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ABSTRACT

A motion of particles in a finite amplitude wave, propagating obliquely to
the homogeneous magnetostatic field is discussed. As it follows from simple
integral properties, in the neighbourhood of Doppler - shifted oyclotron reso-
nance similar trapping effects appear as in a plasma without magnetostatio
field, Consequences of this trapping are discussed, in particular the possibi-
1ity of a strong absorption of the wave and the origin of stochastio instabi-
1ities, oaused by the perturbation of an effective trapping potential and

leading to the accelerationof particles.



1. INTRODUCTION

An influence of finite amplitude wave on the dynamics of particles and con-
sequently on the interaction wave-plasma is an often discussed problem. Since
this interaction is basicallystrongl: " .linear,the appropriate solution requi-
eres numerical analysis. On the other hand, DAWSON and SHANNY {1] have presented
a simple analytic estimation of region of parameters, where strong ahsorption
and even breaking of a wave in a plasma without rnagnetostatic field appears ¥e¢
have extended their estimation on the case of a magnetoactive plas:a. llere,
perturbations of the effective trapping potential appear in .iinciple. We have
therefore discussed also their effect on the detrapping of particles and on the

existence of stochastic instabilities (see, eo.g. [2]).

The suitable canonical formalism is used for the description of the motion
of particles. Its advantage is - hesides simple expressions - the possibility
of following of a dynamics of particlec in similar way, as lLas been done in [1].

A short communication on this topic appeared in [3].

{
2. MOTION OF A PARTICLE IN THE ELECTROSTATIC WAVE WITH K, #0 , 4 #0 x mip
MAGNETOSTATIC FIELD NEAR RESONANCE K, V, +&), - & ~ O .

2.1 The description of the model

We consider homogeneous plasma in homogensous magnetostatic fiell and the
electrostatic wave, propagating with frequenoy &' and components of wive vec-
tor k" ’ k‘ oblique to the magnetostatic field, Considering wave as e given
entity, we are discussing its influence on individual plasma particles (-he prob=
lem is therefore not-selfconsistent). For concrete estimations, we considor

waves generated in beam-.plasma experiment [4].

2.2 Canonical formalism and integral properties of the motion of particleas

Let us consider electrostatic wave with potent:al V in tne form
(1) VeV, cos (k, @ + k x -wt)

where Y; and X are the longitudinal coordinate (along magnetio field lines)
and the perpendicular coordinate, rsspectively, The corresponding Hamiltonian
function of a partiole in a magnetostatic field with cyclotron frequenoy (J,

has the form
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Here Qg,P, , X.P,  are longitudinal and perpendicular coordinates and momente
respectively, and 04 ’ P, are nevw perpendicular canonical coordinate and mo-
mentum, given by the transformation [5])
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(3) X = ( ’";c) A7 0, Px =( 2 cos &y

let us expand (2) by means of Bessel functions,
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and let us rewrite (4) intu the forwm
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Let us now transform canonically (2), (3) by weans of following set of genera-

)
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In new coordinates we obtain
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with ocorresponding transformations
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Let us express Hamiltonian (8) in the form

1/ 2
H(J)_ _2_;1_ }?,U) + e lé‘/l (I(_L 57/‘ co) A’,l OJ(J)*AH
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and let us consider the important resonance case

110)

(10a) ku Vot - 0
Considering (5), (10n) and (3) we can state that the first two terms on the
right hand posses in (10) slow dependence on tiwme, whereas AH is formec by
quick oscillating ferws, Since principially (for /r_‘P<< ’f as well for /(szf )}
the term J4<I‘J V) is not cdominant in the total expansiovn (8), #e have first

to estimate the affect of AH . For this purpose we¢ shall use the method of
BOGOLJUBOV (e.g. 4in [6] ).

