	ЯМКА	POP
4,4 - 11	Т	1 ,999<u>+</u>0 ,046	1,925 <u>+</u> 0,019	2,034 <u>+</u> 0,020	0,963 <u>+</u> 0,031	1,018 <u>+0</u> ,034
	в	-	1,804 <u>+</u> 0,018	1,941 <u>+</u> 0,019	-	-
4,4-12,7	Т	1,606 <u>+</u> 0,029	1,611 <u>+</u> 0,016	1,615 <u>+</u> 0,016	1,003 <u>+</u> 0,028	1,006 <u>+</u> 0,028
	в	1,538 <u>+</u> 0,023	1,517 <u>+</u> 0,015	1,530 <u>+</u> 0,015	0,986 <u>+</u> 0,024	0 , 995 <u>+</u> 0,024
4 ,4 - 13, 6	Т	-	1,493 <u>+</u> 0,015	-	-	-
	в	-	1,408 <u>+</u> 0,014	-	-	-
4,4 - 16	Т	-	1,342 <u>+</u> 0,013	1,330 <u>+</u> 0,013	-	
	в	-	1 , 275 <u>+</u> 0,013	1,274 <u>+</u> 0,013	-	-
4,4-19	Т	-	1,232 <u>+</u> 0,012	1,226 <u>+</u> 0,012	-	-
	В	-	1,193 <u>+</u> 0,012	1,182 <u>+</u> 0,012	-	-
3,5 - 11	Т	1,791 <u>+</u> 0,033	1,794 <u>+</u> 0,018	1,952 <u>+</u> 0,020	1 ,002<u>+</u>0,028	1,090 <u>+</u> 0,031
	в	-	1 ,724<u>+</u>0, 017	1,915 <u>+</u> 0,019	-	-
3,5-12,7	т	1,533 <u>+</u> 0,028	1,504 <u>+</u> 0,015	1,531 <u>+</u> 0,015	0,981 <u>+</u> 0,028	0,999 <u>+</u> 0,028
	в	1,478 <u>+</u> 0,025	1,442 <u>+</u> 0,014	1,467 <u>+</u> 0,015	0,976 <u>+</u> 0,026	0,992 <u>+</u> 0,027
3,5 - 13, 6	Т	1,433 <u>+</u> 0,029	1,411 <u>+</u> 0,014	-	0,984 <u>+</u> 0,029	-
	в	-	1,361 <u>+0</u> ,014	-	-	-
3,5-16	Т	1 ,2 94 <u>+</u> 0,022	1,278 <u>+</u> 0,013	1,279 <u>+</u> 0,013	0,986 <u>+</u> 0,027	0 ,988<u>+</u>0, 027
	в	1,244 <u>+</u> 0,025	1,225 <u>+</u> 0,012	1,238±0,012	0,985 <u>+</u> 0,030	0,995 <u>+</u> 0,030
3,5-19	Т	1 ,214<u>+</u>0,0 18	-	1,182 <u>+</u> 0,012	-	0 , 974 <u>+</u> 0,023
	в	1 ,184<u>+</u>0,01 9	-	1,158±0,012	-	0,976 <u>+</u> 0,025
2 - 11	т	1,584 <u>+0</u> ,032	1,576 <u>+0</u> ,016	1,610 <u>+</u> 0,016	0,995 <u>+</u> 0,030	1,016 <u>+</u> 0,030
	в	-	1,526 <u>+</u> 0,015	1 , 568 <u>+</u> 0,016	-	-
2 -12,7	Т	1,394 <u>+</u> 0,019	1,355 <u>+</u> 0,014	1,367 <u>+</u> 0,014	0,972 <u>+</u> 0,024	0 , 981 <u>+</u> 0,024
	в	1,350 <u>+</u> 0,019	1,319 <u>+</u> 0,013	1,324 <u>+</u> 0,013	0,977 <u>+</u> 0,023	0,981 <u>+</u> 0,024
2 - 16	Т	1,208 <u>+</u> 0,017	1 ,208<u>+</u>0,0 12	1,193 <u>+</u> 0,012	1 ,000<u>+</u>0,02 4	0,984 <u>+</u> 0,023
	в	1,195 <u>+</u> 0,017	1,192 <u>+</u> 0,012	1,174 <u>+</u> 0,011	0 , 997 <u>+</u> 0,024	0,982 <u>+</u> 0,023
2 - 19	Т	1 ,173<u>+</u>0,01 6	1,152 <u>+</u> 0,012	1,132±0,011	0,982 <u>+</u> 0,023	0,965 <u>+</u> 0,023
	в	1,153 <u>+</u> 0,014	1,134 <u>+</u> 0,011	1,113 <u>+</u> 0,011	0,984 <u>+</u> 0,022	0,965 <u>+</u> 0,021
0,7-13,6	т	-	1,172 <u>+</u> 0,012	1,154 <u>+0</u> ,012	-	-
	в	-	1.122+0.012	1 144+0.011	_	_

