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ABSTRACT 

A motion of partiolaa in a finita amplituda w«rt, propagating obliquely to 

tha homogeneous magnetoatatie fiald ia diacuaaad, Aa it followa from aimpla 

Integral propartlaa, in tha neighbourhood of Dopplar - ahiftad cyclotron nmo-

nanoa similar trapping affacta appaar aa in a plasma without magnetoetatlo 

fiald. Consequences of this trapping are discussed, in particular the possibi­

lity of a strong absorption of the ware and tha origin of stoohastio instabi­

lities, caused by the perturbation ot an effeotire trapping potential and 

leading to the acceleration of part idea. 
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1. INTRODUCTION 

An influence of finite amplitude wave on the dynamics of particles and con­
sequently on the interaction wave—plasma is an often discussed problem. Since 
this interaction is basicallystrongi. ...linear,the appropriate solution requi-
eres numerical analysis. On the other hand, DAVSON and SI!ANNY flj have presented 
a simple analytic estimation of region of parameters, where strong absorption 
and even breaking of a wave in a plasma without raagnetostatic field appears We 
have extended their estimation on the case of a magnetoactive plas: n. Here, 
perturbations of the effective trapping potential appear in ,.i iiiciple. Ve have 
therefore discussed also their effect on the detrapping of particles and on the 
existence of stochastic instabilities (see, e.g. [2]). 

The suitable canonical formalism is used for the description of the motion 
of particles. Its advantage is - besides simple expressions - the possibility 
of following of a dynamics of part i el*.; in similar ««) , as has been done in 111. 

A short communication on this topic appeared in ij]. 

2. MOTION OF A PARTICLE IN THE ELECTROSTATIC WAVE WITH кпФ 0 , к ф О IN TIíE 
MAGNETOSTATIC FIELD NEAR RESONANCE „̂ \ + ̂  - Ь) ~ О 

2.1 The description of the model 

Ve consider homogeneous plasma in homogeneous magnetostatic fiel.l and the 
electrostatic wave, propagating with frequency '--' and components of wave vec­
tor ku , ^ oblique to the magnetostntic field. Considering wave as i> given 
entity, we are discussing its influence on individual plasma particles (-.he prob­
lem le therefore not-selfoonsistent). For concrete estimations, we consider 
waves generated in beam-plasma experiment [k]. 

2.2 Canonioal formalism and integral properties of the motion of particlan 

Let us consider electrostatic wave with potential V in the form 

(i) V-V0c<b(k„Q3 * kxx-ot) 

where 4j and X are the longitudinal ooordinate (along magnetic field lines) 
and the perpendicular ooordinate, respectively. The corresponding HamiltonIan 
function of a partiole in a magnetostatic field with cyclotron frequency uJc 

has the form 
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(2) Н-ч^^*«^Я^^Й)^пв<"^ 
Here Уз,", x P* are longitudinal and perpendicular coordinates and momenta 
respectively, and G» , гщ are new perpendloular canonical coordinate and mo­
mentum, given by the transformation [5] 

(3) X = Ш- 0. » - (=¥}- °-
T.et us expand (2) by means of Beseel functions, 

-[J0M*2L
 J

2n^^2n01}[2*Lo Jb^^u^WM^fc 

where 

and l e t us rewrite (k) into Hie form 

*• to * *t Ф0 

-Z • UnH W ™[K Q3 - ui-itmiX),]* 

+ 1 e V0J2nt, (к, f) c*> [к, Q3 -«t * (2n.f)Qf ] • 
Let us now transform oanonioally ( 2 ) , (3) by шеапв of fol lowing set of genera-

Г li) С (2) с <3) t ing funotions 'a » "A 1 ' 
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In new coordinates we obtain 

<8> ,,(» ' D'»2. 

with corresponding traneformations 

*., 

Let us e x p r e s s Hami l tonian (? ) in t i e form 

<?2- _ i _ ( P(J)* -~ p < 3 ) \ 

and let us consider the important resonance case 

(10a) k,,*,, *CCC ~CJ * 0 . 

Considering (9)» (l°«) and (3) we can state that the first two terms on the 
right hand posses in (10) slow dependence on time, whereas Д" is formed by 
quick oscillating terms. Since principially (for A , > < < i as well for к f * 7 ) 
the term not dominant in the total expansion (8), *t> have first 
to estimate the offeet of Лп . For this purpose wo shall use the method of 
BOGOLJUDOV (e.g. in [6] ). 

