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Abstract

Dif ferent treatments of the particles at the boundary
wall in a magnetized and bounded simulation plasma are studied
extensively. It is shown that Lee and Okuda's boundary
conditions are numérically unstable. The existence of drift
wave like instability at the boundary is verified numerically.
Methods to eliminate this surface instability are presented,

whicli do not produce any density gradients or surface currents

at the boundary.



§1. Introduction

Particle simulation has contributed to the understandings
of plasma ohysics. In particular it is a powerful tool for
nnderstanding transport phenomena across a magnetic field.
Plasma diffusion dve to low frequency convective cellsl and
electron diffusion caused by low frequency ion fluctuations
or lower hybrid waves2 are some examples.

In many of these,the infinite and homogeneous plasma is
simulated by using periodic boundary conditions. There are
no numerical difficulty with these boundary conditions.
However all experimental plasmas are finite and bounded, and
hence inhomogeneous. Inhomogenities in plasmas produce many
interesting phenomena, for example drift wave instabilities
and trapped particle instabilities. It ié important to use
a bounded plasma model to simulate a inhomogeneous plasma.
Moreover bounded plasma model itself involves many significant
phenomena; Gould Trivelpiece waves3, sheath layers and their
oscillations4 etc.

Boundary conditions for a bounded simulation plasma have
not been studied extensively?_7 Owing to the restrictions on
memory and CPU time for computers, we can only simulate a
small volume of plasma compared with real one. Further we
hust determine the boundary conditions in such a way SO as
not to disturb the phenomena of interest in the interior of
the plasma. If cne is not careful, the boundary phenomena

car. dominate the whole plasma,

The important boundary condition for simulating a bounded



plasma in a static external magnetic field is the treatment of
particles at plane walls which are parallel to the magnetic
field. These boundaries modify the cyclotron motion of
charged particles and cause shifts of guiding centers of
particles which hit the walls, macroscopic density gradients,
currents near the boundaries and surface waves etc. These
effects seriously violate the simulation of plasma phenomena
of interest.

W.W. lee and H. Okuda5 examined the above mentioned
boundary effects and conclude that the roise produced by the
plasma boundary interactions mainly comes from the disturbance
of the guiding center positions of the particles which hit
the walls. They have used a rather artificial boundary
condition in which the positions of the guiding centers of
the particles striking the wall are not changed.

We have performed a simulation using Lee and Okuda's
houndary condition with uniform density and teTperature
profiles using a 2 - 1/2 dimensional (2 positions and 3
velocities) particle code and found that there is a strong
instability around the boundary. This surface instability,
which is quite similar to the drift wave instability driven
by the density gradients, considerably affects the entire
pla_lsma because in the nonlinear stage it spreads beyond a distance
of cne ion Larmor diameter from the boundary. Therefore the
main aim of this paper is to develop boundary conditions which
introduce no surface instability.

In Sec.2, the method used by Lee and Okuda is discussed

and the surface instability produced by their method is



demonstrated. In Sec.3, methods which eliminate the surface
instapnility are presented. Comparisons with other methods
are also discussed. Concluding remarks and discussions are

given in Sec.5.

§2. Lee and Okuda's method and the surface instability

First we review the method of treating particles at the

5

boundary proposed by W.W. Lee and H. Okuda~ ( we will call

this LOM). They used LOM in their simulations of drift waves.,a—10
For simplicity let us think of a 2 dimensional (2 positions

and 2 velocities) electrostatic plasma which is normal to

the magnetic field and periodic in the y direction but bounded
by walls at x=0 and x=Lx with the potential equal to zero on
these boundaries. This system corresponds to the case of

8=0° in Fig.2, whe;e 8 is the angle between the z axis and

the direction of the magnetic field. We concentrate our
attention on the wall at x=0.

Lee and Okuda claim that the reflectiné boundary condi-
tions, where a particle exiting from the system is reflected
back into the original system at every time step with x + -x
and v * oV {see Fig.l~a) causes two effects; (1) a sheath
current along the wall and (2) a sharp density gradient near
the boundary the width of which is of the order of a Larmor
radius. These effects come from the disturbance of the
guiding center positions of the particles which strike the
wall. They modified the boundary condition and proposed the

method LOM which is illustrated in Fig.l-b. In LOM, particles



which hit the wall are reflected by the reflecting boundary
condition but moved in a inversed magnetic field un:il they
hit the wall again where they are reflected and moved in a
normal magnetié field. It is to be noted that both the
particles which move in a normal magnetic field and ones which
move in a inversed magnetic field, feel the electric fields
in their actual positions without changing the sign of their
charge. The guiding centers of the particles do not change
in LOM by the wall particle interactions. Total energy is
conserved as well as the total charge. However they state
that additional smoothings of the charge modulation in y
direction refore the reflections are sometimes necessary to

minirize the noise.