{

Сноктральные индексы $S^{th}(P_u/M_n)$

Таблица 7

Сравнение спектральных $S^{th}({\it Eu/Mn})$

Решетка, место	Экспе ное з	рименталь- начение	Расче	тное значение ло 1	программе	Отношени	не расчетного значени экспериментальному	19 K
кинадамси			ЯМКА	THERMOS	dOd	<i>F</i> MKA	THERMOS	POP
-		2	3	4	ى م	8	7	σ
4,4-11	T 1,16	∏ <u>+0</u> ,047	0,987 <u>+0</u> ,010	0,982 <u>+0</u> ,010	0,930 <u>+0</u> ,009	0,824±0,041	0,820 <u>+0</u> ,041	0:0.0+777,0
	В	ı	0,997 <u>+0</u> ,010	0'396+0'010	0,951 <u>+0</u> ,010	1		1
4,4-12,7	T 1,07	7±0,026	0,959 <u>+0</u> ,010	0,956 <u>+0</u> ,010	0,935 <u>+0</u> ,009	0,890±0,032	0,888 <u>+0</u> ,032	0,868 <u>+0</u> ,031
	B 1,06	0 <u>+0</u> ,021	0,985 <u>+0</u> ,010	0,984 <u>+0</u> ,010	0,968 <u>+0</u> ,010	0,929±0,028	0,928+0,028	0,913+0,027
4,4-13,6	Т	,	0,955 <u>+0</u> ,010	0,952 <u>+0</u> ,010	ı	ı		1
	B	1	0,987 <u>+0</u> ,010	0,984±0,010	ł	1	ı	ı
4,4-16	Т	ı	0,942 <u>+0</u> ,009	0 , 947 <u>+0</u> ,009	0,942+0,009	ı	ı	ł
	B	ı	0,992 <u>+0</u> ,010	0,987 <u>+0</u> ,010	0,974+0,010	ı	ı	ı
4,4-19	т	1	0,934 <u>+0</u> ,009	0,948±0,009	0,943+0,009	ł	ı	ı
	£		0'082+0'010	0,991 ±0,010	0,980 <u>+0</u> ,010	ı	ì	·I
3,5-11	T 1,15	13 <u>+0</u> ,039	0'875±0,010	0, <u>972+0</u> ,010	0,926 <u>+0</u> ,009	0,846 <u>+0</u> ,037	0,843 <u>+0</u> ,037	0,803 <u>+0</u> ,035
	£	ı	0,993 <u>+0</u> ,010	0,988 <u>40</u> ,010	0,941+0,009	ı	ı	
3,5-12,7	T 1,05	1 <u>±0</u> ,021	0,980 <u>+0</u> ,010	0,956 <u>+0</u> ,010	0,935 <u>+0</u> ,009	0,913 <u>+0</u> ,027	0,910±0,027	0,890 <u>+0</u> ,027
	B 1,04	14 <u>+0</u> ,020	0,988 <u>+0</u> ,010	0,982 <u>+0</u> ,010	0,964 <u>+0</u> ,010	0,946 <u>+0</u> ,027	0,941 ±0,027	0,923±0,027
3,5-13,6	T 1,02	8±0,023	0,956 <u>+0</u> ,010	0,854 <u>+0</u> ,010	ı	0,930,030	0,928+0,030	1
	B 1,02	810°0 1 0	0,986±0,010	0,983 <u>+0</u> ,010	ı	0,957±0,026	0,954+0,026	·
3 ,5 - 16	T 1,01	1±0,022	0,966 <u>+0</u> ,010	0,952 <u>+0</u> ,010	0,947±0,009	0,955±0,031	$0,842\pm0,030$	0,937±0,030
	B 1,01	6 <u>±0</u> ,020	0,997±0,010	0,988±0,010	0,976 <u>+0</u> ,010	0,981 10,029	0,972 <u>+0</u> ,029	0,961±0,020

ţ,

Продолжение табл. 7

۶.

