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1. 

Abstract 

One shows in an application of the hyperspherical 
L approximation to Li with soft core two body potentials that 
for nuclei A M it is necessary to replace the SchrSdinger equa
tion by at least two coupled equations in order to treat correc
tly an interaction including a Majorana exchange operator. 
Binding energies for Li even parity states are calculated. 

Key words : Hyperspherical Harmonics - L m approximation -
Li even parity states. 
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Introduction 

It has been shown ' ' that the I. approximation, 

in which only the first term of a hyperspherical harmonic (H.H.) 

expansion of the nuclear ground state wave function is taken 

into account, is very similar to a Hartree-Fock calculation 

performed with a harmonic oscillator (H.O.) Slater determinant 

in which the H.O. parameter is varied in order to obtain the 

minimum energy. 

Our purpose is to analyze to what extend th<3 L 

approximation leads to a rather reliable ground state wave func

tion and whether one has actually the right to neglect the other 

terms of the expansion at least as a crude approximation. 

The II. approximation 

When the interaction between the particles of a sys

tem composed of A fermions with coordinates x. (i=l,...,A) is 

described by a potential U(r) of the collective hyperradial 

coordinate 

A A A 

A i,jïi 1 A 1 

a fundamental theorem states that the grand orbital L takes 

its minimal value L_ for a ground state. 

The ground state wave function is then the product 

of a hyperspherical harmonic B. (R,s,t) of minimal order L.< 
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suitably symmetrized, Including the spin-isospin states (s,t) 

of the nucléons, and a function i|>o<r) of the collective coor

dinate : 

t_ , = B (n,s,t)iMr) (2) 
g.s. L m 

f! is a set of 3A-4 angular coordinates after elimination of the 

center of mass X. 

The potential responsible for the binding of the 

nuclei is assumed to be a sum of mainly two body nucleon-nucleon 

interactions 

V(r,S2,o,T,) = 2^ V(X±-X.,^,T) (3) 

1 
i,j>l 

in which (T) a are the (iso)spin operators. In the L. approxi

mation one assumes that the first term, which depends on r only, 

of the H.H. expansion of the potential is largely predominant 

in such a way that the fundamental theorem still holds. 

In which case the gross properties of the ground 

state are described by the first term (2) of the H.H. expansion 

of the wave function. The ground state hyperradial wave function 

. 3ft-4 

4>o (r) = r 2 uo (r) is the regular solution of the differen

tial equation 

{- W _ * i _ ^ £ m ! i i ) + D(r)_E j UQ(r) . 0 (4) 
l m \dr 2 r 2 / ) 
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where <£„ = L m + - ^ ^ 

and 0(r) = <B L (fl,s,t) |v(r,fl,a,t) |B{S5,s,t) > 
m 

is the effective potential. E is the total binding energy. 

Application to Li 

It has been shown in earlier works ( 3 _ ' how to obtain 

the effective potential in the L m approximation. The aim of 

the present paper is to calculate the ground state wave function 

of Li for various potentials which have already been used to 

solve the problem of He in the L approximation and to 

compare the binding energy of both nuclei. 

For Li the grand orbital L = 2 denribes four nucléons 

in the is shell and two nucléons in the lp shell. The effective 

potential has been calculated for the 1 + ground state and the 

0 excited state in which the two nucléons in the p shell coupled 

to a total angular momentum 1=0 are respectively in the triplet 

and singlet state. 

The effective potential is * ' 

U(r) = W(r) t 6U(r) (5) 

W(r) = 5(U? ++uJ +) - i(0? ++oJ +) + i(of ++uJ +) 
6 

( 
3 

+ - U?~ + - uj" - 30?" + i o T 1 (6) 

Su<r) = i(U**-uJ +) - i (u}+-V+l) + 1 <U? +-uJ +) (7) 
2 3 6 
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8) 

The multipoles ufj of the potential are expressed in terms of 
the two body potentials V*^.,) by 

U« = (-1>N -i 2_§_ / v a(r cos*) cos 2* ( 

2t+D~4-N (L + 5ri - N, h 

(sin *) m P N
 m ^(cos2*r d* 

1^ = 2, D = 3(A-1) = IS 

-where p' a' ' is a Jacobi polynomial and the index oi=3 , I , 3~, 1 
refer to the triplet even, singlet even, triplet odd and singlet 
odd potentials respectively. The sign + in (5) applies to the 
1 + ground state and - to the 0 excited state of Li. 

