
APRIL 1978 PPPL-M35
UC-20g

A PROGRAM GENERATOR FOR THE
INCOMPLETE CHOLESKY CONJUGATE

GRADIENT (ICCG) METHOD

BY

G. KUO-PETRAVIC AND M. PETRAVIC

PLASMA PHYSICS
LABORATORY

,iii , ,: ,«iii

DISTRISUIION Of 1HIS DOCUMENT !S (fNUMITEB

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

This work was supported by the U. S. Department of Energy
Contract So. EX-76-C-02-3073. Reproduction, translation,
publication, use and disposal, In whole or ic part, by or
for the United States Government is permitted.

ABSTRACT

The Incomplete Cholesky Conjugate Gradient (ICCG) method
has been found very effective for the solution of sparse systems
of linear equations. Its implementation on a computer, however,
requires a considerable amount of careful coding to achieve good
machine efficiency. Furthermore, the resulting code is necessarily
inflexible and cannot be easily adapted to different problems.
We present in this paper a code generator GENIC which, given a
small amount of information concerning the sparsity pattern and
size of the system of equations, generates a solver package.
This package, called SOLIC, is tailor made for a particular
problem and can be easily incorporated into any user program.

-2-

PROGRAM SUMMARY

Title of Program; GEN1C
Catalogue number;
Program obtainable from; CPC Program Library, Queen's
University of Belfast, N. Ireland, GB
Computer; PDP 10 Installation; Computer Centre, Plasma Physics
Laboratory, Princeton University, James Forrestal Campus, P.O.
Box 451, Princeton, NJ 08540 USA
Operating system; TOPS-10, version 6.03
Programming language used; Fortran IV
High speed storage required; 11,280 words for source module

14,463 words for relocatable module
Number of bits in a word; 36 bits/word
Overlay structure; None
Number of magnetic tapes required; None
Other peripherals used; None
Number of cards in combined program and test deck; approximately
1,800 cards
Card punching code; ASCII
Keywords; Linear Sparse System, Incomplete Cholesky Decomposition,
Conjugate Gradient, Code Generator
Nature of physical problem
The program generator GEN.XC and the resultant Incomplete-Cholesky
Conjugate Gradient (ICCG) Solver SOLIC are applicable to a wide
range of physical problems, in particular these modelled by
partial differential equations. Elliptic, parabolic and hyper-
tolic types of equations are all covered since the method can

-3-

be used to solve any sparse system of linear equations with
a positive definite matrix of coefficients.

Method of solution
The Incomplete Cholesky Conjugate Gradient method, known
as the ICCG method, based on the work of Meijerink and VanderVorst
[1] and Hestenes and Stiefel [2] is used.

Restrictions on the complexity of the problem
rhe method ~11 work for systems with any degree of sparsity.
However, the particular generator is most efficient for sparse
matrices with a definite band structure with only a few zeros
in the sub-diagonals containing non-zero coefficients. If
these conditions are not satisfied an unnecessarily large
amount of redundant expressions will be computed. The generator
GENIC also assumes a repetitive block structure, discussed in
detail in the lo..? write up. At present the dimensions of arrays
which describe the beginnings and ends of diagonal bands in the
problem matrix are set at 20, which means not more than 40 bands
can appear in the problem matrix. This number,.however, can
easily be varied by re-dimensioning the Common list in GENIC.
Typical running time: For GENIC to produce the test solver
SOLIC shown in this paper the typical running time is around 1.5 sees.
References: O.A. Meijerink and H. A. VanDerVorst, "An Iterative
Solution Method for Linear Systems of which the Coefficient Matrix
is a Symmetric M-matrix," Technical report TR-1, Academic
Computer Centre, Budapestlaan 6, de Uithof-UTRECHT, The Nether­
lands (1976).

-4-

*This work was supported by United States Department of Energy
Contract no. EY-76-C-02-3073.
*Also Lawrence Livermore Laboratory, Livermore,. CA 94550
Contract no. W-740S-ENG-48.

-5-

LONG WRITE UP

1. Introduction
Many different problems in physics and engineering often

result in a common type of a mathematical equation. If the
solution domains are such that the common equation can also be
solved by the same method, a fixed solver program can usually
be provided thereby avoiding a lot of program duplication.
The core of a solver usually contains a computer programmed
form of a particular numerical algorithm and usually requires
only the actual equation coefficients to be input to produce a
solution. A solver, being a fixed program, usually has to
balance generality against efficiency. If many of the coeffi­
cients can be zero in some problems, a fixed program may find
itself dointj unnecessary work. Solving large sparse systems of
linear equations resulting from differencing partial differential
equations on a point grid is one typical example.

The awkwardness of a fixed program becomes especially
obvious when a number of variants of the same numerical method
are available but the choice between them cannot be made until
the numerical values of, say, matrix coefficients are known.
This type of problem can often be best solved by writing a
program generator rather than a fixed program. Since the
actual solver program produced by a generator usually gets
executed many times during a computer run, the overheads of
program generators are quite small. The advantages of the
program generator approach are therefore two-fold: Variation
and experimentation with a numerical algorithm becomes virtually

-6-

effortless, and the tailor-made solver program is generally very
efficient. The improvement in speed comes from both being able
to choose the best variant of a numerical algorithm and from
moving work from the execution stage into the generation ar. i
compilation stages. The actual gains in execution speed depend
strongly on a particular computer-compiler combination and even
more on the numerical algorithm. In many instances a carefully
Assembler coded fixed program will turn out to be the best answer
to a particular need but there are also substantial areas of
numerical analysis where coding by means of code generators has
distinct advantages. Most likely candidates for code generation
are problems for which not only variations of the solution
method are possible but which also require elaborate coding
involving a lot of hand calculation by a programmer.