Let us suppose we have expressed (10) in the actioneangle coordinate

system J,,w, , J , W)



H= (J“\_{,).L ‘ZZ?S,"P (J,~4) cm(mw’,‘nr.{, ¢pqt)= H,*aH
(11)

Ho: 2 (Ja.Js) Js

Using method of BOGOLJUBOV (6], we shall show that for of the order of

mnp

&£ << 141 the motion of perticles can be described in great part of phase spacs

1
for time 4l < e by means of Hamiltonian Ho

Taking oanonical equations for (11) in the form
dx t
(12) k ﬁ(.ltG) 6'2" , £ << 1

one can expand X, [6]
A
-f €4 -6 ( )€ ( Je...

where h is the solution of the egquation

df 5 %
(13) ‘d_tk-- ﬁ*'—Z ‘?—i: )é '52-( )*

and vhere £, - / /
/‘ /

/’\/

-[/,‘do :

Since ocanonical oqgntion. for Hamiltonian (10) have the form
dx
(14) d—tk = £ (X‘-’ “)ct)

-1
we must properly choose the parameter € , Teking T* Y, T , we obtain

3
= ;k (%, T).
Provided \7_, << &g (1let us choose ’JJ as the frequenoy of oscillations of

e
particles in effective potential trough), we teke £ = e’/«)c and 9 © 7"" T

Considering e.g. J, sy and negleoting terms of E (Ez) y We have
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and therefore
A {1 J
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where

&‘* np

muw, + n 1.5 * f’g
Lmmo = MW, s NW,
Seculma changes are of the order 6 ( E’) ; one can therefore neglect for

4
times Al = —  the perturbated part of Hamiltonian 45 and in majority of

&
oocupied phase space regard only the influence of H, . Nevertheless, it is
well known from the theory of nonlinear systems (see e.g. [2), [8]) that in the
oocoupied phase space there exist trajectories, in neighbourhood of them is the
motionstrongly unstable;the phase trajectory possesses here erratic motion and
consequently "stochastio instability”. These trajectories are determined by

resonant conditions and in our case by the condition

duw; dw,
(m E‘;“*h dtsf) -0

E»0

The more exact discussion of region of stochastic instability requiere nu-
merical solution [7] (they are str.n:ly depeudent on parazeter g -see e.g. [7]).
Approximately, it is possible to say that the moest important stochastic region
appears in the neighbourhood of separatrix [ 2], defined by the unperturbed part
of Hamiltonian. The broadness of this region is proportional to £ [2]. Conside-
ring thsrefore t < € - ¢ “1, we can in the main part of occupied phas~
space suppose only unperturbved part of liamiltonian Ho . This will be done in
this and next caapters. Chapt. 4 will be devoted to the also very interesting

inverse case of strong nonlinearity.

v v,
Returning to our original Hamiltoninn (10) and supposing ’/tdc ) JA)G ~&

it is obviously impossible to fulfil the simpliest resonant condition

(15) W "1*‘5‘0'

it is therefore necessary to suppose that the secularity will tak» place only
2
in the order £ . Neglecting approximation of this order, we 2an for times

14
at ~ ‘g suppose only the time independent part of liamiltonian, namely H ,

2 .
(16) }—/o(”. Zim P;(” *t e Va./1 (k‘ S’) C‘?}kh 03(3) .

ilmmiltonian (16) and dynamics of particle in approximation under discussion
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has lvllowing important propurtics:
) (3)
(3) o a H
1) Ha is c:clic in Wy ; 1t is poussiole tu cxpriss ° in full cyclic
forw

H(J)‘ H(a) (J,

0

4)

H(J)
2) 1, "is independent on time.

’

The first property iwplies

1
(17) F,’:-;—-E-comt.

whereas the latter one enables to deteruine separs.trix and consequently to

distinguish trapped and untrapped particles.

It rollows from (17) that limit in the change of % implies limit in the
change of P, . Since lor trapping there exists only finite change of 73 (then
particle starts to be untrappeu anc therefore oeeing out frowm resonant region),

also resonant chenge of e can be only limitted,

As well as in one-dimensional case, also herc we can define trapping in a

fvllowing way. Particles are considered to ve trapped if linniltonian (16)

. o <.
(therelore in the courdinate framc, woving with velocity 'U"‘ T m———
kh k’l

posscsses libration, Particles will be theretore trapped, if the tollowing cone
ditic is valiu

(18) HY = el CANE

The scparatrix is detfined by the condition
J
119) Ha”: e%J, (/‘,_f) ‘

(lhe analogy with one-dimensional case is not complete, Separatrix (19) is

unsywwetrical in % . Tt is nawely

B(:.):,t v iy 2 Pﬂ)*l_ P(J) %
——-———2m .eo 1{; W(q /(,’ ng)]].

