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Abstract

Different treatments of the particles at the boundary

wall in a magnetized and bounded simulation plasma are studied

extensively. It is shown that Lee and Okuda's boundary

conditions are numerically unstable. The existence of drift

wave like instability at the boundary is verified numerically.

Methods to eliminate this surface instability are presented,

which do not produce any density gradients or surface currents

at the boundary.



51. Introduction

Particle simulation has contributed to the understandings

of plasma physics. In particular it is a powerful tool for

understanding transport phenomena across a magnetic field.

Plasma diffusion due to low frequency convective cells and

electron diffusion caused by low frequency ion fluctuations

or lower hybrid waves are some examples.

In many of these,the infinite and homogeneous plasma is

simulated by using periodic boundary conditions. There are

no numerical difficulty with these boundary conditions.

However all experimental plasmas are finite and bounded, and

hence inhomogeneous. Inhomogenities in plasmas produce many

interesting phenomena, for example drift wave instabilities

and trapped particle instabilities. It is important to use

a bounded plasma model to simulate a inhomogeneous plasma.

Moreover bounded.plasma model itself involves many significant

phenomena; Gould Trivelpiece waves , sheath layers and their
4

oscillations etc.

Boundary conditions for a bounded simulation plasma have

not been studied extensively. Owing to the restrictions on

memory and CPU time for computers, we can only simulate a

small volume of plasma compared with real one. Further we

must determine the boundary conditions in such a way so as

not to disturb the phenomena of interest in the interior of

the plasma. If one is not careful, the boundary phenomena

can dominate the whole plasma.

The important boundary condition for simulating a bounded
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plasma in a static external magnetic field is the treatment of

particles at plane walls which are parallel to the magnetic

field. These boundaries modify the cyclotron motion of

charged particles and cause shifts of guiding centers of

particles which hit the walls, macroscopic density gradients,

currents near the boundaries and surface waves etc. These

effects seriously violate the simulation of plasma phenomena

of interest.

W.W. Lae and H. Okuda examined the above mentioned

boundary effects and conclude that the roise produced by the

plasma boundary interacrions mainly comes from the disturbance

of the guiding center positions of the particles which hit

the walls. They have used a rather artificial boundary

condition in which the positions of the guiding centers of

the particles striking the wall are not changed.

We have performed a simulation using Lee and Okuda1s

boundary condition with uniform density and temperature

profiles using a 2 - 1/2 dimensional (2 positions and 3

velocities) particle code and found that there is a strong

instability around the boundary. This surface instability,

which is quite similar to the drift wave instability driven

by the density gradients, considerably affects the entire

plasma because in the nonlinear stage it spreads beyond a distance

of one ion Larmor diameter from the boundary. Therefore the

main aim of this paper is to develop boundary conditions which

introduce no surface instability.

In Sec.2, the method used by Lee and Okuda is discussed

and the surface instability produced by their method is
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demonstrated. In Sec.3, methods which eliminate the surface

instability are presented. Comparisons with other methods

are also discussed. Concluding remarks and discussions are

given in Sec.5.

§2. Lee and Okuda's method and the surface instability

First we review the method of treating particles at the

boundary proposed by W.W. Lee and H. Okuda ( we will call

8 — 10

this L O M ) . They used LOM in their simulations of drift waves.

For simplicity let us think of a 2 dimensional (2 positions

and 2 velocities) electrostatic plasma which is normal to

the magnetic field and periodic in the y direction but bounded

by walls at x=0 and x=L with the potential equal to zero on

these boundaries. This system corresponds to the case of

6=0° in Fig.2, where 9 is the angle between the z axis and

the direction of the magnetic field. We concentrate our

attention on the wall at x=0.

Lee and Okuda claim that the reflecting boundary condi-

tions, where a particle exiting from the system is reflected

back into the original system at every time step with x •* -x

and v •+ -v (see Fig.l-a) causes two effects; (1) a sheath

current along the wall and (2) a sharp density gradient near

the boundary the width of which is of the order of a Larmor

radius. These effects come from the disturbance of the

guiding center positions of the particles which strike the

wall. They modified the boundary r-ondition and proposed the

method LOM which is illustrated in Fig.l-b. In LOM, particles
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which hit the wall are reflected by the reflecting boundary

condition but moved in a inversed magnetic field urn il they

hit the wall again where they are reflected and moved in a

normal magnetic field. It is to be noted that both the

particles which move in a normal magnetic field and ones which

move in a inversed magnetic field, feel the electric fields

in their actual positions without changing the sign of their

charge. The guiding centers of the particles do not change

in LOM by the wall particle interactions. Total energy is

conserved as well as the total charge. However they state

that additional smoothings of the charge modulation in y

direction before the reflections are sometimes necessary to

miniirize the noise.