2. Application to the ICCG Method
One case where conditions for code generation seem well

satisfied is the Incomplete Cholesky Conjugate Gradient (ICCG)
method as applied to solving partial differential equations
using implicit finite difference schemes. The ICCG method is
a much improved version of the conjugate gradient method
developed by Hestenes and Stiefel [2] in the early 50's, the
improvement resulting from replacing the iterations with the
original problem matrix A in Ax = b by iteration with an
approximate inverse of A. In the ICCG method the approximate
inverse is obtained by imcomplete Cholesky L-U decomposition as
proposed by Meijerink and Van Der vorst [i]. The usual Cholesky
version of Gaussian elimination is used but a pre-selected

-7-

sparsity pattern is forced upon the L and V matrices. The
pattern is usually that of the original problem matrix. The
freedom of choosing this sparsity pattern in different ways and
the dependence of convergence rate on it, make for a type of
coding very suitable for code generators. In the first code
generator we make available, the allowed sparsity patterns
are rather restricted since they consist only of variable
location and width digonal and sub-diagonal bands. Even so.,
this modest amount of extra flexibility allows not only for
instantaneous coding 'of many finite difference schemes in two
or three dimensions but it also makes tuning practicable
resulting in improvements in- speed of more than 4C% over the
standard sparsity pattern in the test case shown in this paper.

3. The Numerical Algorithm
Extensive literature exists on both the original Conjugate

Gradient method £2,3,4] and its extension the ICCG method
[1,5,6], so we present only the actual algorithm coded by the
generator. The algorithm solves a linear system of the form:
Ax = b , where x and b are column vectors and A is a non-singular
positive definite square matrix. Since A need not be symmetric,
this algorithm is somewhat more elaborate then the original
Merjerink and Van Der Vorst algorithm. It can, however, be easily
derived from the conjugate gradient algorithm of Hestenes [3],
p. 93 and is essentially the same as that proposed by Kershaw £6],
The algorithm consists of successively approximating the solution
x by a series of direction vectors p. mutually conjugate with
respect to the matrix N = ATHA and also orthogonal to a sequence

-8-

of gradient vectors g. . The gradient vectors are in turn
conjugate with respect to matrix K. The metrics H and K are
arbitrary positive Hermitian matrics, which also makes N a

T positive Hermitian; A is a transpose of A.
The recursive procedure for constructing the p^'s involves

two other vector sequences, that of the residual vectors
r. = b - Ax. and subsidiary vectors s. - Hr. . The code
generator assumes all the matrices to be real and uses the

T -1 T -1
choice H = (LL) and K = CU U) , where LU is an approximate
of A obtained by the already described imcomplete Cholesky

T T decomposition process and L and U are the transposes of L
and U respectively. Our particular algorithum for solving
Ax = b (1) then reads as follows:

r Q = b - A X Q (2:1) S Q = (LL T) - 1r o (2:2)

?o " ^ 5 © (2 : 3) ?o = (° T D , ~ 1 ? O (2 : 4)

, r . s . .
" i = C P i ' g*) (2:5) ? i + l = X i + a i ? i < 2 i 6 >

li + i = £ i - aA?± (2 : 7) 5i + i = (L L T) _ 1 £ i + i < 2 : 8 >

R _ (El + l , ~i + i) . .
h (r ± , s ±) (2 : 9)

Si + I = & T 5 i + 1 + hn (2 : 1 0) e i + 1 = (u T u) _ 1 ? i + 1 (2 ? i 1)

-9-

The following relationships hold among the direction and
gradient vectors:

(? i , Kg..) = 0

(p± , N P j) = 0

(?i - h] =c±
{ ? i ' ?j > = °

Also, the residuals satisfy:

(r± , Hr.) = (r± , s.) = 0 (i ? j) (3:51

The conjugate gradient method ensures convergence to
the exact solution within a maximum of N iterations, where N
is the dimension of the system. This fact is only of theoretical
significance since in practice sufficiently good approximations
must be obtained in around /N iterations or less.

The method minimizes ||x. - x||„ for all i and for all
algorithms of the form:

x. = x + P. (T)T(x - x) , (4:1)
— 1 ~0 1 — J. ~ -O

where P is a polynomial of degree i - 1 in T and

T = KN = (U T U) ~ 1 A T (L L T r 1 A (4:2)

(i ? j) C3:l)

(i + j) (3:2)

(j = o , 1 , . . . , i) (3:3)

(i = o, l , . . . , j - l) (3:4)

-10-

The upper bound on the error is then II]:

««i-;ii2s (ffr} 2 l | l?o - d ^

where c = ^ C D / A ^ C T) .
Since T is constructed to approximate tiie unit matrix,

the expectations are that the algorithm will converge much
faster than the original CG method. The performance of the
method in practice is discussed at length in [1] and [6].

4. The Generator Program
The ICCG method is most effective when A is sparse

and in particular when all the non-zero elements are concentrated
on the main diagonal and a small number of sub-diagonals. The
5,7,9, etc., point finite difference schemes result in precisely-
such matrices with the sub-diagonals usually clustering together
to form bands. This structure permits easy compression of
the full matrix A since only the diagonals containing non-zero
elements need be stored. These sub-diagonals together with
t̂ e main diagonal are stored in two 2D arrays ADU and ADL
corresponding to the upper and lower triangular parts of A and
both containing the main diagonal. ADU is of dimension N,KP
where N equals the dimension of A and KP is the number of non-zero
diagonals in the upper triangle of A. Obviously, the diagonals
of A are then mapped onto columns of ADU while rows are mapped
onto rows. The same applies to ADL and the lower triangle of A.
It is up to the user to pack the problem matrix A into the form
required by the generated solver program. The generator program

-11-

itself on the other hand does not work on A directly and
requires only information about the band and block structure
of A. The task of the generator is to write a complete
solver package SOLIC in Fortran which contains the implementation
of the ICCG algorithm (2).

The solver is aimed principally at physics problems
solved by finite difference methods on rectangular meshes.
Hence all the non-zero diagonals are assumed to be full. How­
ever, some boundary conditions can produce non-zero diagonals
which are very sparse but with regular patterns of non-zero
elements, rssulting in a block structure within A. While more
general ways of specifying sparsity patterns will be provided
in the future code generator a very simple optional device is
provided in GENIC. Assume that all the elements of A are zero:
beyond the column JLIM for the first IR rows, beyond the column
JLIM + IR for the next IR rows and so on throughout A, and
that this pattern is symmetric. That can be communicated to
GENIC by simply giving IR and JLIM actual values through the
namelist DIMS. If such a structure does not exist JLIM must
be set equal to N.

The generator program performs the following sub-tasks:
1. Computation of the width of matrix bands and the

actual array indices from the input information.
2. Output of the contents of the main solver sub­

routine SOLIC.
3. Output of subroutine SETLU which copies the contents

of the two parts of A, ADL and ADU, into the work­
space for decomposition and iteration: LD and UD.