Q
Since Ho ) has the mecaning of lungitudinal energy ol a particle in the coordi=
nate systeo of wave (sce (9)), the trapping condition is obvious, Particles are
trapped, if the mapnitude of the cffective potential trough is greater then the
kinetic energy of particle in the wave systew, From the integral trom (17)
: AP * — AP (Lurine ore - - . s publie
tollows Tmag /(” A Imax (buring preparation of the paper to the publi

cation, similar canonical forwalism and conscquently also invariant (17) appca-

red in (8], Since cited paper deals with strong stochastic instability regime,



and beceuse :his effec: has been rorrhly osti-m ed also Iy 'x, ve ="¢ll diseus=s

i‘s relation to onr resul's ir he shzentent Ciap: - h’-

3. EFFECT OF TRAPPING ON THE ABSORPTIUN OF THE WAVE ENERGY

Let us now try to estioate the e¢ffect of the trapping wechanism of the rate
of absorption of the wave energy. The exact analytic solution consists in the
determination of nonlinearcispersion relation, respecting the trapping etfect.
Analytic solution requieres only weak nonlinearities. Strong nonlinearity is
solvable only numerically. Analytic procedure, which is discussed here, can

therefore give only rirst estimation of the complex coaplicated problem,

The estimation will be established analogously to the onedimensional mocel
of DAWSON and SHANNY [1]. Simultaneously we shall use integral properties, dJdes-

cribed in foregoing Chapt., 2 .

The mechanism of model [1] is following. Given potential of elec. . ostatic
wave ¢ determines region of vclocities AV , characterizing trapped particles.
For trapped particles the strongiest interacticn is to be expected. The ampli-~
tude of Qb at the same time determines the amount of kinetic energy, which par-
ticle can obtain during its motion in potential trough. Frum the forw of distri-
bution function (Maxwell distribution is supposed) and rrou the value or 8
the total smount of kinetic energy £>W£‘= is established, which is approximately
lost by particles during the first half oscillaton perioed. Iff & vV:g, is
comparable with the field energy in the nonlincar region, strong nonlinecar etfect
is to be expected, For paiticle oscillations near the bottom of the potential
trough, absorption corresponds to linear damping. For greater amp!li tude of
oscillations, the absorption is strongly enhanceé¢ due to the fact that number

of particles which enlarge their energy also increases.

Let us now discuss the similar situation in magnctostatic field, As follows
from foregoing Chapt. 2., in the case of cyclotron rcsonance the trapping mecha-
nisw also exists = with effective potential strongh -ith amplitudc ~ %J1(k4 F) .
from integral properties follows AE' -4—' a P, ; the maximal change ol lon(i=
tudinal and perpendicular energy is also{imittodand is given .y the potential
trough, Nonlinearity of motion thereforc (as well as in onc=dimensiona nro)lem’
trings into the consideration finite region of velocities for trapping - and

therefore [or strongest interaction - and finite value ot possiblc change oi

energies,
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The amount of absorbed energy A k/‘ can be forwally expressed as

(<) aW, - f”‘“ded’;(:‘t‘i * 2‘:) /

oW A
where ot ’ dt is time change of perpendicular and longitudinal energy,

respectivoly' and f, is the perturbation of stationary distribution function,

i
and — ) by means of discussed wave, For appro-

dt dt

xisative calculation we shall choose following procedure., According [1], the

caused (as well as

intcgration in time will be substitute by means of maximal change of perpendi-
cular and longitudinal kinetic energy of trapped particles (according (17), both

energies change si-ult.neously). Ye express a ah therefore in the fora
{21) Ak/;" -~ JN J(Ak{w * Ak/lr‘ma )