Let us suppose we have expressed (10) in the action-angle coordinate 
system J< tlT, , Jj, 10^ 
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(и) 

Using method of BOGOLJUBOV f6], wa shall ahow that for Ф^п/о o f t h e o r d e r of 
£• ^ < 7 tha motion of p*r tides can ba daaoribad in great part of phase spact 

for tise At < — ъу mesne of Hamiltonlan H0 . 

Taking oanonieal aquations for (ll) in tha form 

ona oan axpand X. 16] 

whara fk la tha aolution of tha aquation 

Sinoo oanonical aquations for Haailtonian (10) hare tha form 

dt 
-4. wa aust properly chooee the parameter € . Taking t* У Т , we obtain 

ÍÍ- - y / ĵr- Jíl 7- ) 

Prorided ĵ << Че (lat us choose *j aa tha frequency of oscillations of 
partlolas in effective potential trough), wa take £ ' */<Jc an<i 9 s -f- T 

Considering e.g. Jy , and neglecting terms of , we have 

(&-4 # £ • « > 
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and therefore 
л 4 9 

where 

Seculai changes are of the order ; one can therefore neglect for 
times Л Г * — the perturbated part of Hamiltonian &H and in majority of 
occupied phase space regard only the influence of «0 . Nevertheless, it is 
well known from the theory of nonlinear systems (see e.g. Г2], [8J) that in the 
ocoupied phase space there exist trajectories, in neighbourhood of them is the 
motion strongly unstable ;the phase trajectory possesses here erratic motion and 
consequently "stochastic instability". These trajectories are determined by 
resonant conditions and in our case by the condition 

(<m — - * n —- ) - 0 

The more exact discussion of region of stochastic instability requiere nu­
merical solution [7] (they are strongly dependent on parameter £ -see e.g. [7J)-

Approximately, it is possible to say that the most important stochastic region 

appears in the neighbourhood of separatrix [ 2], defined by the unperturbed part 

of Hamiltonian. The broadness of this region is proportional to i. f2j. Conside­

ring therefore I *• ^ £**•', we oan in the main part of occupied phaso 

space suppose only unperturbed part of Hamiltonian >>0 . Thie will be done in 

this and next chapters. Chapt. k will be devoted to the also very interesting 

inverse case of strong nonlinearity. 

Returning to our original Hamiltoni<ui ( Ю ) and supposing 7<JC ; J/cJe —t , 

it is obviously impossible to fulfil the simpliest resonant condition 

(15) 4 * 'l* *> Я 0-

It is therefore necessary to suppose that the secular!ty will tak* place only 
. 2 in the order c. . Negleoting approximation of this order, we oan for times 

át -" -T suppose only the time independent part of Hamiltonian, namely Hg , 

ilamiltonian (16) and dynamics of particle in approximation under discussion 
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lias f o l l o w i n g important p r o p l i t i , s : 

1 ) П„ i s c ; c l i c i » Ч) ; u i s p o s s i o l e to i x p n s s ' • 0 i n i 'u l l c y c l i i 0 
form 

11(3) 
4> i« 

H,U-H:*(4.J>> 'о о 

2) t~lQ i s independent on t ime . 

The f i r s t p r o p e r t y i m p l i e s 

(1?) b - ~ P * CoW\ 
A, J 

whereas the l a t t e r one e n a b l e s t o ueterui ine s e p a r t . t r i x and c o n s e q u e n t l y to 

d i s t i n g u i s h trapped and untrapped p a r t i c l e s . 

I t f o l l o w s from (17) t h a i l i m i t in the change of ^ i m p l i e s l i m i t in the 

change of ^ S i n c e i or t rapp ing there e x i s t s only f i n i ť » change of "3 ( t h e n 

p a r t i c l e s t a r t s to be untrappeu and t h e r e f o r e nevina, out Ггош r e s o n a n t r e g i o n ) , 

a l s o resonant change of ^ can i>e on ly l i o i i l t e t l . 