-12-

4. Generation and output of LUDCMP which performs
incomplete L-U decomposition.

5. Generation and output of ADOTV and ATDOTV
which performs matrix-vector multiplication.

6. Generation and output of LLTINV and CJTUINV
which solve two subsidiary triangular systems. «

The first of the sub-tasks is performed by the main program
while 2-6 are carried out by the subroutines OUMAIN, SETLU,
GENLU, OUTAV, OUTATV, OUTLLT, and OUTUTU used in an uninter-
ruped sequence of calls in the order listed. A call to OUTUTU
ends the program.

5. Description of Data Input to the Generator Program GENIC
When inputing data for GENIC, the user has to concern

himself only with the structure of the full system of N
equations which in vector form reads Ax = b . Take first the
full matrix A and number its rows and columns 1 to N in the
usual way starting from the upper left hand corner. Next
imagine a splitting of A into a lower triangular matrix ADL
and the upper triangular ADU, with both ADL and ADU containing
the main diagonal, and number the diagonals of ALL by the row
number of their first column elements. Also number the diagonals
of ADU by the column number of their first row elements. The
numbering is therefore in both cases from the main diagonal
which bears the number 1. One is now ready to define the non­
zero sub-diagonals. CA non-zero sub-diagonal must contain at
least one non-zero element.) It is quite possible to provide
GENIC with the numbers of all the non-zero elements but since

-13-

they are usually clustered in bands, it is sufficient to
provide only the starts and finishes of the bands by giving
the ordinal numbers of sub-diagonals at each side of every
band.

Data input is through two namelists:
NAMELIST/DIMS/ NOUT,- NOUTPP, N, JLIM, IR
NAMELIST/ABANDS/ IDFAUT, AUS, AUF, ALS, ALF, US, UF, LS, LF.
The user has to do the following:

1. Set the input channel number for reading the name-
lists by changing the first executable statement
of GENIC which defines NIN.

2. Read via DIMS:
a. the output channel numbers NOUT for

GENIC and NOUTPP for SOLIC, and
b. the system dimension N and the al­

ready described block structure
parameters JLIM and IR. If there
is no block structure JLIM and IR
should be made equal to N,

3. Use namelist ABANDS to define the end of the
first non-zero band of ADU starting from the
main diagonal by setting AUF CI)• AUS (1)
being the start of the first band is auto­
matically assumed equal to 1. Then define the
limits of the second band through AUS (2)
and AUF (21 and likewise for any additional
bands. Note that one must always have

-14-

AUS(L) < AUP(X), the equality sign correspond­
ing to a degenerate band consisting of a single
sub-diagonal.

The bands of ADL, UD and LD have to be defined only if they are
different from those of ADU. The following rules must be
observed:

4. Band pattern of A symmetric:
a. pattern of LU the same as that of A:

set IDFAUT = 1 , define elements of
AUS and AUP only.

b. pattern of LU different from A but
symmetric: set IDFAUT = 3 , and
define elements of AUS, AUF, US and
UF only.

5. Band pattern of A non-symmetric:
a. pattern of LC the same as that of A:

set IDFAUT = 2, and set elements of
ATJS and ALF as well as AUS and AUF.

b. pattern of LU different from A:
set IDFAUT = 4, and set elements of
AUS, PUF, ALS, ALF, US, UF, LS, LF.

6. Output of the Generator Program GENIC
The output of GENIC is the solver program package SOLIC,

in Fortran, which consists of the principal subroutine of the
same name and six subsidiary subroutines: SETLU, LUDCMP, ADOTV,
ATDOTV, LLTINV and UTUINV. Their combined purpose is to provide
a linear system solver based on the CG algorithm (2), the

-15-

individual subroutines performing the following tasks: SOLIC
contains the main body of the algorithm which it carries out
with the help of subsidiary subroutines all of which are called
only from SOLIC.

Having received the problem matrix A in the compacted
form ADU and ADL, the right hand side b and the trial vector
x for Ax = b , SOLIC first copies the contents of ADU and ADL
into UD and LD by calling SETLU. It then calls LUDCMP which
performs the incomplete decomposition within UD and LD after
which the algorithm (.2) is applied. Several specialized
tasks with the algorithm are performed by the subroutines:
Operations by A and A (transpose of A) on any vector Y
are performed by calling ADOTV (result, Y) and ATDOTV (result,
Y) respectively. They correspond to sections (2:3) and (2:7)
of the algorithm. Similarly the triangular systems (2:8) and
(2:11) are solved with the help of LLTINV and UTUINV, The
value of NOUT, which is input through the namelist DIMS into
GENIC, determines the medium on which SOLIC is to appear.

7. Data Input for the Solver Program SOLIC
The user interface is quite a simple o ^ and consists

of two parameters of subroutine SOLIC (ISTOP, CONVEG) and a
labelled common block: COMMON/IC/ADU (Dl, D2), ADL (Dl, D2),
XICCG (Dl), RHS (Dl). The meaning of the two parameters are:

1. Integar ISTOP = the maximum number of
iterations to be performed before passing
control from SOLIC to the calling sub-program.

2. Real CONVEG = specification of the convergence

-16-

criterion. SOLIC returns control to the
calling sub-program when || ri|| /j| x^\\ ,
where r. = b - Ax. , becomes less or ~i ~i
equal to CONVEG.

The labelled common block COMMON/IC/ should be included in the
calling program and all elements of the four arrays in it are
to be set. JIHS must equal the right hand side vector b of CD
and XICCG the trial vector x of (2:1). ADU and ADL must con-

~o
tain the problem matrix A of (1) in a compacted form described
earlier. It is important to note that A must be normalized
so that all main diagonal elements are equal to 1. The symbolic
dimension Dl has the meaning of row and D2 the diagonal of the
A matrix. Dl and D2 will appear as absolute constants in SOLIC.
The user must set ADU (I,KP) =A (I,KP) where ADU contains the
upper triangular half of A; here I is the row index of A and KP
is the packed diagonal index K of A. KP is determined from K
simply by counting only the non-zero sub-diagonals sequentially
starting from the main diagonal which is counted as 1. Similarly
ADL (I,KP) = A (I,KP) where ADL contains the lower triangular
portion of A. Again KP is an index of the non-zero sub-diagonals
starting with the main diagonal which is counted as 1. Since A
is assumed normalized, there is no need to copy into ADU (1,1)
and ADL (1,1). The space taken up by these locations are letter
equivalenced to working arrays in SOLIC.