The merit of LOM is that it Pmdums no density gradiert

near the wall. However, it Cduse§ a macroscopic current in
. . . . LOM
the y direction. We have the macroscopic density n, (<)

and velocity Vﬁom(x);

nLOM(x) = const.
o
(1)
>LOM _ 2 _ o xt
Vo (x) = sgn(qoh/ﬂ Vio expl 20 z]lY
I}

where qo, ;to and ooare the charge, the thermal velocity

= ] _ 1

{ {To/mo) and the Larmor radius { vto/mco) for species ¢
(c=e, i) respectively, and Iy is the unit vector in the vy
direction. Egs.(l) is obtained directly by first calculating

the density nog(x) and the macroscopic velocity Goo(x)

corresponding to a plasma whose guiding centers are located



uniformly for x » 0 {(for x - 0, therec are no guiding centers)
with a Maxwellian velocity distribution of the constant density
and temperature. Then summing up these particle densities

and velocities for x=x, and x=-x, (x, > 0), one finds

A A TA
LOM

n (x) = noO(X) + noc(—x)

+1.OM o= - _

vy (x) = VOG(X) + VOG( x)

As illustrated in Fig.l-b, these currents appear because the
currents due to the particles moving in a inversed magnetic
field are not cancelled out but summed up with those coming
from others missing the wall near the boundary.

It is to be noted that these currents resemble the
diamagnetic currents due to the density gradient. Both are
produced by the finiterness of the Larmor radius. Then these
currents along the wall can cause a drift wave like instability
if there is a small angle B between the z-axis and the
magnetic field (tilted B).

In order to verify the surface instability, we made a
simulation using LOM boundary condition. A model we used
is a 2 - 1/2 dimensional electrostatic dipole expansion cod%l'12
with a static magnetic field slightly tilted from the z
direction in the y direction. Finite size particleslB’14 with
Gauésian shape charge distributions are used. The details of
the system are shown in Fig.2. The plasma is uniform both
in the x and y directions and is bounded”by the conducting
walls at x=0 and szx where the electrostatic potentials
are zero. Periodic boundary conditions are used in the

y direction; particles leaving a boundary at y=0 (y=Ly) are



reintroduced at the opposite boundary at y=Ly(y=0). There

are several choices for the treatment of the particles at

the x=0 and %=L, walls. In this case, LOM boundary condition
is used at the.left wall (x=0), while at the right wall (x=Lx)
Method I, which will be presented in Sec.3, is used. This is
because if we use LOM for the both walls, there will be st:iong
coupling of the waves excited at the each wall which contfuses
the diagnostics. 1Initielly the guiding centers of the
particles are uniformly loaded with Maxwellian velocity
distributions. No guiet start technique15 is used. The para-

meters are

System size, L x L = 32 x 32;

X Y
Number of particles, Ne = Ni = 8192;
Particle size, a, = ay = 1.5;
Finite time step, At = 0.4;
Mass ratio, mi/me = 25;
Temperature ratio, Ti/Te = 0.25;
Electron Debye length, ADe = 1.41;
Electron Larmor radius, pe = 1l.u;
Ion Larmor radius, p; = 2.5;
Electron cyclotron freqgquency,

w = 1.41;

ce

Angle between the magnetic field and the z - axis, 6=1.5°,
where lengths and times are normalized by the grid spacing A
and the inverse of “he electron plasma freguency wpe'
respectively.

Now, let us look at the gross behavior of the surface

instability near the left wall. Fig.3 shows the time



dependence of the Fourier components of the electrostatic
potential, (m,n)=(1,1), (2,1) and (3,1), where m and n
correspond to the wave numbers, kx=?mr/Lx and ky=2nﬂ/Ly. These
modes grow above the thermal noise at t=800, exponentiate
linearly until t=1250, saturate at t=1400 and remain almost
at the same amplitude after that (saturation stage). No
instability is observed for n=2 and higher modes. The observed
growth rate is y=0.0054. Fig.3-b shows the time dependence
of the phase of the mode (m,n)=(2,1). Excellent coherency 1is
observed after t=~1000 and the measured frequency from this
is w=0.0052. The direction of phase velocity is that of the
macroscopic electron velocity near the wall. This 1s confirmed
by the other simulation using LOM at the right wall (at the
left wall Method I is used), in which the direction of the
phase velocity is changed corresponding to the change of the
direction of the surface current.