Eq. (7) shows that the difference between the singlet 
and triplet, even potentials is responsible for the excitation 
energy of the 0 + state. 

The effective Coulomb interaction calculated in ref. 
(7) has been neglected in this work. 

The investigated potentials are composed of a sum 
of gaussians 

rii 2 

- i-r1) 
v a< rij> = S ^ e k ''ij-lv^l- ( 9 ) 

k 
One term is a short range repulsive soft core, the other ones 
attractive. 

The triplet and singlet even potentials of the 
Volkov ( 9 ) (V^, Brink-Boeker ( 1 0 ) taj and Baker et al. < u ) (B) 
interactions are the same and the odd potentials are neglected 
(Serber force). 
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On table I in the first and second column are shown the binding 
energies of the deuteron (d) and He, and in the next column 
the difference AE = Eg - E 4 - E, between the binding energy 

- Li. HE . 
of Li and the sum of d+ He. The r.m.s. radius of He and the 
binding energy E, of Li calculated assuming a two body poten-

bLi 
tial of pure Wigner nature are given in the two last columns. 

4 A nearly exact calculation of the binding of He 
by the method of ref.(8) shows that the energy neglected by the 
L approximation is 1.5±.5 MeV for the Volkov potentials. 
One notices that for any Serber potential 

6 4 
i) the binding of Li is always weaker than the one of He-t-d 

4 ii) the smaller is the r.m.s. radius of He the larger is the 
difference AE. 

One concludes that from a variational point of view 
the part of the Hilbert space selected by the L approximation 

4 is smaller for He in the 15-dimensional space used to treat 
Li than in the 9-dimensional space suitable for the calculation 

of the a particle. In other words the deformation of the potential 
Z V[r^.) with respect to the hyperspherical symmetry is larger 
in the 15-dimensional space than in the 9-dimensional space other
wise the binding energy of Li should be at least equal to the 

4 one of He. 
We intend to find out which is the part of the poten

tial responsible for the difference AE. The small discrepancy 
of about 1.5 MeV between the exact and approximate binding of 
4 He for the Volkov potentials cannot explain the 3-6 MeV energy 
gap AE. 

For this purpose the problem will be studied with a 
two body harmonic oscillator (H.O.) potential of Serber exchange 
nature 



1+p" 
V H . O < r i j ) = (" V o + 2 l'* 1 B M* rlj> " < 1 0> 

where P.. is the Majorana exchange operator acting between the 

nucléons (1) and (j). The multipoles given by (8) lead for 

the L approximation to an effective potential 

U(r) = -10 Vo + — ir2mui2r2 

19 

The ground state binding energy and m.s. radius of Li are 

E, = -10Vo + 4/Ï? hu aï = - (—) — — (11) 
°Li Li 3 16 m hw 

One reminds that the binding energies and m.s. radii of the 

deuteron, the trinucleon and the a particle for the same H.O. 
f 12) potential are ' 

E . = -Vo + — hw (12) 
d /2 

E, = -3V 0 +3/3 hiu ai = — - (13) 
•*H JH /3 m hu 

E 4 = -6V0 + 9hu aï = — ~ ~ !14) 
He He 16 m hoi 

AE is given in terms of the binding energy and m.s. radius of 

4He by 

AE = E, - E, - E, = i E, + -^ (4/TÎ - 2H±H)-J!L- (15) 
6L1 *He a 2 4 H e 16 2 ma? 

*He 



The effects 1) and ii) still appear for the H.O. interaction. 

The numerical values obtained by using the experimental data 

for B, and a. are shown on the line H.O. of table I. 
He He 

AE is close to the values procured by the Volkov 

and Brink-Boeker potentials.. 

The binding energy for a Wigner H.O. potential is 

B* = -15V, + 19 J! h» = S B. + (19 J? - «)-£ _*i-
°Li 12 2 *He J2 2 16 ma* 

*He 

Using the experimental data one obtains E w =62.4 HeV which 
6Li 

is quite similar to the numbers resulting from the Volkov and 

Brink-Boeker potentials. 

It is clear from the comparison between the binding 

energies of Li for a Serber and a Wigner H.O. interaction that 

the particular behaviour of ÛE originates from the Hajorana 

exchange operator. 