-17-

8. Output of the Solver Program SOLIC
SOLIC outputs only a small amount of diagonstic messages

on an output channel defined by NODTPP, a parameter read in
through the namelist DIMS. The diagonstic output contains the
following information:

1. ITSTEP = the actual number of iterations
performed in the present call to SOLIC.

2. XNORM = || x. ||
3. RNORM = || r. ||
4. SIRI = (s. , r.) . This is a measure of

~i ~i

orthogonality of s. and r. . Though
neither vector is normalized, this
is still a good indication of the
proper functioning of the code. SIRI
should be normally around 10

The solution of the system (1) is returned in XICCG and the
vector b is overwritten by the residue rn. .
9. Test Case Input and Output

The sample output of GENIC as shown in this paper has been
produced with an input as follows:

SDIMS NOUT=3>NDUTPP=6>N=600JJLIM=30JIR=15$
SRBflNDS IDFflUT=3> flUS=l>15> RUF=£>17? US=1>13T UF=£>17 $ END
This input corresponds to a linear-system arising from a 9 point
discretization of a partial differential equation on a rectangular
domain with aperiodic boundary conditions. After considerable
optimization on the time required to reach a certain convergence
ratio, it was found that adding 2 more sub-diagonals on the inside

-18-

of the side bands in VD and LD reduced the number of iterations
required from 28 to 18 with a consequent saving in time of 40%.
This gain is the result of a more complete L-U decomposition
and naturally varies with the actual coefficients of the problem
matrix A. The program stands to gain a great deal from the
vector processing capabilities of modern computers. Subroutines
SOLIC, ADOTV and ATDOTV can be completely vectored while sub­
routines LUDCMP, LLTINVf UTUINV, because of the recursive
nature of the expressions/ cannot. Although the vector capa­
bilities of the CDC 7600 are limited, reprogramming the sub­
routines SOLIC, ADOTV and ATDOTV to make use of it [7] has
yielded a further gain In speed of a factor of 2.

ACKNOWLEGMENTS
We would like to thank Dr. B. McNamara for useful

discussions.

-19-

REFERENCES

[1] J. A. Meijerink and H. A. Van Der Vorst, "An Iterative
Solution Method for Linear Systems of which the Coefficient
Matrix is, a Symmetric M-matrix," Technical report TR-1,
Academic Computer Centre, Budapestlaan 6, de Uithof-
UTRECHT, The Netherlands (1976).

[2] M. R. Hestenes and E. Stiefel, Journal of Research of
National Bureau of Standards, 49 (1952) 409.

[3] M. R. Hestenes, "Process of Symposia on Applied Math, VI
Numerical Analysis," (McGraw-Hill, New York 1956).

[4J J. K. Reid, "On the Method of Conjugate Gradients for the
Solution of Large Sparse Systems of Linear Equations,"
Proceeds of Conference, "Large Sparse Systems of Linear
Equations," Academic Press, New York (19.71).

[5] P. Concus, G. H. Golub, D. P. O'Leary, "A Generalized
Conjugate Gradient Mehtod for the Numerical Solution of
Elliptic Partial Differential Equations," Lawrence Berkeley
Laboratory, PublicationLBL-4604, Berkeley, CA, (1975) .

I6J D. S. Kershaw, Journal of Computational Physics, in
press, (1978) or UCRL, preprint - 78333.

[7] F. H. McMahon, L. J. Sloan and G. A. Long, "Stacklib - A
Vector Function Library of Optimum Stack-loops for the
DCD 7600," Lawrence Livermore Laboratory, Publication
UCID - 30083, Livermore, CA, (1976).

THIS PROGRAM PACKAGE SOLIC USES THE FOLLDIJING
PARAMETERS IJHICH HAVE BEEN INPUT:

: IDFAUT- a 1 NOU' U 3 NDUTPP - c H= 638 JLIM" 3B IR= 15
; fiusti)- 1 15 a a a 8 9 8 a 0 0 : AUF<n« 2 IF 0 B a a a a a 0 a : ALsm- 1 15 a a a a a a a 0 0 : ALFU)- 2 1? a a a H a a a a e : uscn- 1 13 a a e 8 e e s a a : UF(»- 2 1? e s a a a a a a a ; Lscn- 1 13 a a a 8 a a a 8 a : LF<n» Z \7 a a a s e e 8 s B e 8 s

SUB0UT1NE SOLICUSTOP.CONvee)
COMMON/'lOtAMK £88. 5>.ftDLi 688. 5),XICCG< 6B35.RHSC £38)
cramoM/uu/ust saa. 7)
COMIOH/LL^LBC 683, 7)
REAL LD

: THIS SUBROUTINE IS CALLED BY THE PROBLEM PROGRAM. IT
: CONTAINS THEMAIN CONJUGATE GRADIENT LOOP

DIMENSION R K S B B J . G K eea).VTEMP(sea) ,s ic S 8 8 > , P I < sag) EQUIVALENCE CVTEMP(1).ADL<1.13), (SI<1),AMJ(1,1)),(GU1).LB(1,1)) . ,<RIC1),RHSU>> CALL SETLU ITSTEP-1 CALL LUDCMP C FORM RESJDUAL VECTOR AND STORE IN RI CALL ADOTV<VTEMP,XICCG)
DO is M-i. see

10 RKtfl-RHSCMJ-VTEMPCM)
C
c
C FORM GRADIENT VECTOR B S1-(L.LT)**-I.R1 CALL LLTINVCSI.RI.VTEMPJ C GI-AT.SI

CALL ATDOTV(GI.SI) C PI-(UT.U)**-1.GI
CALL UTUINVCPI.GI.VTEMP) C C C CALCULATE ALFA I
ANUM-0
DO 28 n - i . sea

28 AMJM-ANUM+R1(M)*SI(M)
188 CONTINUE

ABENQM-B
DO 33 M- l , 689

30 ADENOM-ADENOM+PItM)*GUM)
ALFAI-ANUM/ADENOM

r

DO 48 M- l , 680
<M XICCG<M)-XICCG<M)+ALFAI*PI<M)