The merit of LOM is that it produces no density gradient

near the wall. However, it Cilui^S a macroscopic current in

the y direction. We have the macroscopic density n (:<)

->LOM , ,
ana velocity v (x);

LOM, .
n (x) = const.

J v exp[ ] 1
2p C T

where q , v and p are the charge, the thermal velocity

(=/T /m ) and the Larmor radius (--v. /to ) for species a
• o a to co

(o=e, i) respectively, and i is the unit vector in the y

direction. Eqs.(l) is obtained directly by first calculating

the density n0 (x) and the macroscopic velocity v0 (x)

corresponding to a plasma whose guiding centers are located
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uniformly for x > 0 (for x •- 0, there are no guiding centers)

with a Maxwellian velocity distribution of the constant density

and temperature. Then summing up these particle densities

and velocities for x=xA
 and X =~ X

A <X
A > °> •

 o n e finds

nQ (x) = n0(J (x) + noa (-x)

v^0M(x) = voa(x) + voa(-x) .

As illustrated in Fig.l-b, these currents appear because the

currents due to the particles moving in a inversed magnetic

field are not cancelled out but summed up with those coming

from others missing the wall near the boundary.

It is to be noted that these currents resemble the

diamagnetic currents due to the density gradient. Both are

produced by the finiter.ess of the Larmor radius. Then these

currents along the wall can cause a drift wave like instability

if there is a small angle 9 between the z-axis and the

magnetic field (tilted B).

In order to verify the surface instability, we made a

simulation using LOM boundary condition. A model we used

11 12

is a 2 - 1/2 dimensional electrostatic dipole expansion code '

with a static magnetic field slightly tilted from the z

direction in the y direction. Finite sxze particles ' with

Gaussian shape charge distributions are used. The details of

the system are shown in Fig.2. The plasma is uniform both

in the x and y directions and is bounded by the conducting

walls at x=0 and y.-h where the electrostatic potentials

are zero. Periodic boundary conditions are used in the

y direction; particles leaving a boundary at y=0 (y=L.) are
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reintroduced at the opposite boundary at y=L (y=0). There

are several choices for the treatment of the particles at

the x=0 and x=L_, walls. In this case, LOM boundary condition

is used at the left wall (x=0), while at the right wall (x=L )

Method I, which will be presented in Sec.3, is used. This is

because if we use LOM for the both walls, there will be strong

coupling of the waves excited at the each wall which confuses

the diagnostics. Initially the guiding centers of the

particles are uniformly loaded with Maxwellian velocity

distributions. No quiet start technique is used. The para-

meters are

System size, L x L = 32 x 32;

Number of particles, N a = N. = 8192;

Particle size, ar = a = 1 . 5 ;

Finite time step, At = 0.4;

Mass ratio, m./m = 25;
l e

Temperature ratio, T./T = 0,25;
I e

Electron Debye length, X =1.41;

Electron Larmor radius, p = l.u;

Ion Larmor radius, p. = 2.5;

Electron cyclotron frequency,

"ce = 1- 4 1 ;

Angle between the magnetic field and the z - axis, 0=1.5°,

where lengths and times are normalized by the grid spacing A

and the inverse of the electron plasma frequency to ,

respectively.

Now, let us look at the gross behavior of the surface

instability near the left wall. Fig.3 shows the time
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dependence of the Fourier components of the electrostatic

potential, (m,n)=(1,i), (2,1) and (3,1), where m and n

correspond to the wave numbers, k =:I\IT/L and k =2nir/L . These

modes grow above the thermal noise at t-800, exponentiate

linearly until t=1250, saturate at t=1400 and remain almost

at the same amplitude after that (saturation stage). No

instability is observed for n=2 and higher modes. The observed

growth rate is y=0-0054. Fig.3-b shows the time dependence

of the phase of the mode (m,n)=(2,l). Excellent coherency is

observed after t^lOOO and the measured frequency from this

is w=0.0052. The direction of phase velocity is that of the

macroscopic electron velocity near the wall. This is confirmed

by the other simulation using LOM at the right wall (at the

left wall Method I is used), in which the. direction of the

phase velocity is changed corresponding to the change of the

direction of the surface current.