As w e l l as i n o n e - d i m e n s i o n a l c a s e , a l s o here we can d e f i n e trapping in a 

f o l l o w i n g way. P a r t i c l e s are c o n s i d e r e d t o oe trapped i f l l ami l ton ian (16) 

I t h e r e f o r e In the c o o r d i n a t e frame, moving with v e l o c i t y ^CL-^ = ~T~ T~ ) 

p o s s e s s e s It b r a t i on. P a r t i c l e s w i l l lie t h e r e f o r e trapped, i f the f o l l o w i n e c o n -

di I ic .) i s va l i c 

( in) Ho ~ eY°Jl x } 

The s e p a r a t r i x i s d e f i n e d by the c o n d i t i o n 

( the analogy wi th one-cl i mens i ona 1 c a s e i s not c o m p l e t e , S e p a r a t r i x ( 1 9 ) i s 

uns yiur tr i oa l in <j It i s namely 

S in c e n has the mieninf, of lungi. tui ' ina l energy of a p a r t i c l e in the c o o r d i ­

nate sys tem of wave (»i-e ( 9 ) ) , tho t rapp ing c o n d i t i o n i s o o v i o u s . P a r t i c l e s are 

t rapped , i f the magnitude of the e f f e c t i v e p o t e n t i a l trough i s g r e a t e r then the 

k i n e t i c energy of p a r t i c l e in the wave sys tem, from the i n t e g r a l from (17) 

f o l l o w s ^ ťmea. ~~lt ^ Зчтшж ' (^urint* p r e p a r a t i o n of the paper to the p u b l i ­

c a t i o n , s i m i l a r c a n o n i c a l formal ism and c o n s e q u e n t l y a l s o i n v a r i a n t (17 ) appea­

red in 1 8 ] , S ince c i t e d paper d e a l s w i t h s t r o n g s t o c h a s t i c I n s t a b i l i t y r e g i m e , 
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and Ъасаиа* this •tTmct has Ъаап rwr'ilv estt-т* ad also by *, va j»T>tll d ;»c>M 
1-е relation to ©nr rasu I s in ha »nbse«!nr' С'aw *•)• 

3. EFFECT OF TRAPPING OJÍ THE ABSOHPTION OF THE WAVE ENEHG^ 

Let us now try to estimate the effect of the trapping mechanism ol the rate 

of absorption of the wave energy. The exact analytic solution consists in the 

determination o' nonlinaar dispersi on relation, respecting the trapping; effect. 

Analytic solution requieres only weak nonlinear i ties. Strong nonlinear i ty is 

solvable only numerically. Analytic procedure, which is discussed here, can 

therefore give only first estimation of the complex complicated problem. 

The estimation will be established analogously to the onedimensional model 

of DAWSON and S HANKY Щ . Simultaneously we shall use integral properties, des­
cribed in foregoing Chapt. 2 . 

The mechanism of model [l] is following. Given potential of d e c . astatic 
wave (p determlnea region of velocities Л V , characterizing trapped particles. 
For trapped particles the strongiest interaction is to be expected. The ampli­
tude of <ф at the same tine determines the amount of kinetic energy, which par­
ticle can obtain during its motion in potential trough. From the form oť distri­
bution function (Maxwell distribution is supposed) and 1'гош the value ol Л V 
the total ajjount of kinetic energy Д W # is established, which is approximately 
lost by particles during the first half oscillation perioed. If £> afa i» 

comparable with the field energy in the nonlinear region, strong nonlinear effect 

is to be expected. For particle oscillations near the bottom of the potential 

trough, absorption corresponds to linear damping. For greater amp! i turie ol' 

oscillations, the absorption is strongly enhanced due l.j the fact that number 

of particles which enlarge their energy also increases. 

Let us now discuss the similar situation in magnetostatic field. As follows 

from foregoing Chapt. 2., in the case of cyclotron resonance the trappinc mecha­

nism also exists - with effective potential strongh ith amplitude~ 

From integral properties follows Л Г • - — & r\ ; the maximal change oi' ionr;i-
tudinal and perpendicular energy is also limit tad and is given >y the potential 
trough. Nonlinearity of motion therefore (as we'l as in ono-dimensiona nruMcn 
trings into the consideration finite region of velocities for trapping - ami 
therefore for strongest interaction - and finite value ot possible change o. 
energies. 
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The Mount of absorbed energy ^ I v i can be formally expressed as 

., ^ / / / - -? -« (£ •# ; / 
<*K dW. 