C FIND NEU RESIDUE
CALL ADOTVtVTEMP.PI)
DO sa M - I , sea

5B RKM>-RI<M)-ALFAl*VTEMP<n>

C CHECK FOR CONVERGENCE
RNORll-B.e
XNDRM-a.e
DO eg M-i. saa
RNORM-RNORM l-RHS (M) *RHS (M)
XNORM"XNORM+XICCR<M>«;'ICCG<n)

ea CONTINUE
F.ATIO-SQRT<RN0RM/XN0RM)

C THIS SECTION DEMARCATED BV ****K**SERVE FOR DIAGNOSTIC C PURPOSES ONLY AND CAN BE DELETED FOR PRODUCTION RUNS XNORMl-SQRT(XNORM) RNORMJ-SQRTtRNORM) S1R1-8.B
DO 78 M-l, 6BS

?B SIRI-SIRI+RHM)*SKM>
URITE<NOUTPP.161) ITSTEP.XNORMi.RNORMl.RATIO.SIRI

C»tolQBBiQI«mQICHCMOtotololc4^iW<t)^HaHi^^
IF (RATIO.LE.CONVEG) GO TO 1BBB IF (ITSTEP.EQ.ISTOP) GO TO 1803
ITSTEP-ITSTEP+I

C
C
C CALCULATE 51

CALL LLT1NVCSI.RI,VTEI1P)
BNUM-0
DC BB M- l , EBB

SB BNUM-BNUM+RI<M)+RI(M)*SI(M)
BETAI-BNUrt/ANUM
ANUM-BNUM

C
c

CALL ATDDTV<VTEW.£n
DO 98 11-1, SBB

9B GICM>=VTEMP<M)+BETAI*SKM>
CALL UTUINV(PI,GI.VTEMP) GO TO IBB 1B1 FORMATdH >"ITSTEP-\!3." XN0RM=".E8.2. , RN0RM-",E8.a." RATIO-".E9.2," SIRI-".E9.2 10BB RETURN END

C -.
c—: ,

SUBROUTINE SETLU COMMON/IC/ADUC SBB, S),ADL< S39, 5).XICCG< 6B0>,RHS< 688) COItaN/'UU/UDC SBB, 7) COMION/LL'LDC SBB. 7) REAL LD C THIS SUBROUTINE SETS UB AND LD TO THE VALUES GIVEN C IN ADU AND AEL BY THE USER DO IB .1-1, 7 DO IB M-l," SBB
UD(M.J)-e.a

10 CONTINUE DO 20 J-l, 7
DO 20 M - I . em
LD(M,J>-0.0 2B CONTINUE DO 3B M - I , eaa UD<n. n-i.a

inxrt, 2)•muni, 2)
30 CONTINUE

so 48 M-i. sea
LDCM, 2>-ABL(M, 2)

49 CONTINUE

BO 50 J« 3, S
SO 59 N-l. 6B8
UD«1.J+ 2>-A»U<M.J>

SB CONTINUE

sa

BO 68 J - 3 . S
DO SB M-l, 683
LBtI1,J+ 2>=M>LC1.J>
CONTINUE

RETURN
END

5>.ABL< SBB, 5>.XICCG< 680>,RHS< 688)
?>
?)

SUBROUTINE LUBCMP
COMMON.'IC-'ADUC 680.
COMMON/UUAIB(60B,
CBMMON/LL/'LBC 688,
REAL LB

C THIS SUBROUTINE PERFORMS THE INCOMPLETE L-U DECOMP-
C OSITION OF THE ORIGINHL MATRIX fi<ADU AND ADL)
C RESULTS OF THE DECOMPOSITION fiRE STORED IN U» AMP LB

PIVOTL-1.0E-1B
QPIVOT-SORTCPIVOTD
BO 1 JlilN- 1, 5 7 1 . 15
J1-JMIN+ 8
J2-JK1N+ 13
DO IB J - J 1 . J 2
IF(ABS<UBCJ, 1)) .LT.PIVOTL
. UB«.l>-SIGNiaPlVOT,U»<J.m
RUDJJ-l.B/tlBCJ.U
LDCJ+ 1, 2)-LB(J+ 1. 2)«RUDJJ
R--LBU+ 1, 2)
UDCJ+ 1, I)-UB(J+ 1. 1>+R*UD(J, 2)
UDCJ+ 1, 3>-UD<J+ 1. 3)+R*UD(J. 4)
UBCJ+ 1. 4)-UDCJ+ 1. 4)+R*UDCJ, 5)
UB(J+ 1, 5J-UDU+ 1, 5>+R*UD<J. 6)
UDCJ+ 1, 6)-UDCJ+ 1, S)+R*UB<J, 7)
LD(J+ 12. 3)-=LD(J+ 12, 3)*RUDJJ
R—LB(J+ 12, 3)
UDU+ 12. U-UDCJ+ 12. U+R*UD(J, 3)
UD<J+ 12. 2)-UDCJ+ 12. 2HR*UBU, 4)
LDCJ+ 13, 4)-LBCJ+ 13, 4)*RUDJJ
R--LDU+ 13. 4)
LDCJ+ 13, 3J-LDU+ 13, 3>+R*UBCJ, 2)
LBCJ+ 13, 2J-LBU+ 13, 2>+R*UB(J. 3)
UDU+ 13, n-UB(J+ 13. 1)+R*UBU, 4>
UDU+ 13. 2>»UD<J+ 13. 2)+R*UB(J, S)
LDCJ+ 14, S)=LB(J+ 14. 5)«RUBJJ
R—LB<J+ 14 . 5>
LB<J+ 14, 4)»LBU+ 14, 4)+fi*U»(J,

1
to

LDCJ+ 14, 2)-LDCJ+ 14, 2)+R*UBCJ,
UD(J+ 14, D-UDCJ+ 14, 1MR*UB(J,
UBU+ 14, a)-uD(J+ 14. 2)+R*UlXJ,
LBCJ+ 15. 6J-LBU+ 15. 6)*RUBJJ
R~LB(J+ IS. 6)
LD(J+ 15, 5)-LB<J+ 15, 5)+R«UI)(J,
LDU+ 15. 2>-LBU+ 15. 2)+R*UB<J.
UD<J+ 15. D-UDO+ 15. 1)+R*UD<J.
UD(J+ 15, 2>-U»CJ+ 15, 2)+R*UBCJ.
LBCJ+ 16, ?)-LBU+ IS. 7>*RUDJJ
R—LBCJ+ IS. ?•)
LBU+ 16. 6>-LDCJ+ IS. S)4R*UB(J.