where JN is that part of trapped particles, which causes the total absorption.
ror onc-dimensional case anc for swall amplitudes of rf field JN has been

determsined as 1]

and exactly
U -o¥ %

2SN - } /(v)dv - /(V) dv
% AT

where /(V) is distribution function and 8V region of trapping for loncitudi-

nal velocities., In [1] the tollowing paraaxeter R is delined

f
\) K- Te, €2 a W,

1

2
whore "2"'605 is the energy of incident ficld, consequently, R is given Ly

cquation

1
R = SN (aW_ )

4 LA
E‘OE‘ n/max

2
2
or, accordin; | 1] wore exactly (f £ W , C’él )
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Supposing distribution function f = f( E’ 7;), two-dimensional analogy of

(22) will be obviously

)
F aP? bt

(24) IN - w2 F’/ £(n )R,
J ¢

and more exactly

Rah ol Lo T

oy I {(BR)dPdE - [ P T)aR R

¢ 90

Let us choose distribution function in Maxwell form both in longitudinal and

perpendicular velocities

) , w? B
D) 2 ot Tk T ZmkT
(26) f(ﬁ’ f, —_ -~ ne 2
/ ' Vym 2miT kT e
supposing the same longitudinal and perpendicular temperature 7_; = " . Sube

stituting into (25), we obtain
<o
.du'

4
(27) O’A/'“'T {201/ (to‘—&z%(tq)_mf(tz};

where “{' g are error functions ot the type

2 [ 5
(28) wf (8 = -ﬁ--/e
0



andc t‘» are defined

t - Ro t - 739 ( S Fi*&u \
© emkT 1 m kT Ro
rt
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2 4 2mkT N Pr.

}?30 is here defined as

(29) Re - muy, = M

where 'b;w is Doppler-shifted velocity

W~ G

(30) v s —_ __*_ .
lopp. k

"

According (16),57; is defined as

1 2 I ;
oo - al, el ()

Defining coefficient of absorption

1 ,
s e Y

where E is intensity of incident wave (supposing with constant amplitude)

and using expressions (17), (21), (27), (29), (30), (31) we obtain for

(supposing A'; f« 7))
2
1 wt+ =
Rz? ne °°* {2 et%(f,)’!/l/(f,) -vgﬁ(z‘z)j .
(32)
aF,
* 7(« « 2t ) ’ ~
N omkT
More exact expression (analogously to (2ja)) is given .y the formula
AP kT

(32a)
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Expressing now (32) for concrete paraweters, chosen &ccoriing to the experiment (4]

} " o
Gy bR sy A=A e 07

and normmlizing E and ‘fT to Ea = 10‘ l"’m-‘,and kTo = 10Ce v by means of

expressions

(34) kT =1&T ; E= ¢ £

o

we can rewrite (32) into the compact form

s
35y R= 1.0 ‘f: e?;Z#“b)—gi(t,)-,é(tz)f

- 2

where 39 39 5 1,
to’ﬂ' = =1 (1 33.10° ed o t)

3.9
tz'—{'(‘/ 3310 E%T)

Fig, 1 presents parametrica’ curves K< R (T',«F-) of (33) tor T = const anc
for parameters 5('/0-2.;. 102) and T(O,.';—Z- 40 ) , Tepresenting E (’/+ 7[71’ l’/m )
and 7; (-50+4033V) . For small & anc swall T , the coefficient R tollows
curve ~ £ 2 , which corresponds to linear Landau damping (similar as in
one-dimensional mocel [1]). For higher temperatures 7 (in our region for
7; = 40051/) and for higher intensities £ (for [“‘ 70"'7 'Io;l%m,) a nonlinear
effect appears and the curve starts to increase very sharp. For yet higher wvalue
of T (in the region of 7; “'/(BV ) this increasing again ceases (due to fact
that working point ‘U¢ Ur nears to the waximum of Maxwell distribution). Compar-
ing with parameters of expen.ment [4] we can state that absorption is deeply in
1i 1ear regime (and, of course oxtromoly weak due to the high Vllue of 4/11’ ).
Strong nonlinear regiwe can be expected for 7; =10 eV ' E~ ,0 - 40 V/m ;
the breaking of waves requieres time At“’[‘e',% E"J,(k‘?)l therefore for our range
Z-/U%K 5'1051/7'!':“"10-,9 Breaking of waves with lower intcnsities can be expected for
the regime with W nerrer to <. (here, we have supposed Q/‘V'.; = 15 ).