where . • , ,J is time change of perpendicular and longitudinal energy, 

respectively and f* is the perturbation of stationary distribution function, 

, , d* dW„ % 
caused (as wall as ——— and —-f- ) by aiirn of discussed wave. For appro-

dt dt 
xi.aativc calculation we shall choose following procedure. According [lJ, the 

integration in time will be substitute by aeans of amximal change of perpendi­

cular and longitudinal kinetic energy of trapped particles (according (17)i both 

energies change simultaneously). Ve express ^ И/ » therefore in the form 

uD AW^ ~ </"N'eT(A4*»« * A 4 « « ) 
where JN is that part of trapped particles, which causes the total absorption, 
bor one-di awnsiona1 case and for small amplitudes of rf field has been 
determined as [ij 

and exact ly 
VfuY 

UH J f{v)dv-\ ^V)dv 
Vt V++UV 

^з) "Rs i . r-2 &W_ 

where t \Vf i s d i s tr ibut ion function ant: ЛУ region of trapping for longitudi­

nal v e l o c i t i e s . In [l] the following parameter Л i s dcl'incd 

where —T" £_ t is the energy of incident f i e l d , Consequently, f i s Given '.'>• 

i:qua t ion 

i 
R s i г cfH-JUW^ ) 

,, £' 
„r, accoriin;; ц] more exactly (c * Íf*,mVÍ* ' C^*C * 
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(23a) 

Supposing d i s tr ibut ion i'unction jr ' fr\ Л, К J, two-dimensional analogy oi' 

(22) w i l l be obviously 

IF л 7?2 * 
(2k) /AM — ~f : F-l fd.Vd?. 3P, i 

and more exactly 

(25) <™ш J (Я.гищ - \ ЩЫ^лц 

Let us choose distribution i'unction in Maxwell 1'огш both in longitudinal ano 
perpendicular velocities 

( 2 ) r ^ - ' - » ' m (TUT кт п<е 

supposing the same longitudinal and perpendicular temperature 'x ~ /,; . Sub­
stituting into (25), we obtain 

-*„•? 
(27) 

where &l̂ - ч'/ are error functions of the typo 

* 2 

(28) 
0 
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and ť( are defined 
P 

f - J0 

0 ' iz^JT 
'1 fJ^Tu F» 

/ j 0 i s here defined as 

(29) Чс = 7nv'jo ' ^^cL^ 

where "^Лапм. * S Doppler-shifted v e l o c i t y 

(30) *Ц* 
Си - CJr 

According (l6)t^i^ i s defined as 

(3D Л дГ'_ -г Zm Зупсл 

Defining coefficient of abaorption 

«U c^r) 

i 

U,£ т~ л 
W, (MSI) 

2. ^o aJtn 

where t- i s i n t e n s i t y of inc ident wave (supposing with constant amplitude) 

and using expressions ( 1 7 ) , ( 21 ) , ( 2 7 ) , ( 29 ) , (30 ) , (31) we obtain for К 

(supposing n i l « / ) 

(32) 

>kTU>2L) 
' Z-ткТ 

More exact expression (analogously to (23a)) is given »y the formula 

2 ДР* кТ 

(32a) 
loť 14 
n^Mf(t,)-*f(t2)]>kT%-L[t/'- ty'']j . 
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Expressing nov (32) for concrete parameters, chosen accort . ing t«» the experiment f'lj 

(33, 4 • 6,1.1С V ; с - 1,5 ч ; * ~ Я" "i ; ", * *? *"»'3 

and normalizing £ and ЪТ to £ ^ * 1С r"m antí ^ ^ " ^QC e V b y m e a n s of 

express ions 

(з*) к Т - г Ь Т ; £ - c£o 

we can r ewr i t e (32) i n t o the compact form 

if 

(35) R- v. #*•—-€* \1^ю-Фа1)-Ф^г)] 

where , 3 , 9 , _ J.S ,. , , ,, -2 4 4 » 1 

г 7-5 ч 

Fig, 1 presents parametr ica.'. curves "R * /? (T, £. ) of (33; for T = const and 
for parameters eUC%1Q2)*nd 1' (0r4'-=- -/0 ? , representing £ (V* /0* ̂  7 

and For small 6 am. small T" , the coefficient ^ follows 

curve ~ £ 2 , which corresponds to linear Landau damping (similar as in 

one-dimensional model flj). For higher temperatures T (in our region for 

^ * lOOev ) and for higher intensities £ (for £ ~ ^ "*" ̂  y m ) a nonlinear 

effect appears and the curve starts to increase very sharp. For yet higher value 

of T (in the region of ) this increasing again ceases (due to fact 

that working point nears to the maximum of Maxwell distribution). Compar­

ing with parameters of experiment ['•*] we can state that absorption is deeply in 

li tear regime (and, of course extremely weak due to the high value of 

Strong nonlinear regime can be expected for le
 £ 'v в V f t ~" 10 -r W * !m ; 

the breaking of waves requieres time Д*""[ "̂ J" S, Ц *"д- ' /J, therefore for our range 
piOtY £'10 fin^t-iO. Breaking of waves with lower intensities can be expected for 

the regime with Ы nearer to «Ц. (here, we have supposed l<*)c = i,5 ) . 