•" 2) - l .BU+ 1G, 2)+R*U»<J,
D - U B U + 16. D+RWJ1KJ.

LD<J+ 16,
UBU+ 16

19 CONTINUE
J-JMIN+ 14
IF(ABS(UnCJ,1>).LT.PIV0TL

. UB(J,l)-SIGN(OPIVOT,llB(J,li)
R U D j j - i . e / U B (j . n
LBU+ 1, 2>-LB(J+ 1. 2)*RUD.IJ
R—LB(J+ 1, 2)
UBCJ+ 1, 1>-UB(J+ 1,
UTKJ+ 1, 3)-UBCJ+ 1,
UBU+ 1, 4)-UB<J+ 1,
UBU+ 1. 5>-UD<J+ 1,

1>+R*UD(J,
3)+R*UB(J.
4>+R*UB(J,
5)+R*UB(J,
3>*RU»JJ LB<J+ 12, 3>-LD(J+ 12,

R--LBCJ+ 12, 3)
UBU+ 12, 1>-UBCJ+ 12, n+R*UB(J,
UBU+ 12, 2)-UB(J+ 12, 2)+R*UB(J.
LB<J+ 13, 4)-LB(J+ 13, 4)*RUBJJ
R—LBCJ+ 13, 4)
LBCJ+ 13, 3)"LB(J+ 13, 3)+R*JB(J,

2J-LBCJ+ 13, 2>+R*UB(J,
D-UBCJ+ 13, 1)+R*UB(J,
2)"UD(J+ 13. 2>+R*UB<J.
5)«LB(J+ 14. 5)*RUBJJ

4)
5)
S)

2)
5)
S)
7)

LDCJ+ 13,
UD(J+ 13,
UD<J+ 13,
LB(J+ 14,
R— LB(J+ 14, 5)
LDU+ 14. 43-LS(J+ 14. 4)+R*UB(J
LDU+ 14. 2J-LDU+ 14, 2>+R*UB(J
UB<J+ 14, 1)-UB(J+ 14. D+R*UD(J
UBtJ+ 14. 2)«UB(J+ 14; " "
LB(J+ 15, SJ«LB(J+ IS,
R—LSU* 15, 6)
LB<J+ 15, 5>-LD<J+ 15,
LD(J+ 15. 2)-LD<J+ IB, 2HR*UB(J
UD(J+ 15, 1)«U»U+ 15, 1>+R»UDU

1 CONTINUE
GENERATION COMPLETES FOR BLOCK NO 1

JMIN- 586
J-JMIN+ a
IF(ABS<UBtJ,1)).LT.PIVOTL

. UBCJ,1)-SIEH<QP1V0T,UB<J,1))
RUPJJ-!.B/U»(J.1)

2)
3)
4)
5)

21+R*UB(J.
6)*RUDJJ

5>+R*UD(J,

2)
4)
S>
£)

LBCJ+ 1, 2>-LPU+ 1, 2)*RUBJJ
R— LBU+ 1, 2.1
UBCJ+ 1, !)»UB(J+ 1, 1)+R*UB(J, 2)
UD(J+ 1, 3>"UB(J+ 1, 3)+R*UU(J, 4)
UDU+ 1, 4)-UB(J+ 1. 4)+R*UB(J, 5)
LDCJ+ 12, 3)-LB(J+ 12. 3)*RUDJJ
R—LB(J+ 12. 3)

I

UDU+ 12. 1)-UB(J+ 12, 1)+R*UBCJ, 3)
' UDU+ 12. 2>-UB(J+ 12, 2)+RlUB<J, 4>

LDCJ+ 13. 4>-UNJ+ 13, 4)»RUDJJ
R— LBU+ 13. 4)
LBU+ 13. 3)-LB(J+ 13, 35+R*UB<J, 2)
LDCJ+ 13. 2)=LD(J+ 13, 2)+R*UD<J. 3)
UB<J+ 13, 1)-UB<J+ 13, 1>+R«U1)(J. 4)
UDU+ 13, 2>-UB<J+ 13, 2>+R*UlXJ. 5)
LDU+ 14, S)-LD<J+ 14, SJSRUBJJ
R— LB(J+ 14, 5)
LB<J+ 14. 4) - L B U + 14, 4)+R*UD<J, 2)
LBU+ 14. 2)«LB(J+ 14, 2)+R*UB<J. 4)
UBCJ+ 14, 1)-UB<J+ 14. 1>+R*UD<J. 5)
J-JMIN+ 1
IF<ABS<UDCJ. ft-) .LT.PIVOTL

. UB<J.1>-S1GNCGPIV0T.IJB(J,1))
RUBJJ-1.9xUBU,l>
UHJ+ 1. 2) -LDU+ ! , 2)*RUDJJ
R—LDCJ+ 1. 2)
UD<J+ 1, 1)-UB(J+ 1, 1)+R*UB(J, 2)
UD(J+ 1, 3>«UBCJ+ 1, 3)+R*UB<J, 4)
LBCJ+ 12, 3)-LB(J+ 13, 3)*RU»JJ
R— LB(J+ 12, 3)
UBU+ 12. 1)-UB<J+ 12, 1>+R*U»<J, 3)
UBCJ+ 12, 2J-UDC.H- 12, 2)+R*UB(J, 4)
LBU+ 13, 4) -LBU+ 13. 4)*RUDJJ
R--LDCJ+ 13 . 4)
LBCJ+ 13, 3)-LD<J+ 13. 3)+R*U»U, 2)
LB(J+ 13, 2)-LD(J+ 13. 2)+R*UD<J. 3)
UBCJ+ 13. »-UD<J+ 13. 1)+R*UD(J. 4)
J-JM1H+ 2
IF<ABSOHNJ,l>>.LT.PIV0TL

. UD<J,1)-S1GH(QPIV0T,UBU.U)
RUDJJ-1.0/UDU.O
LDCJ+ 1. 25-LBU+ 1, 2)*RUBJJ
R—LB(J+ . 1 . 2)
UDCJ+ 1. 1)-UB(J+ 1, 1)+R*UB(J, 2)
LDU+ 12, 3>-LB<J+ 12, 3>*RUBJJ
R— LBU+ 12, 3)
UDU+ 12. l)"UBi(J+ 12, 1)+R*UB(J, 3)
J1-JMIN+ 3
J2-JHIN+ 13
BO 2B J - J 1 . J 2
IFCABS<UBU,1)).LT.PIV0TL

. UB<J,l)-SIBHCQPIVOT,UD(J,n)
RUDJJ-l.B/UDCJ.l)
LBCJ+ 1. 2)-LB<J+ 1, 2)*RUBJJ
R--LD<J+ 1, 2)
UB(J+ 1 . D-UDU+ 1 , D+R*UD(J, 2)

23 CONTINUE
Z CONTINUE

C GENERATION COMPLETEB FOR BLOCK NO 2
RETURN

ENB
C .
c ..