Such situation could appear in the case of externally driven f{ield,
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L., INFLUENCE OF STOCHASTIC INSTABILITIES ON THE TRAPPING MECHANISM

Till now the change of emergy of a particle under the influence of only one
wave and only one component of Fouriere expansion of (h) has been supposed. We
have neglected the effect of higher harmonics of the expansion, as well as a
splitting of an incident single wave in a narrow spectrum, of ten detected. Ve
shall now try to estimate these eifects from the point of view of stochastic

instabilities ( 127, [71, (8]).

It is well known that under special conditions, the development of nonline=-
ar system car be (at least qualitatively) cdescribed by means of diffusi n equa-
tion. Paraumeters of such systews fulfil conditions of existence of stochastic
instabilities; particles move in similar way as under influence of stochastic
rf fields [2], Since the analytic description of stochastic instabilities fol=-
lows from perturbatinn analysis, the region of validity for this description is
too narrow, Nevertheless, the intensive analytical and numerical work {see, c.g.
{7], [8]) show that in strong nonlinear cases (therefore not only for small per=-
turbations) similar "crratic”™ motion of particles in e.g, two waves is to Le
expccted. These cases contracict to the validity of expressions (16) anc¢ to
neglections of terins ~52 in the BOGOLJUBOV (6) chain. Supposing AH in (10),
this tera could then leac to strong cetrapping effects and has to be seriously

discussed.

Let us iirst discuss the effect of ciffusion in so called stochastic layer

{2]. ZASLAVSKIJ (2] has shown that for Hamiltonian

(36) f'f’w(-/,)f"i\«’(./'w,f); £ o« 4

wherc </ (J) J represents Hawiltonian of a particle in potential trough of a
wave withh potential 92 and EL/ a small perturbation due to second interacting
wave of a swall aswplitude "‘; ’ ‘/’,/cp << 1 » phase trajecturies of particles
near separatrix possess erratic muti:n. This region (so called stochastic layer)
ias thicikness AJ~£' ., We wee that our llamiltonian (10) is formally the saue
as (36). Consequently, the similar ergodic layer appears also in the neighbour-
hood of the separatrix (19). Particles can thcrefore penetrate outsice of the
separatrix, but, as well as in [2], they can change their energy only hy swall
paramecter A-J~(Jt‘1' e%J \ALV) (supposing J, > ‘/2 ). Supposing strong convergence
o1 the Fouriere expansion ( k‘ ? << 7 ), the etffect of higher harmonics appecars
only in the cxistence of a thin ergodic layer around separatrix (19). The saac

eflect appears, ii we (besice harmonic expansion (10)) suppose rfurther suwall
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amlitude wave, interac:ing with narticles torether with effective potential of
corresnondins llamiltonian (16). The existence of ergodic layer suggests that also
for € ~71 in (36) the similar behaviour as for £ <<7 can be expected. Neverthe-
less, such problem can be solved only numerically. SMIT and KAUFMAN [8] used the
same 'amiltonian (2), as we have supvosed in Chapt. 3. Thew diascussed conditions,
under which the detrapping of particles from the regcion of separatrix (19) into
the region of further harmonics of expansion (10) can be expected . This condi-
tion is therefore just disjunctive to the conditions, under which our model in
Chapt. 3 is working. Since the possidility of detrapping by means of the harmo-
nics has avpsared to be imvortant also for us, also we have done some estimat-

jons (onlw in & rourh way, nevertheless).