The spatial structures of the n=1 mode are shown in
Fig.4. The growth of the instability at the LOM boundary (x=0)
is clearly observed. The width of the instability is about
the ion Larmor diameter at the initial and middle stage of
the linear growth (t=880 and t=1040). It begins to spread
in the final stage of the linear growth (t=1280) and it is
more than several times the ion Larmor radius in the satura-
tion stage (t=1920). This spreading is crucial because
simulation plasmas are usually 207%30 Py and there are two

boundaries.

Fig.5 shows the spatial structures of the macrnscopic



currents due to the ions. In Fig.5-a which corresponds to

the initial time of the simulation, there is a current near
the left wall due to 2 special kind of the treatment of the
particles by LOM. Its spatial dependence on x agrees quite
well with the prediction of Eq.(l). At the initial stage of
the linear growth (Fig.5-b), the surface currents are perturbed
in the y direction due to the ExB drift by the n=1 surface
mode. The width 6f the current is also about a ion Larmor
diameter thick. At the final stage of the linear growth
(Fig.5~¢c) the current is consideranly modulated by the n=1
mode. Its width is about four times as large as the ion
Larmor radius. The change of the current is due to the
nonlinear transport of particles via ExB drift of the surface
mode. The averaged x components of the currents is directed
to the left wall, and this generatesthe large density gradient
near the boundary. In the saturation stage (Fig.5-d) the
width of the current layer further increases to more than
several times oy consistent with the structure of the n=1 mode.
The form of the current layer is vortex like in this stage,
and the initial current prcfile is almost completely wiped
out.

Electron and ion temperatures which are parallel and
perpendicular to the magnetic field are also observed. The
result is the decrease of the electron parallel tempcrature
near the left wall, which indicates the inverse Lancau damping
of the electrons as the origin of the instability.

From all the results described abcve, we know that this



instability closely resembles the drift wave instability?’lO

The parameters usad here are also the ones that make the drift
wave unstable if there is a density gradient. Hence if we
make a drift wave simulation using LCM, the plasma wi'l be
unstable near the walls as well as in the density gradient
region and these excited waves will be strongly coupled in

the nonlinear stage of the instabilities. (We also verified

this by the simulation.)

§3. Modifications of the boundary conditions

The surface instability produced by LOM has been verified
in the previous section which is caused by the macroscopic
current along the wall. It is clearly necessary to find a method
which irtroduces no macroscopic currents or density gradients.
In this section, we show such boundary conditions which cause

no surface instability.

A. Method I

One of the methods we used is to reflect a particle with

the reversed velocity (Method I, see Fig.l.c) at the well
v .-y v o v {(2)

where the coordinate system perpendicular to the magnetic
field is assumed (the case of 6=0° in Fig.2). It is shown
that there is no density gradients or macroscopic currents

1 this method using the analogous scheme described under



n{x) = ngy(x) + ngf{-x) = const.
a g a

Vix) = Vo(x) - ¥o(-x) = 0.

o o o

One must reflect only the components of velocity perpendicular

to the magnetic field when one uses a 2 - 1/2 dimensional code
(tilted B);
v, + -V
X X
v > =V co328 + v_ sin28 (3)
Y Y . 2
v+ v _sin29 + v_ cos28 .
z y z

Since the time is discreti 2d in simulation, one should

determine the new position of a particle using linear inter-

polation
X+ 2%y - X
y - r(y_ - vat) + (1 - )y (4)
r= (x - X)/(x - x_)

where %o, X_, y_ represents the position of the wall and the

x and y coordinates of a particle before pushing, and the

other values appearing at the right hand sides of the equations
are the values before reflection. Egs.(4) can be used both

for the 2 and 2 - 1/2 dimensional codes.

One may think that the guiding center shifts at the wall
inherent to Method I would dominate the physics (perhaps this
motivated LOM and the method used by W. Nevins and M.J. Gerverﬁ).
However what is important is the macroscopic currents to which
the particles which just miss the wall contribute as well as
those which hit the wall.