ø	0,932 <u>+0</u> ,023 0,852+0.023	0,880±0,033	ı	0,817±0,026	$0,834\pm0,030$	0,973+0,014	0,982 <u>+0</u> ,021	0,871 <u>+0</u> ,025	0,969 <u>+0</u> ,019	0,970 <u>+0</u> ,029	0,986 <u>+0</u> ,028
7	0,934 <u>+0</u> ,023 0,857+0,022	0,892±0,033	I	0,931+0,026	0,853 <u>+0</u> ,030	0,878±0,014	0,987 <u>+</u> 0,021	0,970±0,025	0,980 <u>+0</u> ,020	0,877 <u>+0</u> ,029	0,994±0,028
9	, ,	0,896±0,033	J	0,932±0,026	0,853 <u>+0</u> ,030	0,987 <u>+0</u> ,014	0,993 <u>+0</u> ,021	0,970 <u>+0</u> ,025	0,984±0,020	0,982 <u>+0</u> ,030	1,000±0,028
3	0,949 <u>+0</u> ,009 0,982+0,010	0,950±0,010	0,982±0,010	0,854±0,010	0,969 <u>+0</u> ,010	0,958±0,010	0,985±0,010	0,962±0,010	0,983 <u>+0</u> ,010	0,971 <u>+0</u> ,010	0,982 <u>+0</u> ,010
4	0,951 <u>+0</u> ,010 0,988 <u>+0</u> ,010	0,964 <u>+0</u> ,010	0,978 <u>+0</u> ,010	0,968 <u>+0</u> ,010	0,988 <u>+0</u> ,010	0,964 <u>+0</u> ,010	0,990 <u>+0</u> ,010	0,961 <u>+0</u> ,010	0,894 <u>+0</u> ,010	0,978 <u>+0</u> ,010	0,9 001 0,010
3	1 1	0,968 <u>+0</u> ,010	0,982 <u>+0</u> ,010	010'07696'0	0,988 <u>+0</u> ,010	0,973 <u>+0</u> ,010	0,996 <u>+0</u> ,010	0,961 <u>+0</u> ,010	0,988 <u>+0</u> ,010	0,983 <u>40,</u> 010	0,996 <u>+0</u> ,010
7	1,018 <u>+0</u> ,014 1,032 <u>+0</u> ,014	1,080 <u>+0</u> ,029	I	1,040 <u>40</u> ,018	i ,0 87 <u>+0</u> ,023	0,986 <u>+0</u> ,008	1,003 <u>+0</u> ,011	0,991 <u>+0</u> ,016	1,014 <u>±0</u> ,010	1,001 <u>±0</u> ,020	0,996 <u>+0</u> ,018
	Έ	ĩ	ф	۴	đ	۴	đ	۲	E)	۴	ф
-	3,5-19	2-11		2-12,7		2-16		2-19		0,7-13,6	

÷

выше экспериментальных значений. Расхождение увеличивается в плотных решетках, в решетках с мягким спектром нейтронов их можно считать совпадающими. Зависимость $S^{\frac{7}{6}} ({}^{176} \mathcal{L}_{4} / \mathcal{M}_{7})$ от шага решетки спадает круче, чем следует из эксперимента и расчетов по остальным программам (рис. 1).

Спектральный индекс плутоний-239/марганец. Рассчитанные значения тепловых спектральных индексов плутония по обоим программам в основном совпадают с экспериментальными величинами (см. табл. 6). Зависимость спектрального индекса от шага решетки, предсказанная по программе РОР (рис. 2), спадает круче экспериментальной. В решетках 2-12,7+2-19 спектральные индексы, рассчитанные по программе РОР, примерно на 26 ниже экспериментальных.

