a set of three-dimensional equations for the
transition operators are obtalned. Taking into
account the decomposition of quasipotential
1/'” on the sum of pair interaction, three,-
foury~ .se = forces terms ( following from
spectral representation (3) ) these equations
can be raeconstructed to Faddeev form.
Therefore the general repregentatlions for some
distributions odbtalned in our approaoh depend
crucially an the properties of constituent

wave funotion and thelr scattering amplitudes
75,6/

Note that there are also the equatlons
and normalization conditioms for the wave
functions entering in (30) e,

References:

le AsNoKvinikbhidze,A.N,Sissakian, L,A.Slep—~
chenko and A.N.Tavihelidze, Large transver—
se momentum inolusive prooesses in
composite partiole approach, paper .1081/A4-—-
=31 contributed to the Conference; to be
published in Particles and Kuclsus, Atom-
izdat, Moscow (1976).

2+ AsAJLogunov, A.N.Tavkhelidze. Nuovo Cim.,
29, 2380 (1963).

3¢ AoNeKvinikhidze, D.Ts.Stoyanov,
International Sohool,Sukhumi,JINR P2-8667
(1972) Dulna.

4. AvA.Ehelashvili, A,.N.Evinikhidze, V.A.

¥atveev, A.N,Tavkhelidze. JINR Preprint

D2=9540, Dubna, 1976«

KeN.Tavkhelidze, High transverse momentun

processes in composite models, invited

talk on the Conference, Thbiliasi (1976).

6. L.AsSlepohenko, Large A 4inclusive

distridutions in composite models, invited

talk on the conference, Thbilisi (1976).

AsAeXhelashvili, Null=plane quantization

and guasipotential equatlon for oomposite

partiocles (this Conference).

5

7

chs

INVESTIGATION OF PHE SOLUTIONS OF QUASIPOTENTIAL
EQUATIONS

V.Sh.Gogokhin, D,P.Mavlio, A.T.Filippov
JINRy Dubna

Quasipotential equations (QE) ST
quantum field theory are a convenient method
for investigating relativistic bound state
problems 7253/ « In connection with poassible
applications of QE to the quark models it is
necessary to note that there are many forms
of QF and therefore it is not clear a priori
which form is preferable on general grounds,

On the other hand this fact is an advantage
when it comes to possible applications /2’3’4/.
Different physical problems may require diffe~
rent forms of QE.

Let us oonsider QR for the socattering
amplitude of the equal mass (m) scalar
particles ( quarks):

T(p#)=VUp-pr]+ Sd’q (K'm;gj va:, qgf@ By (1)
)

where V=1 correapondis to the ordinary
Logunov~Tavkhelidze quasipotential equation
(LTQB)y V=2 = to the modified LTQE ( MLTQE).
Let Vo(p,p) be the S-wave quasipotenmtial,
corresponding in the ocoordinate representa-
tion to the quasipotential of the form V(7)=-§1”
Then eqs (1) can be reduced to the differential
boundary value problem of the second order in

momentum representation 2/ H

L0 L ¥V e f0=0, Vo= (tax) Hixeg

10~ X3 f0) ~ const, )

whers X=pm", A‘:gM"(i-E‘)%ﬂ, Ei=-kim™,
xe X=[0), Eec8=1[01],

We have investigated in detail the case V=1,2,
Let us recall now one of the Sturm=Liouville
theorems:

THEOREM: If the non=negative function



V(%E) is incremented in its domain X & X
E €& then positive eigenvalues A  will
always decrease and negative onea increase.
To apply this theorem to our houndary value
provlem (2)-(3) it is neceasary to find such

functiong VLV)(X.E) and VY (x £) » which
satisfy the inequality
= ~ v
“ix,e) 2V e =+ x) F ke E) 2 V) &

and which, when inserted instead of V(x £)
wake eq. (2) solvable in terms of known
special functions. Then, using the mentioned
theorem, we can derive exact upper and lower
spectral bounds for the original problem (2)-
(3:

[AS] 2 | Rbvacel 2 [ R3] &
For the LTQE we use the following approximati=-

ons:

V&) ={+x)" (x+E)? ©)