Method I have been used at the right wall (x=LX) of the

system in the simulation which is presented in the previous



section. Fig.5-a shows that initially there is no macroscopic
current at the right wall. Fig.4 and Fig.5-bnd indicate that
there is no surface instability at the right wall. From these
figures, Method I is shown to be useful because it actually
doesn't influence the surface instability excited at the left
wall; the surface instability due to LOM is successfully
simulated without suffering no disturbance from the right wall.
This method has been used quite satisfactorily in the simulation
studies of the drift wave instabilities caused by the density

and the temperature gradients}G

B. Method II

As indicated in Method I, if we could choose the initial
condition correctly, the currents caused by the guiding center
shifts of the particles which hit the walls and those caused
by particles which never hit the walls would cancel out.
Then there would be no macroscopic currents even for the case
of reflecting boundary conditions. We show, below one such
initial condition; (1) First the guiding centers of the
particles are uniformly loaded in the system and the real velocities
are assigned to those, (2) second the real positions of the
particles are determined from (1) and if they are outside the

boundary, the positions and the velocities of the particles

are changed as

X + 2Xg - X
v, > Vv

b X (5)
V. > -V



where new guiding centers of these particles are outside the
boundary. (see Fig.1l-d). In the 2 - 1/2 dimensional code,
vy and v, should be changed following the last two equations
of Egs.(3), while x and Ve should be charged following Egs. (5).

Method II uses this initial condition with the reflecting
boundary condition. Note that this initial condition is the
one thac should be used with Method I. To prove ithat there
are no surface currents and density gradients in Method IXI, let
us show Method I and II are the same macroscopically. As is
illustrated in Fig.6, a particle Pl(Pl') and a particle P2(P2')
moves differently according to the Method I and II, respectively.
However, there are many particles on the orbits a, b, c, 4 and
the initial particle distributions on these orbits are uniform
and the same statistically. Then the total current and density
contributions from these particles are the same macroscopically.
The initial condition in Method IT is not unique and one can
use many other choices, if one wants to reduce the statistical
fluctuations.

The simulation is made using Method II with the same
system and parameters described in Sec.2. It is found that
there is no density gradients or surface currents and
that there is no surface instabilities. Additional simulation
is done using another incorrect initial conditions (vx - “Vy
X + 2Xg - ¥) with reflecting boundary conditions. As pointed
out by Lee and Okuda5 and described in Sec.2, it is found
that there are large density gradients and macroscopic currents.
These effects are produced by the change in the probabilities

of the particle distributions on orbit ¢ and d in Fig.6-b due

- 12 -



to the incorrect initial conditions. All the guviding centers
of the particles are inside the system. It is also to be
noted that the dominant surface current in this case is not
due to the guiding center shifts of the particles which hit
the walls but due to the particles which miss the walls (,viz,
due to diamagnetic current).

The results using Method 1I is consistent with the fact
that fully ionized plasma confinecd by perfectly reflecting
walls has no magnetic effect at all, if a plasma is in
thermodynamic equilibrium:.L7 But the method to realize this
thermodynamic eqnilibrium state in a bounded simulation plasma
using uniform guiding center loadings have not ever been used
before. 1If the real positions of the particles are uniformly
loaded this state is also realized, but then the benefit of
using uniform guiding center loadings will disappear and there

will be considerable fluctuations.

C. Random reflection method

There is another set of boundary conditions where particles
are reflected with given velocity distribution. 1In the
unmagnetized plasﬁa, particles are reintroduced with a half-
Maxwellian velocity distribution? However in the magnetized

plasma we have the velocity distributions as

E lv,) = oj(]vx|/vt02)exp(—vxz/ZVtOZ)
(6)
fg(vy) = (}//7? vto)exp(-vyz/Z Vtoz)



op = -1 O = 1
where subscripts R and L represents the left anc right walls,
respectively. Egs.(6) are obtained by calculating the velocity
distribution of particles which cross the wall x=xy 1in the
+y (-y) direction assuming a homogeneous plasma whose guiding
centers are located uniformly in the whole space with a
Maxwellian velocity distribution. Because the energetic
particles have larger Larmor radius than the cold particles,
large number of energetic particles can cross the wall at x=xg.
This produce a change in a velocity distribution described
above.

One must use the linear interpolations to determine the
new position as

N

X > X + r vX At

y » rly_ + vyN At) + (1-n)y '

where VXN and vyN are the new velocities according to Egs. (6)
and r is the same as the one appearing in Egs. (4). It is
straightforward to extend Egs. (6) and (7) to the 2 - 1/2
dimensional code. We also checked this method and there are
no density gradients or surface currents. When the linear
interpolations in Egs.{7) are not used, however, the density

gradients and surface currents become large as the time steps

increase.