Ve have solved the similar problem as in [8] for conorete region of our
parameters in Chapt. 3. For simplicity, we have not used nmumerical procedure as
in [8], but only followins analytic estimation. We have supposed ‘hat the de-
‘rapnine sure takes place (at lemst in some measure) if separatrixes of two
neirhbouring components of TFourier sxpansion (o.n. these, which correspond to
J' (lf_, f) and Jz (AL ?) ) just touch. It rives amplitudes of intensily Ef‘ e VvA’,,
inside in‘erval E,.» < Et < F‘j‘ , where EM and Egz are intensities,
at which the threshold of detrarmin- anpears and intensity, by which narticles,
occuovings rross of phase anace inside tranpins region are subiected to exodus

on!side senaral‘rix, resnectively.

EM is in the case of 'ouciiins of two aop.nfrixoa riven bhw eration

(37) w2, (1/—5:)"/— EM) -, (H) [ﬂ::)U

Therefore, EM< £ 4 ~ (2 "8) Etz , if we take results of SMIT!H and

' AT
KAUFMAYN (81, where tz is the .mplitudo of tiie nearest harmonic and where
ek, £, “ . ~

intenaite E“ , defined bv eanuation (37) and using parmmeters of Chapt. 13 (i.e.
W, ~6,7. 10 sec” -1 A ~ 10 / ™~ 0 +37) as a function of K 7; is presen.
ted on Fir. 2. Due to commarision with results (38) from [5], Ef1 is near to
valnes for rross detrapnins. Nesired intensities are large, larrer than in
current exmeriments, welire 'sually ~(10 = 10 )Vm and k T £ TkelV . one can
therefore exnec! for termeratiires ~ 40 - 10J¢V and for £ 2 /O‘V’m.1 only weak

offect of detrammin,. ‘‘ore interestinr and perhans more efficient is the ion

rerion, mer‘ioned in [3S], or effects for exneriments with relativistio beams,
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where larger intensities are expected.

Basic reason for such large intensities, desired for detrapping consists in
great frequency difference cl&.~'¢Jc between subsequent harmonics. If one could
apply mechanism, which brings further oscillations of particles with characte-
ristic trequency A < oo, tgé 1t :ge interval O&~ (. could ve decomposed into
a train of sualler ones. Here proovably smaller intensities ror detrapping bet-
ween subsequent JL will be desired. The important wmodulation of velocity of
particles takes place in mirror systeums, Consequently, it will be very interestin
to discuss both trapping effects (trapping in mirrors and trapping in wave )
simultaneously. Using results of SMITH and KAUFMAN{8], the model of stochastic
instabilities of particles in mirror system under influence of rf field [9] can

be generalized.

In some experiments, transient change of phase velocity is observed (e.q.
in nonlinear stage of beau-plasua interaction)., If after transient decrease of
phase velocity an increase follows, a greater amount of trapped particles can be

accelerated (energetically on the expense of wave energy).

5. CONCLUSION

The paper discusses twvo different mechanisms of the interaction of finite
aumplitude wave with particles in magnetostatic field in one-~particle approxima-
tion, First we have generalized the effect, discussed by DAWSON and SHANNY (1]
in one~dimensional wodel. We have established that also in two dimensional case
similar effect of enhanced absorption due to finite trapping region could exist.
Concerning cited experiment [b], its interaction is deeply in linear region.
Sharp increase of R can be expected generally for larger intensities and teu-
peratures and cases with “)C%“'4. Further we have discusscd the possibility of
detrapping of particles trapped in effective potential trough proportional to
the v& (k‘f) component of louriere expansion by umeans of effective potential
of neighbouring~JE(A1Y)component (this problem already appearec as a letter of
SMITH and KAUFMAN (8], We havc estimated this possibility for parameters, near
to experiment (4] an¢ we have established that desired amplitude is too large
(even if we take less severe requierements of [8]); it seems that this is valid
also for current experiments in wave-plasma or bean~plasma interaction. More
acceptable conditions appear in ion=-region (as has been mentioned in(8])., Some

further possibilities could appear if further velocity wodulation of particles
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can be inserted. This takes place e¢.¢g, in magnetic wmirror systews, where the
simultaneous trapping effect due to mirror system and cue to finitce auplitude wave
can bring some new interesting results. Shortly we have mentioned the etfect of

trapping in wave with transient decrease and increase of its phase velocity.
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