SUBROUTINE flDOTV(RESULT.COLVEC)
COMM0Ny'IC^DU< 600 . 5),f i»L(S00. 5),XICCG(600),RHS< 660)
coMMON/tiU/uB(see. ?)
COMMON-'U./LBC 600 , 7)

REAL LD
DIMENSION RESULT<l).COLVECCl}

THIS SUBROUTINE PERFORMS fl DOT PRODUCT OF MATRIX fl
UITH fl COLUMN VECTOR
COMPUTE RESULT-fi.COLVEC

SO 9 N-1.S63
9 RESULT<M>-COLVEC<M>

K» 2
IULIM-G01-K
KP-K
SO 18 M-l.IULIM
RESULT<M>-RESULT<M>+ADU<M,KP>*COLYEC;K-I+II>

I B CONTINUE

DO 20 K- 15, 17
IULIM-601-K
KP-KP+1
DO 20 M-1.IUL1M
RESULTtM>-RESULT(M>+ADU(tt,KP)*COLVEC<K-l+M)
CONTINUE

K- 2
ILLIM-K
KP-K
DO 33 M-ILLII1.SB0
RESULT<M) -RESULTM -KIDL (M, KP)*COLVEC CM-K+1)
CONTINUE

DO 40 K- IS . 17
ILLIM-K
KP-KP+1
DO 43 M-ILL1M.6B0
RESULTED-RESULT(H)+flDL<M,KP)*COLVEC(M-K+n
CONTINUE

RETURN
END

SUBROUTINE ATDOTV'.RESULT,COLVGC>
COMMON/ICADU< £99, 5).flDL(688. 5).XICCS< 638).RH3! CBS)
COMMONxUU/UD(600. ?>
COItBN/tL/UX 600. 7)
REAL LD

DIMENSION RESULTtn.COLVECCl)
THIS SUBROUTINE PERFORMS fl DOT PRODUCT OP THE TRANSPOSE OF
THE MATRIX fl IJITH fl COLUMN VECTOR
CClNOl.lTF RCSULT-flT.COLVEC

DO 9 M-1,603
9 RESULT (M)-COLVEC(M)

=•• ILLIM-K
; KP-K •

DO 10 M-ILLIM.60B
RESULT(M)-RESULT(M)+flIHJ(M-K+l.KP)*COLVEC(M-K+l)

10 CONTINUE

I
to

C "
DO 20 K« 15, 17
ILLIM-K
KP-KP+1
DO 20 M-IL1.IM.6BB
RESULTCM)-RESULTCM)+fiDU<M-K+l.KP)*COLVECCMH<+l)

29 CONTINUE
C
C ' "

K- 2
IULIM-GB1-K
KP-K
DO 30 M-1.1ULIM
RESULTCM)•RESULTtM) +flDLCM+K-1,KP)*COLVECCM+K-1>

30 CONTINUE
C
C

- ••• DO 4B K- IS, 17
1ULIM-S01-K
KP'KP+1
DO 43 M-1,IUUM
RESULTCM) -RESULTCM) +fiDUM+K-1 ,KP) *COLVEC CM+K-1)

40 CONTINUE
RETURN
END

SUBROUTINE LLTINVCRESULT.COLVEC.flUX)
COMMON/IC/fMMC 600, 5).«DLC 600, 5J.XICCGC 600),RHS< 600)
COMMON/UU/UDC 60S. 7) '
COMMON^LL/LD(600, 7)
REAL LD

DIMENSION RESULTC1),C0LVECC1),AUXC1>
C THIS SUBROUTINE PERFORMS THE OPERATION CL.LCTR«NSP0SED))**-1*'C ft COLUMN VECTOR
C CUMPUTE RESULT-CL.LT)**-1*C0LVEC
C f IRST flUX-L**-1 *COLVEC
C THEN RESULT-LT**-l*ftUX
C SECTION ft

(1UX(D-COLVECC 1)
C SECTION B

DO 10 M- 2 . 12
19 fiUXCM)-COLVECCM)

-LDCM. 2)*fiUXCM- 1)
C SECTION C: BAND NUMBER IBfiND- 2

flUXC !3)-C0LVECC 13)
-LD(13, 2)*AUXC 12)
-LD< 13, 3)*fiUXC !)

BUX< 14)-C0LVEC< 14)
-LD(14, 2)*flUXC 13)

. -LBC 14, 3)*ft'JX(?*>
-LDC 14, a)*fWX(h

flUXC 15)-C0LVEC< !5>
-L»< 15, 2)*ftU>« 14)
-LDC 15. 3)*fiUXC 3)
-LDC IS, 4)*flUXC 2)
-LDC 15, 5)*AUX< 1)

FlUXC 16>-C0LVECC 16)
-LDC 16, 2)*fiUXC 15)
-LDC 16. 3)*flUXC 4)

- U K 16. 4)*AUX<
-LS< IS, 5)*AUX<
-LB< IS , 6>*AUX<

SECTION D: BAND NUMBER IBflND- 2
BO 20 M- 17.608

20 fflJX(M)°COLVEC<M>
-LB(M, 2)*AUX<M-
-LD<M, 3)*AUX<M- 12)
-LDCM, 4)*AUXCM- 13)
-LDCM, 5)*AUXCM- 14)
-LDCM, G)*AUXCM- 15)
-LDCM, 7)*flUXCM- 16)

3)
2)
1)

1)