Спектральный индекс европий-151/марганец. Экспериментально полученные значения тепловых спектральных индексов европия в среднем на 6% выше рассчитанных по программам ЯМКА и *ТНЕЯМОЗ* и примерно на 8%, чем по программе РОР (см. табл. 7). Расхождение становится еще больше в плотных решетках. Вероятно, это результат неопределенности в резонансных данных [3]. Так, по данным различных авторов относительный резонансный интеграл европия меняется от 0,2 до 0,9. Поэтому были проведены измерения кадмиевого отношения европия [3]. Тепловые спектральные индексы, определенные двумя способами, приведены в табл. 8. Граничная энергия кадмия принята 0,475 эВ, как в работе [9], и результаты пересчитаны на энергию 0,55 эВ.

Таблица 8

Решетка, ма измерения	ecto	Bызитанием 5 Vn In	No Red
4,4 - 11	т	1,197 <u>+</u> 0,047	1,132 <u>+</u> 0,015
4,4 - 12,7	Т	1,077 <u>+</u> 0,026	1,020 <u>+</u> 0,024
	в	1,060 ± 0,021	1,014 <u>+</u> 0,009
2 - 11	Т	1,08 <u>+</u> 0,029	- 1,049 <u>+</u> 0,017
2 - 12,7	т	1,040 <u>+</u> 0,019	1,022 <u>+</u> 0,010
	в	1,037 <u>+</u> 0,023	1,018 <u>+</u> 0,019
2 - 16	Т	0,986 <u>+</u> 0,008	0,971 <u>+</u> 0,010
	в	1,003 <u>+</u> 0,011	0,984 <u>+</u> 0,010
2 - 19	т	0,991 <u>+</u> 0,016	0,978 <u>+</u> 0,014
	в	1,014 <u>+</u> 0,010	0, 995 <u>+</u> 0,010

Спектральные индексы Sth европия, полученные двумя способами

Рис. 1. Зависимость $5^{th} ({}^{175}Lu/M_{H})$ от шага решетки: — – расчет по программе ЯМКА; — – – по программе РОР, числа у кривых – обогащение топлива, %; значки – экспериментальные точки, обогащение топлива 4,4 (), 3,5 (), 2 (×) и 0,7% ().

Рис. 2. Зависимость $S^{th}(P_u/M_n)$ от шага решетки. Обозначения те же, что и на рис. 1.

Из сравнения значений S_{Eu}^{th} , приведенных в табл. 8, следует, что резонансный интеграл европия мал.

Данные разных авторов по энергетической зависимости сечения активации европия-151 в тепловой области энергий также различны. В работе [10] приводятся две зависимости $\mathcal{G}_{a}(E)$, рассчитанные с постоянной и зависимой от энергии изомерной долей активации $\mathcal{A}_{o} = \mathcal{G}_{akr}(E) / \mathcal{G}_{norn}(E)$. В настоящей работе использованы сечения, полученные при $\mathcal{A}_{o} \neq \operatorname{Const}[3]$. Возможно, если использовать данные Кейша, полученные с $\mathcal{A}_{o} = 0.36$, согласие расчета с экспериментом будет лучше. Однако в работе [12] для измерений в гомогенных растворах бора и европия согласие с расчетом лучше при $\mathcal{A}_{o} \neq \operatorname{Const}[$ данные по сечению активации европия настолько противоречивы, что даже при $\mathcal{A}_{o} \neq \operatorname{const}[$ значения \mathcal{A}_{o} для первых четырех резонансов, приведенные в работах [12] и [13], различаются в полтора раза. Это приводит к тому, что трудно делать выводы о спектре нейтронов по спектральному индексу европия.

Характер изменения определенных экспериментально и рассчитанных по программам ЯМКА и *THERMOS* эначений тепловых спектральных индексов европия от шага решетки одинаковый. Они уменьшаются с увеличением шага в плотных решетках, т.е. имеется минимум, причем $S_{C_{4}}^{th}$ в воде становится больше, чем в твэле. Такое изменение спектрального индекса объясняется отрицательным резонансом в сечении активации европия. Программа РОР предсказывает рост спектрального индекса европия с увеличением шага решетки и обогащения топлива.