The spatial structures of the n=l mode are shown in

Fig.4. The growth of the instability at the LOM boundary (x=0)

is clearly observed. The width of the instability is about

the ion Larmor diameter at the initial and middle stage of

the linear growth (t=880 and t=1040). It begins to spread

in the final stage of the linear growth (t=1280) and it is

more than several times the ion Larmor radius in the satura-

tion stage (t=1920). This spreading is crucial because

simulation plasmas are usually 20^30 p. and there are two

boundaries.

Fig. 5 shows the spatial structures of the macroscopic
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currents due to the ions. In Fig.5-a which corresponds to

the initial time of the simulation, there is a current near

the left wall due to a special kind of the treatment of the

particles by LOM. Its spatial dependence on x agrees quite

well with the prediction of Eq.(1). At the initial stage of

the linear growth (Fig.5-b), the surface currents are perturbed

in the y direction due to the E*B drift by the n=l surface

mode. The width of the current is also about a ion Larmor

diameter thick. At the final stage of the linear growth

(Fig.5-c) the current is considerably modulated by the n=l

mode. Its width is about four times as large as the ion

Larmor radius. The change of the current is due to the

nonlinear transport of particles via E*B drift of the surface

mode. The averaged x components of the currents is directed

to the left wall, and this generates the large density gradient

near the boundary. In the saturation stage (Fig.5-d) the

width of the current layer further increases to more than

several times p. consistent with the structure of the n=l mode.

The form of the current layer is vortex like in this stage,

and the initial current profile is almost completely wiped

out.

Electron and ion temperatures which are parallel and

perpendicular to the magnetic field are also observed. The

result is the decrease of the electron parallel temperature

near the left wall, which indicates the inverse Landau damping

of the electrons as the origin of the instability.

From all the results described above, we know that this



Q "1 A

instability closely resembles the drift wave instability.'

The parameters used here are also the ones that make the drift

wave unstable if there is a density gradient. Hence if we

make a drift wave simulation using LOM, the plasma vii1! be

unstable near the walls as well as in the density gradient

region and these excited waves will be strongly coupled in

the nonlinear stage of the instabilities. (We also verified

this by the simulation.)

§3. Modifications of the boundary conditions

The surface instability produced by LOM has been verified

in the previous section which is caused by the macroscopic

current along the wall. It is clearly necessary to find a method

which introduces no macroscopic currents or density gradients.

In this section, we show such boundary conditions which cause

no surface instability.

A. Method I

One of the methods we used is to reflect a particle with

the reversed velocity (Method I, see Fig.l.c) at the wall

v * -v , v -+ -v (2)
x x y y

where the coordinate system perpendicular to the magnetic

field is assumed (the case of 9=0° in Fig.2). It is shown

that there is no density gradients or macroscopic currents

ir. this method using the analogous scheme described under

Eqs.(1);
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n(x) = n0 (x) + n0 (-x) = const.a a a

vtx) = v0(x) - v0(-x) = 0.
0 0 0

One must reflect only the components of velocity perpendicular

to the magnetic field when one uses a 2 - 1/2 dimensional code

(tilted B);

v -*• - v

X X

v •+ -v co^26 + v sin29 (3)
y y z
v •+ v sin29 + v cos26
z y z

Since the time is discreti ad in simulation, one should

determine the new position of a particle using linear inter-

polation

x •+• 2 x 0 - x

y -> r(y_ - v At) + (1 - r)y (4)

r = (x- xo)/(x- x_)

where Xo/ x , y_ represents the position of the wall and the

x and y coordinates of a particle before pushing, and the

other values appearing at the right hand sides of the equations

are the values before reflection. Eqs.(4) can be used both

for the 2 and 2 - 1/2 dimensional codes.

One may think that the guiding center shifts at the wall

inherent to Method I would dominate the physics (perhaps this

motivated LOM and the method used by W. Nevins and M.J. Gerver*)

However what is important is the macroscopic currents to which

the particles which just miss the wall contribute as well as

those which hit the wall.

Method I have been used at the right wall (x=L ) of the
X

system in the simulation which is presented in the previous
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section. Fig.5-a shows that initially there is no macroscopic

current at the right wall. Fig.4 and Fig.5-b^d indicate that

there is no surface instability at the right wall. From these

figures. Method I is shown to be useful because it actually

doesn't influence the surface instability excited at the left

wall; the surface instability due to LOM is successfully

simulated without suffering no disturbance from the right wall.