Such situation could appear in the case of externally driven field. 
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k. INFLUENCE OF STOCHASTIC INSTABILITIES ON THE TRAPPING MECHANISM 

Till now the chance of energy of a particle under the influence of only one 
wave and only one component of Fouriere expansion of (k) has been supposed. We 
have neglected the effect of higher harmonics of the expansion, as well as a 
splitting of an incident single wave In a narrow apactrum, of tan datactad. Va 
shall new try to estimate these effects from the point of view of stochastic 
instabilities ( [2], [7], [8]). 

It is well known that under special conditions, the development of nonline­
ar system cat. be (at least qualitatively) described by means of diffusi n equa­
tion. Parameters of such systems fulfil conditions of existence of stochastic 
instabilities; particles move in similar way as under influence of stochastic 
rf fields [2]. Since the analytic description of stochastic instabilities fol­
lows from perturbation analysis, the region of validity for this description is 
too narrow. Nevertheless, the intensive analytical and numerical work (see, e.g. 
[7], 18J) show that in strong nonlinear cases (therefore not only for small per­
turbations) similar "erratic" motion of particles in e.g. two waves is to ije 
expected. These cases contradict to the validity of expressions (16) and to 
ncglections of terms -Č in the DOGOLJUDOV (6) chain. Supposing ЛН in (10), 
this tens could then lead to strong detrapping effects and has to be seriously 
discussed. 

Let us 1'irst discuss the effect of diffusion in so called stochastic layer 
[-'J. ZASLAVSKIJ [2] has shown that for ilamiltonian 

i, H'CJ ;J) 1 + e.V U,V. t); (36) П - CJ ; .1 I I " fc V 4 Jf U, t I ; £ <.<. 7 

where О represents Ilamiltonian of a part ic le in potent ia l trough of a 

wave with potent ial '0 and £ • a small perturbation due to second interact ing 

wave of a small amplitude % , % /<f << j , phase t r a j e c t o r i e s of part ic les 

near scparatri.x possess errat i c .notion. This region (so ca l l ed s tochas t i c layer) 

has thickness Л ч / ~ £ , We wee that our Ilamiltonian (10) i s formally the same 

as (36) , Consequently, tiie s imi lar crgodic layer appears a l so in the neighbour­

hood of the separatrix (19). Part ic les can therefor»; penetrate outside of the 

separatr ix , but, as wel l as in [ 2 ] , tiiey can change their energy only '>} s.uall 

para.nt: tor Л J—CJ. • eVyJ. чА^) J (supposing ,J ^ i J ) , Supposing strong convergence 

of the i our lore expansion ( к ,1 ^< 1 ) , the e f f e c t of higher harmonics appears 

only in the ex is tence of a thin ergodic layer around separatr ix (19) . The sauic 

e f f ec t appears, i f we (beside harmonic expansion (10)) suppose further small 
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amplitude tav», interecinp with nertlcles top-ether with effective potential of 

corrasnondinr Ilamiltonien (l6) . The existence of arpodic layer succeeds that also 

for É- ~ ' in (36) the similar behaviour aa for I «1 can be expected- Neverthe­

less, such problem can be solved only numerically SMITH and KAUFMAN [8] used the 

same Hemiltonlan (2), as «a have supoosad in Chant 3. They discussed conditions, 

under which the «letrapping of particles from the region of aeperatrix (19) into 

the region of further harmonics of expansion (lO) can be expected - This condi­

tion is therefore just disjunctive to the conditions, under which our modal in 

Chapt. 3 ia working Since the possibility of detrapping by means of the harmo­

nics has appeared to be imoortant also for us, alao wa nave dona some estimat­

ions (only in a rourh way, nevertheless). 