1 У. ОБОБЩЕНИЕ РЕЗУЛЬТАТОВ

Поток нейтронов в надтепловой области энергий был представлен в виде C/E^{α} , так как он спадает медленнее, чем 1/Е-зависимость. Параметры C и \mathcal{A} определены методом наименьших квадратов. Для этого значениям \mathcal{G}_{η} ставились в соответствие следующие энергии:

Груп	па						Е, эВ
1	•	•	•	•	•	•	1,456
2	•	•	•	•	•	•	4,906
3	•	•	•	•	•	•	34
4	•	•	٠	•	•	•	404

В первой и второй группах – энергии основных резонансов индия и золота, в третьей группе – средняя энергия интервала 8 – 60 эВ, где расположены основные резонансы лютеция-175, и в четвертой – средневзвешенное значение энергии для резонансов марганца [147.

Таблица 9

Решетка, место измерения		Без норми	ровки	С нормировкой			
		C1	x	С,	d		
4,4 - 11	Т	0,4874 <u>+</u> 0, 0 078	0,908 <u>+</u> 0,015	46,81 <u>+</u> 0,56	0,873 <u>+</u> 0,011		
4,4 - 12,7	Т	0,2823 <u>+</u> 0,0037	0,929 <u>+</u> 0,012	27 , 77 <u>+</u> 0,25	0,896 ± 0,009		
	в	0 ,2344<u>+</u>0,0 031	0,923 <u>+</u> 0,013	22,18 <u>+</u> 0,20	0,885 <u>+</u> 0,009		
3,5 - 11	Т	0,3557 <u>+</u> 0,0043	0,891 <u>+</u> 0,012	34,14 <u>+</u> 0 , 24	0,862 <u>+</u> 0,007		
3,5 - 12,7	Т	0 ,2 065 <u>+</u> 0,0025	0,901 <u>+</u> 0,011	19,86 <u>+</u> 0,15	0,867 <u>+</u> 0,007		
	в	0,1860 <u>+</u> 0,0014	0,895 <u>+</u> 0,007	17,86 <u>+</u> 0,10	0,861 <u>+</u> 0,004		
3,5 - 13,6	Т	0,1494 <u>+</u> 0,0028	0,888 <u>+</u> 0,019	14,32 <u>+</u> 0,20	0,853 <u>+</u> 0,014		
	в	0,1 3 45 <u>+</u> 0, 00 27	0,897 <u>+</u> 0,020	12,90 <u>+</u> 0,19	0,861 <u>+</u> 0,015		
3,5 - 13, 6	Т	0 ,0973<u>+</u>0,00 19	0,889 <u>+</u> 0,018	9,36 <u>+</u> 0,12	0,855 <u>+</u> 0,013		
	в	0 ,0910<u>+</u>0,0 016	0,902 <u>+</u> 0,018	8,73 <u>+</u> 0,11	0,867 <u>+</u> 0,013		
3,5 - 19	Т	0,0715 <u>+</u> 0,0013	0,900 <u>+</u> 0,018	6 ,86<u>+</u>0,0 9	0,865 <u>+</u> 0,013		
	в	0,0614 <u>+</u> 0,0010	0,894 <u>+</u> 0,016	5 , 34 <u>+</u> 0,06	0,863 <u>+</u> 0,011		
2 - 11	Т	0,2623 <u>+</u> 0,0039	0,916 <u>+</u> 0,015	24,60 <u>+</u> 0,27	0,868 <u>+</u> 0,011		
2 - 12,7	Т	0,1471 <u>+</u> 0,0019	0,925 <u>+</u> 0,013	14,11 <u>+</u> 0,13	0,890 <u>+</u> 0,009		
	в	0,1300 <u>+</u> 0,0023	0,918 <u>+</u> 0,017	12 , 47 <u>+</u> 0,16	0,882 <u>+</u> 0,013		
2 - 16	Т	0,0751 <u>+</u> 0,0018	0,910 <u>+</u> 0,023	7,19 <u>+</u> 0,14	0,873 <u>+</u> 0,019		
	в	0,0638 <u>+</u> 0,0013	0,912 <u>+</u> 0,020	6,14 <u>+</u> 0,08	0,876 <u>+</u> 0,013		
2 - 19	Т	0 ,0 525 <u>+</u> 0,0008	0,921 <u>+</u> 0,016	5,06 <u>+</u> 0,06	0,886 <u>+</u> 0,011		
	в	0,0466 <u>+</u> 0,0007	0,928 <u>+</u> 0,014	4,48 <u>+</u> 0,04	0,894 <u>+</u> 0,009		
0,7 - 13,6	Т	0,0527 <u>+</u> 0,0007	0,902 <u>+</u> 0,012	5,07 <u>+</u> 0,06	0,868 <u>+</u> 0,011		
	в	0,0408 <u>+</u> 0,0010	0,875 <u>+</u> 0,023	4,02 <u>+</u> 0,08	0,849 <u>+</u> 0,020		
		Среднее	0,9067 <u>+</u> 0,0039	-	0,8715 <u>+</u> 0,0030		