D. Nevins and Gerver's Method

Let us see the method used by Nevins and Gerver (we call
this NGM)6 to compare it with methods descriked earlier. In
NGM they use an assumption that the plasma has inverse
symmetry around the point (x=0, y=0). (The region to be used
is 0 < x < Lx, —Ly/2 <y < Ly/?.) Then a particle going out
of the x=0 boundary at y=y, 1s reintroduced at y=-y; and x=0,
with its velocity (x, y, 2 component) reversed. This hold
beth for the 2 and 2 - 1/2 dimensional codes. NGM has no
instability near the wall because there is nc current or
density gradient. However, the boundary condition for the
field are rather complicated as shown in Ref.6. There may
be some connection of tile upper (y>0) and lower (y<0) domain
by wave packats propagating in the x direction in the nonlinear
stage of the drift wave instability (They developed NGM for
drift wave simulations). Furthermore we can't use NGM when
we want to simulate the boundary phenomena, because NGM is

equivalent to having no wall at all at x=0.

Compared with LOM and NGM, Method I, Method II and
random reflection method are simple and straightforward and
make no artificial assumption. They are better than LOM
because there is no surface current or surface instability.
They are also better than usual reflecting boundary condition
because there is no density gradients which produces large
electric field near the boundary due to the differences in

gyroradii between electrons and ions.



§5. Discussions and Conclusions

In this paper, we studied different treatments of the
particles at the boundary in a magnetized and bounded simula-
tion plasma. It is found that Lee and Okuda's boundary
condition introduces the macroscopic currents near the
boundary which cause drift wave like surface instability.

This is verified by the numerical simulations. Mcreover it
is found that this surface instability affects the interior
of the plasma because it spreads over a distance which is
more than several Larmor radius.

We describe three methods (Method I and I1 and the random
r=flection method) to treat the particles at the walls. They
are simple and straightforward and ntroduce no density
gradients or macroscopic currents, and hence introduce no
surface instability. We also verified this by the simulations.
In Method I particles are reflected with inverse velocities
which are perpendicular to a magnetic field. Method II
changes the initial locadings of the particles correctly with
the usual reflecting boundary conditions. These two method
are shown to be identical macroscopically. 1In random reflec-
tion method particles are reflected with a new velocity
di;tribution which are different from a half-Maxwellian velocity
distribution due to the existence of the magnetic field.

When we use a bounded plasma model to simulate the
phenomena in the interior of the system, Method I will be
suitable. However when we want to simulate the boundary

phenomena, Method II may be more realistic. Random reflection



method can be used for the aims such as fixing the temperature
at the walls,

It is to be noted that surface currents disturb the
intericr of the plasma only after the time when the instability
occurs in the electrostatic code. However in the magneto-
static code18 this surface current itself can influence the
external magnetic field and plasma will be strongly dismagnetic.
The phenomena we want to simulate will considerably change.

Our methods are useful not only for the 2 and 2 - 1/2
dimensional electrostatic code verified in this paper, but
these will be also useful for the 3 dimensional electrostatic

code or the magnetostatic particle simulation code.
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Fig.l

Fig.2

Fig.3

Fig.4

Figure Captions

Illustrations for different boundary conditions.

Reflecting boundary condition is shown in (a). Lee and

Okuda's method is shown in (b). The origin of the surface

current in this method is also shown. Method I is

cshown in {c). Initial condition in Method II is shown

in (d) where %, indicates the position of the wall.

It shows the initial treatment of the particles which

are outside the system due to the uniform loadings

of the guiding centers. The combination of this initial

condition and the reflecting boundary condiiion is

l‘ethod II. Note that this initial condition is the one

used in Method I.

Sketch of the bounded plasma model in a magnetic field.

The case of the 98=0° and 8#0° correspond to the 2 and

2 - 1/2 dimensional code, respectively. Periodic

bourdary condition is used in the y direction.

(a) Growth of Fourier modes of the electrostatic
potential.

(b) Phase of the mode (m,n)=(2,1).

Mode structures for n=1 mode, The growth of the mode

is shown in conjunction with the spreading of the width

of the instability. Lee and Okuda's boundary conditions

are used at the left wall, while at the right wall

Method I is used.



Fig.6

Spatial structures of the macroscopic currents due to
the ions. The lengths of the arrows are proportional
to the magnitudes of the currents. One fourth of the
LX is equal to the magnitude noV, ;- Each figure
correspends to (a) the initial time of the simulation,
(b) the time when instability sets in, (c) the final
stage of the linear growth and (d) the saturation

stage of e instability.

Illustration that (a) Metnod I and (b) Method II are

macroscopically same.
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Fig. 6