Ve have solved the similar Droblem as in [ 8] for concrete region of our 

parameters in Chapt. 3. For simplicity, we have not ueed numerical procedure as 

in I8J, but only followinr analytic estimation. Ve have supposed that the de-

trapninp sure takes place (at least in some measure) if separatrixea of two 

neighbouring components of Fourier expansion (e-r- these, which correspond to 

Jf(l(j f) and J^Ck^f) ) just touch. It rives amplitudes of intensity Ef' eV0k„ 

inside interval t̂jj •<" t, < с , where к щ and ti„x are intensities, 
st which I he threshold of detrapnin- anpears and intensity, by which particles, 
occuwinr rrross of phase space inside tranplnr rep Ion are subjected to exodus 
on'side (tenarefrix, respectively. 

Е** i» in tiie case of touch i nr of two seperatrlxes riven iv» a*"'.a* ion 

Therefore, E(K < E'% , Ец ~ (2 + й) E ^ , if „ # take results of S>fITFf and 
TíAťFMAK Í81, where tt is the amplitude of the nearest harmonic and where 

Intensit* ttm , defined by equation (37) and uaiiv» parameter» of Chapt. 3 (i.e. 
U)t~ 6f7.10°eec"1, Л "- 10"2m, J/k,f ~ 0,37) as a function of к Tei is prašan. 
tad on Fir 2. Due to comparlsion with results (38) from ffij, Et is near to 

values for гголв detrappinr- Pesired intensities are lar^e, larrar than in 
currant experiments, we!те usually One can 
therefore expect for termeratnres ~ W řr1(FeV and for E ~ JO Vmi only weak 
effect of detranninr. ''ore interestinr and perhans more efficient Is the ion 
T9p\o\\, -rier.tioned In [ Я ], от affects for experiments with relaUvistic beans, 
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where larger intensities are expected. 

Basic reason for such large intensit5<>s, desired for detrapping consists in 
great frequency difference Ли. ~ ^ c between subsequent harmonics. If one could 
apply mechanism, which brings further oscillations of particles with characte­
ristic frequency й i «i. и̂ л , the le-:ge interval &cj~- CJC could oe decomposed into 
a train of smaller ones. Here probably smaller intensities for detrapping bet­
ween subsequent dh will be desired. The important modulation of velocity of 
particles takes place in mirror systems. Consequently, it will be very interestini 
to discuss both trapping effects (trapping in mirrors and trapping in wave) 
simultaneously. Using results of SMITH and KAUFMAN[8], the model of stochastic 
instabilities of particles in mirror system under influence of rf field [9J can 
be generalized. 

In some experiments, transient change of phase velocity is observed (e.g. 
in nonlinear stage of Ьеаш-plasiua interaction). If after transient decrease of 
phase velocity an increase follows, a greater amount of trapped particles can be 
accelerated (energetically on the expense of wave energy). 

5. CONCLUSION 

The paper discusses two different mechanisms of the interaction of finite 
amplitude wave with particles in magnetostatic field in one-particle approxima­
tion. First we have generalized the effect, discussed by DAWSON and SHANNY (1] 
in one-dimensional model. We have established that also in two dimensional case 
similar effect of enhanced absorption due to finite trapping region could exist. 
Concerning cited experiment [^], its interaction is deeply in linear region. 
Sharp increase of A can be expected generally for larger intensities and tem­
peratures and cases with / < 4 ~ '. Further we have discussed the possibility of 
detrapping of particles trapped in effective potential trough proportional to 
the J/f Ск^Г j component of Fouriere expansion by means of effective potential 
of neighbouring \ ^j. ''component (this problem already appeared as a letter of 
91ГГН and KAUFMAN [6]. Ve have estimated this possibility for parameters, near 
to experiment ['-*] and we have established that desired amplitude is too large 
(even if we take lesa severe requierements of Í8]); it seems that this is valid 
also for current experiments in wave-plasma or beam-plasma interaction. More 

acceptable conditions appear in ion-region (as has been mentioned in f 6*1). Some 

further possibilities could appear if further velocity modulation oC particles 
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can be inserted. This takes place e.g. in magnetic mirror systems, where the 
simultaneous trapping effect due to mirror system and cue to finite amplitude wave 
can bring some new interesting results. Shortly we have mentioned the effect of 
trapping in wave with transient decrease and increase of its phase velocity. 
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Fir 2 Threshold Intenilty Ьщ аа а 
function of perpendicular tempo-
rature lg. 