.

Параметры спектра $\phi = C_4 / E^{\alpha}$

18

;;;

Решалась избыточная система уравнений [15]

$$\ln \Psi_n = \ln C_1 + (1-\alpha) \ln E_1$$

где $C_1 = C/A_{Mn}^{th}$.

Вес 4, и 4 принимался в четыре раза больше, чем вес 4 и 4, так как погрешности последних примерно в два раза больше. Полученные значения 4 и 4 приведены в табл. 9. Там же приведены значения 4 и 4 , полученные после нормировки 4 на соответствующие значения 4 для воды (см. выше). Такая нормировка позволяет учесть систематические погрешности и неопределенность исходных данных.

Как видно из табл. 9, степень \checkmark в пределах погрешности единичного измерения ±1,8% можно считать постоянной. Отношения $\mathscr{Y}_2 / \mathscr{Y}_4 ; \mathscr{Y}_3 / \mathscr{Y}_4 u \, \mathscr{Y}_4 / \mathscr{Y}_4$ также постоянны в пределах погрешности единичного измерения. По-видимому, изменение формы спектра нейтронов в исследованных решетках незначительно (не более 10% в эпитепловой области). Изменения тепловых и надтепловых параметров спектра имеют также обший характер (см. рис. 1-4).

На рис. 5 приведена зависимость C_{γ} от теплового спектрального индекса лютеция-176, характеризующего жесткость слектра нейтронов. Прямые линии получены методом наименьших квадратов по экспериментальным точкам:

в воде $C_1(H_2O) = -(0.657\pm0.028) + (0.618\pm0.022) S^{t/2}(I_2U/Mn)$ в твэле $C_1(Tвэл) = -(0.697\pm0.069) + (0.624\pm0.050) S^{t/2}(I_2U/Mn)$

Значение C_1 в твэле для решетки 4,4-11 вылало из общей зависимости. По-видимому, в плотных решетках с большим обогащением топлива линейность нарушается. Так как не может быть $C_1 < O$, линейность должна нарушаться и в очень теплых спектрах нейтронов. Как показал подробный анализ данных, включая расчетные зависьмости \mathscr{G} от теплового спектрального индекса лютеция, общая зависимость более сложна, по крайней мере, имеет вид параболы третьей степени.

ЗАКЛЮЧЕНИЕ

На основании проведенного анализа спектров нейтронов в решетках ВВЭР можно сделать следующие выводы:

1. В тепловой области энергий спектры нейтронов, рассчитанные по программам ЯМКА и *THERMOS*, близки между собой и к истинным, устанавливающимся в решетках ВВЭР. Программа РОР предсказывает более жесткие спектры.

Рис. 3. Зависимость тепловых спектральных индексов от обогащения топлива; — – расчет по программе ЯМКА; значки – экспериментальные значения, шаг решетки 11 (Д), 12,7 (О), 16 мм (Х). Числа у кривых – шаг решетки, мм.

Рис. 4. Зависимость параметра С7от шага решетки; значки – экспериментальные точки, обозначения те же, что и на рис. 1; — – расчетные зависимости (ЯМКА), числа у кривых – обогащение топлива, %.