H.H. dependence of the B.O. interaction including exchange operators 

The total interaction for a Serber H.O. potential 

can be written 

V H . 0 . ( r ' n ) -

+27im<i)2 

1 i \_ £ ±,i>i. J 

i,j>i 

v * A x i,j>i ' i,j>i A 1 
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The term in r 2 is the hypercentral part of the potential but 
each component of the last term is an homogeneous polynomial 
of the coordinates x, solution of the Laplace equation 

The term 

k=l 

V x [ <x>£,) 2 - -S- IP* - r' T,(0,O,T) 
,*ri, 1 3 A-i l j 

is therefore the product of r* and an operator T2(8,(J,T) of the 
spin-isospin space which is a H.H. of grand orbital 2 in the 
hyper space. The potential (16) is no longer hypercentux and 
the operator T applied to the H.H. of minimal order B. (ft,s,t) 

m 
generates a H.H. B. + 2(S,s,t) of grand orbital U-+2. 

Tn 
All together the H.H. B, and B, _ constitute the 

two elements of <-he optimal subset (12,13,14) f o r a H > 0 . inter

action including the Major ana exchange operator P^. 
The treatment of the SchrSdinger equation with an 

exchange H.O. potential using an H.H. expansion of the wave 
function restricted to the optimal subset requires the solution 
of a system of two coupled equations, one for each of the two 
H.H. components. The equation originating from the B L +_ compo-

m 
nent brings an additional binding energy which balances the 
effect i). This can be infered from an analysis of eq.(14) : 
when the strength u> of the H.O. vanishes the coupling between 
the two differential equations and the related additional binding 
disappear, but the difference AE becomes negative leading to 
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g 3 
an asymptotic Li binding energy E, (w=0)=^ E. +E, < E, +E-. 

6Li 2 4He d 4He d 

On the other hand from the identity 

E t (x,-x,) 2 - -El J = o (see eq.l) 
i,j>i A l 

it appears that the operator T 2 does not give any contribution 
when it is applied to a set of four spin-isospin saturated space states 

4 like for He. Therefore only a single equation is required for 
4 solving exactly He with a Serber H.C. interaction but two 

equations are needed in order to obtain a similar result (at 
the accuracy of the optimal subset) for heavier nuclei. This 
conclusion is still valid for weak soft core potentials and 
explains the occurrence of the effect i) for the Volkov interac
tion. This effect is more pronounced when the soft core becomes 
stronger like for the Brink Bi potential. 

The even parity excited levels of Li 

Assuming that the sequences and energies of the excited 
g states of Li with respect to the ground state are not drastically 

changed by the introduction of the coupled equations needed in 
order to solve accurately the SchrSdinger equation we have cal
culated the levels of Li with a few potential ajusted to the 
nucleon-nucleon phase shifts 'So and 'Si. 

An analysis of the contribution of the odd central 
potentials has been done with the realistic Gogny-Pirës-de Tourreil 
potential ( 1 5 ) . 
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Table I gives the results obtained assuming a Serber 

potential constituted by half the sum of the singlet and triplet 

even potentials for the Afnan-Tang '(SJ, Eikemeier-

(171 

Hackenbroich '(SJ and Gogny-Pirès-de Tourreil (GPDT) interac

tions. The tensor force is not an ingredient of the two first 

potentials for which the deuteron binding energy has been calcu

lated with the triplet even potential. 

The binding energy E. given by the GPDT potential 

is too small because the tensor force has not been included 

in our calculation. 
4 

The weak binding of He and the large value AE origi

nate from the repulsive core which is stronger than in the 

Volkov potentials. 

In taking into account the odd central forces (mainly 

repulsive) of the GPDT interaction in eg.(6) and (4) one 

weakens the binding of Li by 2 MeV with respect to the result 

obtained when only even interactions are used. The effective 

potential U(r) related to the states of total orbital momentum 

1=2 is obtained in changing the coefficient from 1/6 into 1/15 

for the multipole Vz in eq.(6) and (7). The sign ± refers respec

tively to the triplet (3 + 2 + 1 +, S=l, T=0) and the singlet 

(2 +, S=0, T=l) states. 

The degeneracy of the triplet states is removed by 

the spin-orbit interaction. The center of the triplet can be 

calculated by writting 

E(J) - E + E„ + [ J(J+l)-m+l)-S(S+l)l U £ 

J = 1. 2, 3 
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where E is the ground state energy U»- an average value of 
the spin orbit potential and where «.=2, S=l. A good agreement 

[ID] _ 

with the experimental energies ' is obtained with DJ,_=-.705 MeV 
and ED=3.60 MeV. It is the energy En which is calculated when 
the spin-crbit interaction is neglected. 