, (XZ-sz)-') X <1 (7a)
Vi, E)

x-3 , X214 D)

The elgenvalue problem (2)=(3) with potential
(6) has the following solution ( upper spectral
condition): (‘1)1'“ [ 1) (24) -
() L(a+1) 24"
. E -
- Fla~d24; 251) ( g )24 1 (8)
Flat-d;24% 5p) \E-1

=dp+ i [AL(t-E)" - 0%
For the function (7) the corresponding (lower)

spectral conditlon is 4 +7 C’;(ZR,)
Y2

_ AL A@EMF(1ea, et 2a e vl (D)
T3 B@ENF(a,-a%2a+};-E)+C.C.

% (A5-Y%)%,

where o

where =1/, +

Ala) = Pi8:) M -2a)
@) Fiy -a) '

e (Y% -2a)
Q)= LAl TER
B = e Fial

G119

For the MLTQE we choose the following

approximations:
V&, €)= (L+X)% (x+E)"2 10)
(X xoy (11a)
Vf’(x,s = { !
X" ) X2t (11v)

These as well as (6)~(7) acoomodate properly
the analytic and asymptotic properties of the
original potentials. The eigenvalue problem

(2)~(3) with potential (10) has the solution:

R;,<(EJ=$(1-E}’+[n éEE} ns1,2,3,. 02

Taking 1nto sccount, that VI'(x.£)= V! (x,E)
for X&[01), we obtain the aolution of eigen~
value prodlem (2)~(3) with funotion (11) from
the spectral condition (9) with the help of the
substitution:

PWALEN,

CL( 23,)

Consider now the limit of atrongly bournded
states ( £=1). The analytic results for elgen-

= ], c’fg) a3

2
values 7\n,/u(1) V=1,23 H# = >, <, exact)
are:
2{1)
ne (1)= 4 31 ; }12“ (1)=7rn?;
202 (14)
Re:zn = Ynt- ,
where /1= 1,2y3y.e. and o, 18 the ne=th

root of the Bessel function 'j, (Z2)
Numericallys ”,’ = 1.155, :",’ = 5,759,
A% =1.632, Y =11.162. These results
satisfy the main restriotion (5).

In the weak-binding limit ( £-0 ) we

obtained from (8), (9), (13) the following
behaviour of the energy eigenvalues:

v vi
wp (3) = €XP {—% +Ku'+ O(V7 ’/y)}’cm



where K{>”=K{;/ = 1,65, S'-O.Tl. K‘I’-o and fi=

e <, N=1,2,3,.,

Therefore, using ths main inequality (5),
we proved, that the behaviour of the axaot
energy elgenvalues in this limit must be of the
type (13)

Ern, (1 =espl-m s Ki2 + OUFT] OO
with K< K <KY, In conneotion with this
formula we point out that the original eilgen-
value prodlem (2)-(3) cannot be solved in terms
of known special functions even if the B is
small, and 1t 1s the Sturm-Liouville upper
and lower speotral boumds techmique which
renders the problem solvadble, The spectral bounds
considered make it possidle to prove, that:
1) there exists the limit point of the speotrum
En(d) gor E~0 ; 2) the dependence )
is nonanalytic, namely of the type (16);
3) there are ne snergy elgenvalues in the inter-
val 0<X €% ., Rote, here that boundary
value problem (2)=(3) for V=1 bas been
solved formerly /2/ by the ( asymptotic)
comparison eguation method ( CEM) 75/ witn tne
following result for eigenvalues ( USE’<7Z )i

VA(E)-% = 2 3€n Qan
) B(!’v,’/ﬂ F(‘fz»‘/v'»glv'»i'ez}
which for £~0 reads
Btz exp{- i + Y- 18- e O

+O(Vh‘-‘/~)}.
Theny the Sturs-Liourille upper and lower

speotral bounds method as well as CEM may be of
great use for solving the broad olass of linear
differential boundary value problems often met
with in different branches of theoretioal
physics,

la oonclusion we note that in the noarela-
tivistic limit the quasipotemtial V(7)5-97°
corresponds to the potential V(7/=-§'77°
in the gchradinger radial equation, dut in our
osase there is no problem of oollapse into
scattering centre,
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