Рис. 5. Зависимость С, от теплового спектрального индекса лютеция: значки – экспериментальные данные (светлые – в воде; черные – в твэле); 1 – зависимость С, (H₂O) = = -0,657 +0,618 × × $S^{-1/2}$ (14 (14)/ 14); 2 – зависимость C(твэл) = -0,697 ++ 0,624 $S^{-1/2}$ (14 (14)/ 14). 2. В надтепловой области энергий поток нейтронов имеет вид $\Phi = C/E^{0,872}$, причем в исследованных решетках ВВЭР параметр С линейно зависит от теплового спектрального индекса лютеция-176, характеризующого жесткость спектра. В работе l16J также отмечается, что поток нейтронов для тяжеловодного реактора спадает медленнее, чем 1/Е-зависимость.

3. Предлагаемый метод анализа энергетического спектра нейтронов с разделением на тепловую и надтепловую части:

- довольно прост;

22

- имеет большую экспрессность, что особенно важно при обработке большого объема данных;

- не вносит погрешности из-за неопределенности граничной энергии кадмия;

- использует относительные измерения и относительные данные по сечениям активации, что повышает точность результатов.

4. Данные по сечению активации европия-151 нуждаются в уточнении.

ЛИТЕРАТУРА

- I. Аборина И.Н., Лунин Г.Л. Измерение спектральных индексов в однородных водо-водяных решетках.-Препринт ИАЭ-2456, М., 1974.
- Damle P.P., Fabry A., Van den Broeck H. An Evaluation of Nuclear Data for some Activation Detectors Useful in Thermal and Epithermal Spectral Indices Measurements, BLG-421, 1967.
- 3. Аборина И.Н., Дунин Г.Л. Расчеты спектральных индексов в уран-водных решетках с твэлами ВВЭР. Сравнение с экспериментом.-Препринт ИАЭ-2480, М., 1974.
- 4. Фаддеев Д.К., Фаддеева В.Н. Вычислительные методы линейной алгебры. Изд. 2-е, М.-Л., Физматгиз, 1963.
- 5. Аборина И.Н., Лунин Г.Л., Комиссаров Л.В. Экспериментальное исследование некоторых нейтронофизических параметров решеток типа ВВЭР.-Препринт ИАЭ-2212. М., 1972.
- 6. Бекуртц К., Виртц К. Нейтронная физика. Пер. с англ. М., Атомиздат, 1968.
- Аборина И.Н., Комиссаров Л.В., Лунин Г.Л. Подкрытическая сборка малого размера для измерения нейтронно-физических параметров решеток реактора типа BBSP. — Препринт ИАЭ-2189, М., 1972.
- 8. Гордеев И.В., Кардашев Д.А., Малышев А.В. Ядерно-физические константы. М., Атомиздат, 1963.
- Воуля Дж. Интегральные измерения и расчеты спектров тепловых нейтронов в уранводных решетках. В сб. "Спектры медленных нейтронов". Пер. с ангж. М., Атомиздат, 1971, с. 408.
- IO. Cresteno F.V., Pistella F. An Evaluation of the Activation Cross Section of ¹⁵¹Bu. -Nucl. Sci. Engng., 1969, v. 37, p. 478.
- II. Keisch B. Phys. Rev., 1963, v. 129, p. 769.
- I2. Gibello A., Orestano F.V., Pistella F., Santandrea E. Evaluation of Neutron Spectral Effects in Systems with Thermal Resonance Absorbers by Applying a Correlation Method of Measured Spectral Indexes. - Nucl. Sci. Engng, 1970, v. 40, p. 51.
- 13. Wood R.E. Phys. Rev., 1954, v. 95, p. 453.
- I4. Ryves T.B. The Construction and Calibration of a Standard Thermal Neutron Flux Facility. - J. Instrum. Nucl. Eng., 1972, v. 13, No3, p. 74.
- 15. Линник Ю.В. Метод наименьких квадратов и основы теории обработки наблюдений. М., физматгиз, 1958.
- I6. Spencer J.D., Baumann N.P. A Resonance Spectrum Irradiation Assembly for Evaluation of ²⁵²Cf production Gross Section. - Trans. Amer. Nucl. Soc., 1971, v. 14, No1, p.380.

Технический редактор Е.Д. Маркова

T-02767.	28. 02.	75 r.	Формат	60 x 90/8
Учизд. л.	1,52.	Тираж	200. 3	аказ 335
Цена 15 ко	п.		0	НТИ. ИАЭ

15 коп.