This method has been used quite satisfactorily in the simulation

studies of the drift wave instabilities caused by the density

and the temperature gradients.

B. Method II

As indicated in Method I, if we could choose the initial

condition correctly, the currents caused by the guiding center

shifts of the particles which hit the walls and those caused

by particles which never hit the walls would cancel out.

Then there would be no macroscopic currents even for the case

of reflecting boundary conditions. We show.below one such

initial condition; (1) First the guiding centers of the

particles are uniformly loaded in the system and the real velocities

are assigned to those, (2) second the real positions of the

particles are determined from (1) and if they are outside the

boundary, the positions and the velocities of the particles

are changed as

x -* 2x0 - x

(5)

vy * "vy • '
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where new guiding centers of these particles are outside the

boundary. (see Fig.l-d). In the 2 - 1/2 dimensional code,

v and v should be changed following the last two equations
y z

of Eqs. (3), while x and v should be changed following Eqs. (5) .

Method II uses this initial condition with the reflecting

boundary condition. Note that this initial condition is the

one thac should be used with Method I. To prove that there

are no surface currents and density gradients in Method II, let

us show Method I and II are the same macroscopically. As is

illustrated in Fig.6, a particle P, (P ') and a particle P_(P_')

moves differently according to the Method I and II, respectively.

However, there are many particles on the orbits a, b, c, d and

the initial particle distributions on these orbits are uniform

and the same statistically. Then the total current and density

contributions from these particles are the same macroscopically.

The initial condition in Method II is not unique and one can

use many other choices, if one wants to reduce the statistical

fluctuations.

The simulation is made using Method II with the same

system and parameters described in Sec.2. It is found that

there is no density gradients or surface currents and

that there is no surface instabilities. Additional simulation

is done using another incorrect initial conditions (v -»• -v

x ->• 2x0 - x) with reflecting boundary condition?. As pointed

out by Lee and Okuda and described in Sec.2, it is found

that there are large density gradients and macroscopic currents.

These effects are produced by the change in the probabilities

of the particle distributions on orbit c and d in Fig.6-b due
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to the incorrect initial conditions. All the guiding centers

of the particles are inside the system. It is also to be

noted that the dominant surface current in this case is not

due to the guiding center shifts of the particles which hit

the walls but due to the particles which miss the walls (,viz,

due to diamagnetic current).

The results using Method II is consistent with the fact

that fully ionized plasma confined by perfectly reflecting

walls has no magnetic effect at all, if a plasma is in

thermodynamic equilibrium. But the method to realize this

thermodynamic eqnilibrium state in a bounded simulation plasma

using uniform guiding center loadings have not ever been used

before. If the real positions of the particles are uniformly

loaded this state is also realized, but then the benefit of

using uniform guiding center loadings will disappear and there

will be considerable fluctuations.

C. Random reflection method

There is another set of boundary conditions where particles

are reflected with given velocity distribution. In the

unmagnetized plasma, particles are reintroduced with a half-

Maxwellian velocity distribution. However in the magnetized

plasma we have the velocity distributions as

= °j(lvxl/vta2)exp(-vx2/2vta2)

(6)

fa(vy) = [\/m vto)exp(-vyV2
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where

j = R, L

°R = -1 '. °L = 1

where subscripts R and L represents the left and right walls,

respectively. Eqs.(6) are obtained by calculating the velocity

distribution of particles which cross the wall x=x0 in the

+y (-y) direction assuming a homogeneous plasma whose guiding

centers are located uniformly in the whole space with a

Maxwellian velocity distribution. Because the energetic

particles have larger Larmor radius than the cold particles,

large number of energetic particles can cross the wall at x=x0.

This produce a change in a velocity distribution described

abo"e.

One must use the linear interpolations to determine the

new position as

N
x -»• x0 + r v At

y •+ r(y_ + v N At) + (l-r)y

(7)

N N
where v and v are the new velocities according to Eqs.(6)

and r is the same as the one appearing in Eqs.(4). It is

straightforward to extend Eqs.(6) and (7) to the 2 - 1/2

dimensional code. We also checked this method and there are

no density gradients or surface currents. When the linear

interpolations in Eqs.(7) are not used, however, the density

gradients and surface currents become large as the time steps

increase.
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D. Nevins and Gerver's Method