The tensor force of the GPPT potential acts between 
the two nucléons, of the lp shell in a triplet spin state. In 
order to be consistent with the potentials S, and S. which 
include this contribution we have to estimate the contribution 
of this force. It seems reasonable to estimate that the contri-
bution of the tensor force to the binding energy of Li is of 
the order of the difference between the binding energy of the 
deuteron calculated once with and once without tensor force. 
The GPDT potential overbinds the deuteron by about .4 MeV , 
we have to add therefore about -2.4 MeV to the ground state 
binding energy of Li calculated without the tensor force. 

There is no contribution of the tensor force for the 
singlet 0 and 2 states and we have neglected its contribution 
to the triplet 1=2 excited state. 

Table II gives the excitation energies obtained for 
the three investigated potentials and the last line refers to 
the ground state r.m.s. radius. In spite of the L^ approximation 
the realistic GPDT potential gives the binding energies and 
r.m.s. radius in a reasonable accord with the experimental data. 
One notices that by neglecting the tensor interaction in the 
triplet state 4=2 one over estimates the energy Eo. 

The order or the levels obtained for the GPDT poten-
/ 1 OS 

tial is in agreement with other calculations . 
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Conclusion 

Calculations of the Li ground state in the L m approxi
mation with nearly hypercen - -il soft core Serber potentials 
show (by comparison with a Serber H.O. interaction) that in 

4 order to obtain a binding stronger than the one of He it is 
necessary to include at least two components in the H.H. expansion 
of the wave function. The second component is generated by the 
exchange part of the potential. 

This second component constituted by an H.H. of grand 
4 

orbital 1^+2 appears in the treatment of He (for which Lm=0) 
where the difference between the singlet and triplet even central 
potentials generates the so called mixed symmetry state. But 
in contrast to the difference between the triplet and singlet 
even potential which is rather weak and generates a mixed symme
try state representing only about 1% of the ground state wave 

4 function of He, the Serber potential is strong and generates 
a second component which is expected to contribute largely to 
the wave function. The Majorana component appears for nuclei 
A>4 and must be included in any accurate treatment of the 
Schrodinger equation. It will be shown in another paper that 
the H.H. B, + 2 can be written as a sum of determinants«including 

m 
spherical harmonics absent from the original determinant descri
bing the H.H. of minimal order It, • In this respect it cannot 
be taken into account by a standard Hartree-Fock calculation 
using a single Slater determinant. 

On the other hand a calculation with semi realistic 
g 

potentials suggests that the energies of Li excited states with 
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• • * 

respect to the ground state should not be very much perturbed 
by the poor accuracy of the L approximation. 
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Table I 

Pot E d E4 AE a 4 *He 
E 6 6Li 

6 

V 4 
V 3 
V 5 
Vl 
V 6 
V 7 
V 8 
V 2 
Bl 

- .402 

- .445 

- .352 

- .469 

- .544 

- .534 

- .497 

- .542 

- .608 

-1.010 

- 39.163 

- 29.151 

- 29.259 

- 28.087 

- 28.578 

- 28.749 

- 28.030 

- 28.452 

- 29.402 

- 29.292 

9.971 

6.979 

5.837 

4.089 

4.175 

3.637 

3.918 

3.756 

3.086 

4.932 

1.162 

1.387 

1.402 

1.486 

1.488 

1.491 

1.494 

1.495 

1.496 

1.497 

- 79.493 

- 61.476 

- 61.954 

- 60.333 

- 61.845 

- 62.150 

- 60.246 

- 61.380 

- 63.735 

- 63.504 

H.O. - 28.2 4.83 1.495 - 62.46 

Exp -2.22 - 28.2 - 1.47 1.495 

Sl 
S4 
GPDT 

-2.1*69 

-2.131 

- .233 

- 16.156 

- 18.572 

- 14.198 

12.156 

10.581 

8.772 

1.535 

1.548 

1.651 
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! I -
J w T t S 4 S l GPDT e x p . ( 1 7 ) 

( g . s ) l + 0 0 0 0 0 0 

0 + 1 0 5 .64 4 .69 3 .49 3 .56 

3 + 2 + 1 + 0 2 2 .90 3 .18 4 .19 3 .60 

2 + 1 2 6 .37 5 .32 5 .06 5 .36 

a ( 6 L i ) ( g . s . ) 2 . 1 3 2 . 1 2 2 .55 2 . 3 + . 1 