! •
NOU GENERATE BACKWARD SUEEP

c SECTION E
RESULTCEBB)=fluxcsea>

c SECTION F
DO 40 M- 2 . 12
MR-SBI-M

40 RESULTCHH) -AUXCMR)
-LDCMR+ 1 , 2)*RESULT(MR+ 1)

c SECTION 3: BAND NUMBER IBAND- 2
RESULTC588)-AUXC5SB)

-LD<589. 2)*RESULT(5B9)
-LDCSOa, 3)*RESULTCS0B)

RESULTC58?)-AUXC587)
-LD(588, 3)*RESULTC588)
-LDC599, 3>*3ESULTC599)
-LDCEBB, 4)*REsuLT<6aa)

RESULTC586)-AUXC58S)
-LDC587, 2>*RESULT<:58?)
-LBC598, 3)*RESULTC5S8)
-LBC599, 4>*RESULTC599)
-LBteaa, 5)*REsuLT(6ae)

RESULTC585)-AUXC5S5)
-LBC586. 2)*RESULT(5PS)
-LDC597, 3)*RESULTCS97>
-LD<59B, 4)*RESULTCS98)
-LBCS89. 5)*RESULTC5S9>
-LD(SB8, 6)M«ESULTC60B)

C SECTION H: BAND NUMBER IBAND- 2
00 58 M- 17,SBS
MR-S81-M

50 RESIJLT<MR>«AUXCMR>
-I.DCMR+ 1 , 2)*RESULTCKR+ 1)

. . -LDCMRl- 12, 3>*RESULTCMR+ 12)
-LDCMR+ 13, 4)*PE6ULT(MRf 13)
-LDCMR+ 14, 5)*;ESULTCMR+ 14)
-LDCNR+ 15, S)iw?ESlJLT<MR+ 15)
-LBCMR+ IS . 7)*RESULT(MR+

RETURN
END

16)

t SUBROUTINE UTU INVCRE5ULT. COLVEC, AU»
COMKQN/ICADUC SBB. 5),ADL(680, 5),XICCGC GB0),RHS(GBB)
COMHON/UIMJBC .SBB, 7)
COMMON/LL/LD(60C, 7)
REAL LD

DIMENSIOH RESULT<i),COLVECCl),aUXU)
C THIS SUBSOUTIHE PERFORMS THE OPERATION i
C COMPUTE RESULT»(UT.U)*lvl*COLVEC
C FIRST AUX=UT**-lsCOLVEC
C THEN RESULT=U»-l*fla'<
C SECTION fl

AUXC l)»CCOLVEC< 1)
JVUDC 1,1) C SECTION B DO 18 K- 2, 12 IS AUXCM)"<COLVECCM)
-UBCM-) , 2)«fiUX<M- 1)
)AHXM. l)

C SECTION C: BAND NUMBER IBfiNI 1" 2
AUXC I3)-CCOLVECi 13)

-UDC 12, 2)* f l l«< 12)
-UDC 1, 3)*flUXC 1)
)AJDC 13.1)

AUXC 14)-CC0LVEC< 14)
-UDC 13, 2>*RUXC 13)
-UDC 2 , 3)*PUX(2)
-UDC 1 , 4)*fflJXC 1)
)^JD(14.1)

fiUXl 15-)=lttH-VECl 15)
-UDC 14. 2)*flUXC 14)
-UDC 3, 3)*flUXC 3)
-HBt 2 , 4)*«JX(2)
-UBt 1, S)*flUX(1)
)/UDC 15,1)

AUXC 16)-(C0LVEC(IS)
-UDC IS, 2)*>KJXC IS)
-UDC 4 , 3)*|SUXC 4)
-UDC 3, 4)*AUX< 3)
-UDC 2 , 5)*AUX< 2)
-UDC 1, 6)*AUX< 1)
>*/»< ie,!>

C SECTION B: BflNB NUMBER IBAHD" 2
DO 28 M- 17.SB8

20 flUXCM)'(COLVECCM)
HJDCM- 1, 2)*AUXCM- 1)
-UDCM- 12, 3)*fflJXCM- 12)
-UDCM- 13, 4)*AUXCH- 13)
-UDCM- 14. 5)*AUXCM- 14)
-UDCM- 15, 6)*AUX(M- 15)
-UDCM- IS. 7)*ftUXCM- 16)
)AiD(M, 1)

C
C
C NOU GENERATE BACKWARD SUEEP
C SECTION E

RESULTCG0B)'ftUXC68a)/UD(S06.i)
C SECTION F

DO 48 M- 2 , 12
MR-6B1-M

40 RESULTCMR)-CfiUXCMR)
-UDCMR, 2)*R£SULTCMI?+ 1)
)/UDCMR, I)

C SECTION G: BAND NUMBER IBAND- 2
PESULTCSB8)-CfiUXC5BBi

-UDlSBB. 2)*RESULTC589)

X A COLUMN VECTOR

-UD<5B8, 3)*RESUI_TtS8B)
)/UD<58B,1)

RESULT<387> "(flUX<58">
-UD<5B7. 2>*RFSULT<5Bm
-UD<5B7, 3)*RrSUUT(599)
-UIX507, 4)*RESULTC6B8>
)/UD<S87,l>

RESULT<596) - (AUW586)
-UD<586. 2).\f!ESULT<59?>
-UIXS36. 3)*RESLILT<n38)
-UD(386, 4)*StESULTl599>
-UD<586„ 5)*RESU1-T<6e9)
)^UDC586,1>

RESULT(585)-(flUX<585)
-UDl'SSS, 2>*EEStiLT<58S>
-UDCS85. 3>*RESUL.TC59r)
-UD(535, 4)*RESULT<596)
-UDC585, 5)*RESULT<599>
-UDC585. 6>*RESULT(SB8>
VUIKSBS,!)

: SECTION H: BAND NUMBER IBfiND= 2
DO 58 H- 17,689
l«-601-M

S9 RESULTCMR)-<fiU«MR)
-UBtMR, 2>*RESULTCMRH 1)
-UDttiR, 3)*RESUM'i:MRI- 12)
-USKMR, 4)»RESULT(MR+ 13)
-UDCKR, 5)>«PESULT(M!5+ 14)
-UPtflR, S)«Rf-:SULT(MS+ 15)
-UDtMR. ?>>«ESULT(MR+ IS)
)AJDCMR. 1)

RETURN
END