Let us see the method used by Nevins and Gerver (we call

this NGM) to compare it with methods described earlier. In

NGM they use an assumption that the plasma has inverse

symmetry around the point (x=0, y=0). (The region to be used

is 0 < x < L , -L /2 < y < L /?.) Then a particle going out
x y y

of the x=0 boundary at y=y0 is reintroduced at y=-y0 and x=0,

with its velocity (x, y, z component) reversed. This hold

both for the 2 and 2 - 1/2 dimensional codes. NGM has no

instability near thfi wall because there is no current or

density gradient. However, the boundary condition for the

field are rather complicated as shown in Ref.6. There may

be some connection of the upper (y>0) and lower (y<0) domain

by wave packets propagating in the x direction in the nonlinear

stage of the drift wave instability (They developed NGM for

drift wave simulations). Furthermore we can't use NGM when

we want to simulate the boundary phenomena, because NGM is

equivalent to having no wall at all at x=0.

Compared with LOM and NGM, Method I, Method II and

random reflection method are simple and straightforward and

make no artificial assumption. They are better than LOM

because there is no surface current or surface instability.

They arc also better than usual reflecting boundary condition

because there is no density gradients which produces large

electric field near the boundary due to the differences in

gyroradii between electrons and ions.
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§5. Discussions and Conclusions

In this paper, we studied different treatments of the

particles at the boundary in a magnetized and bounded simula-

tion plasma. It is found that Lee and Okuda's boundary

condition introduces the macroscopic currents near the

boundary which cause drift wave like surface instability.

This is verified by the numerical simulations. Moreover it

is found that this surface instability affects the interior

of the plasma because it spreads over a distance which is

more than several Larmor radius.

We describe three methods (Method I and II and the random

reflection method) to treat the particles at the walls. They

are simple and straightforward and Introduce no density

gradients or macroscopic currents, and hence introduce no

surface instability. We also verified this by the simulations.

In Method I particles are reflected with inverse velocities

which are perpendicular to a magnetic field. Method II

changes the initial loadings of the particles correctly with

the usual reflecting boundary conditions. These two method

are shown to be identical macrostopically. In random reflec-

tion method particles are reflected with a new velocity

distribution which are different from a half-Maxwellian velocity

distribution due to the existence of the magnetic field.

When we use a bounded plasma model to simulate the

phenomena in the interior of the system, Method I will be

suitable. However when we want to simulate the boundary

phenomena, Method II may be more realistic. Random reflection
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method can be used for the aims such as fixing the temperature

at the walls.

It is to be noted that surface currents disturb the

interior of the plasma only after the time when the instability

occurs in the electrostatic code. However in the magneto-

18static code this surface current itself can influence the

external magnetic field and plasma will be strongly dismagnetic.

The phenomena we want to simulate will considerably change.

Our methods are useful not only for the 2 and 2 - 1/2

dimensional electrostatic code verified in this paper, but

these will be also useful for the 3 dimensional electrostatic

code or the magnetostatic particle simulation code.
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Figure Captions

Fig.l Illustrations for different boundary conditions.

Reflecting boundary condition is shown in (a). Lee and

Okuda's irethod is shown in (b) . The origin of the surface

current in this method is also shown. Method I is

shown in (c). Initial condition in Method II is shown

in (d) where Xo indicates the position of the wall.

It shows the initial treatment of the particles which

are outside the system due to the uniform loadings

of the guiding centers. The combination of this initial

condition and the reflecting boundary condition is

Method II. Note that this initial condition is the one

used in Method I.

Fig.2 Sketch of the bounded plasma model in a magnetic field.

The case of the 6=0° and 9^0° correspond to the 2 and

2 - 1/2 dimensional code, respectively. Periodic

bourdary condition is used in the y direction.

Fig.3 (a) Growth of Fourier modes of the electrostatic

potential.

(b) Phase of the mode (m,n) = (2,1) .

Fig.4 Mode structures for n=l mode, The growth of the mode

is shown in conjunction with the spreading of the width

of the instability. Lee and Okuda's boundary conditions

are used at the left wall, while at the right wall

Method I is used.
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Fig.5 Spatial structures of the macroscopic currents due to

the ions. The lengths of the arrows are proportional

to the magnitudes of the currents. One fourth of the

L is equal to the magnitude nov .. Each figure
X L.-L

corresponds to (a) the initial time of the simulation,

(b) the time when instability sets in, (c) the final

stage of the linear growth and (d) the saturation

stage of .He instability.

Fig.6 Illustration that (a) Method I and (b) Method II are

macroscopically same.
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