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ABSTRACT 

The Incomplete Cholesky Conjugate Gradient (ICCG) method 
has been found very effective for the solution of sparse systems 
of linear equations. Its implementation on a computer, however, 
requires a considerable amount of careful coding to achieve good 
machine efficiency. Furthermore, the resulting code is necessarily 
inflexible and cannot be easily adapted to different problems. 
We present in this paper a code generator GENIC which, given a 
small amount of information concerning the sparsity pattern and 
size of the system of equations, generates a solver package. 
This package, called SOLIC, is tailor made for a particular 
problem and can be easily incorporated into any user program. 
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PROGRAM SUMMARY 

Title of Program; GEN1C 
Catalogue number; 
Program obtainable from; CPC Program Library, Queen's 
University of Belfast, N. Ireland, GB 
Computer; PDP 10 Installation; Computer Centre, Plasma Physics 
Laboratory, Princeton University, James Forrestal Campus, P.O. 
Box 451, Princeton, NJ 08540 USA 
Operating system; TOPS-10, version 6.03 
Programming language used; Fortran IV 
High speed storage required; 11,280 words for source module 

14,463 words for relocatable module 
Number of bits in a word; 36 bits/word 
Overlay structure; None 
Number of magnetic tapes required; None 
Other peripherals used; None 
Number of cards in combined program and test deck; approximately 
1,800 cards 
Card punching code; ASCII 
Keywords; Linear Sparse System, Incomplete Cholesky Decomposition, 
Conjugate Gradient, Code Generator 
Nature of physical problem 
The program generator GEN.XC and the resultant Incomplete-Cholesky 
Conjugate Gradient (ICCG) Solver SOLIC are applicable to a wide 
range of physical problems, in particular these modelled by 
partial differential equations. Elliptic, parabolic and hyper-
tolic types of equations are all covered since the method can 
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be used to solve any sparse system of linear equations with 
a positive definite matrix of coefficients. 

Method of solution 
The Incomplete Cholesky Conjugate Gradient method, known 
as the ICCG method, based on the work of Meijerink and VanderVorst 
[1] and Hestenes and Stiefel [2] is used. 

Restrictions on the complexity of the problem 
rhe method ~11 work for systems with any degree of sparsity. 
However, the particular generator is most efficient for sparse 
matrices with a definite band structure with only a few zeros 
in the sub-diagonals containing non-zero coefficients. If 
these conditions are not satisfied an unnecessarily large 
amount of redundant expressions will be computed. The generator 
GENIC also assumes a repetitive block structure, discussed in 
detail in the lo..? write up. At present the dimensions of arrays 
which describe the beginnings and ends of diagonal bands in the 
problem matrix are set at 20, which means not more than 40 bands 
can appear in the problem matrix. This number,.however, can 
easily be varied by re-dimensioning the Common list in GENIC. 
Typical running time: For GENIC to produce the test solver 
SOLIC shown in this paper the typical running time is around 1.5 sees. 
References: O.A. Meijerink and H. A. VanDerVorst, "An Iterative 
Solution Method for Linear Systems of which the Coefficient Matrix 
is a Symmetric M-matrix," Technical report TR-1, Academic 
Computer Centre, Budapestlaan 6, de Uithof-UTRECHT, The Nether­
lands (1976). 
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LONG WRITE UP 

1. Introduction 
Many different problems in physics and engineering often 

result in a common type of a mathematical equation. If the 
solution domains are such that the common equation can also be 
solved by the same method, a fixed solver program can usually 
be provided thereby avoiding a lot of program duplication. 
The core of a solver usually contains a computer programmed 
form of a particular numerical algorithm and usually requires 
only the actual equation coefficients to be input to produce a 
solution. A solver, being a fixed program, usually has to 
balance generality against efficiency. If many of the coeffi­
cients can be zero in some problems, a fixed program may find 
itself dointj unnecessary work. Solving large sparse systems of 
linear equations resulting from differencing partial differential 
equations on a point grid is one typical example. 

The awkwardness of a fixed program becomes especially 
obvious when a number of variants of the same numerical method 
are available but the choice between them cannot be made until 
the numerical values of, say, matrix coefficients are known. 
This type of problem can often be best solved by writing a 
program generator rather than a fixed program. Since the 
actual solver program produced by a generator usually gets 
executed many times during a computer run, the overheads of 
program generators are quite small. The advantages of the 
program generator approach are therefore two-fold: Variation 
and experimentation with a numerical algorithm becomes virtually 
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effortless, and the tailor-made solver program is generally very 
efficient. The improvement in speed comes from both being able 
to choose the best variant of a numerical algorithm and from 
moving work from the execution stage into the generation ar. i 
compilation stages. The actual gains in execution speed depend 
strongly on a particular computer-compiler combination and even 
more on the numerical algorithm. In many instances a carefully 
Assembler coded fixed program will turn out to be the best answer 
to a particular need but there are also substantial areas of 
numerical analysis where coding by means of code generators has 
distinct advantages. Most likely candidates for code generation 
are problems for which not only variations of the solution 
method are possible but which also require elaborate coding 
involving a lot of hand calculation by a programmer. 

2. Application to the ICCG Method 
One case where conditions for code generation seem well 

satisfied is the Incomplete Cholesky Conjugate Gradient (ICCG) 
method as applied to solving partial differential equations 
using implicit finite difference schemes. The ICCG method is 
a much improved version of the conjugate gradient method 
developed by Hestenes and Stiefel [2] in the early 50's, the 
improvement resulting from replacing the iterations with the 
original problem matrix A in Ax = b by iteration with an 
approximate inverse of A. In the ICCG method the approximate 
inverse is obtained by imcomplete Cholesky L-U decomposition as 
proposed by Meijerink and Van Der vorst [i]. The usual Cholesky 
version of Gaussian elimination is used but a pre-selected 
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sparsity pattern is forced upon the L and V matrices. The 
pattern is usually that of the original problem matrix. The 
freedom of choosing this sparsity pattern in different ways and 
the dependence of convergence rate on it, make for a type of 
coding very suitable for code generators. In the first code 
generator we make available, the allowed sparsity patterns 
are rather restricted since they consist only of variable 
location and width digonal and sub-diagonal bands. Even so., 
this modest amount of extra flexibility allows not only for 
instantaneous coding 'of many finite difference schemes in two 
or three dimensions but it also makes tuning practicable 
resulting in improvements in- speed of more than 4C% over the 
standard sparsity pattern in the test case shown in this paper. 

3. The Numerical Algorithm 
Extensive literature exists on both the original Conjugate 

Gradient method £2,3,4] and its extension the ICCG method 
[1,5,6], so we present only the actual algorithm coded by the 
generator. The algorithm solves a linear system of the form: 
Ax = b , where x and b are column vectors and A is a non-singular 
positive definite square matrix. Since A need not be symmetric, 
this algorithm is somewhat more elaborate then the original 
Merjerink and Van Der Vorst algorithm. It can, however, be easily 
derived from the conjugate gradient algorithm of Hestenes [3], 
p. 93 and is essentially the same as that proposed by Kershaw £6], 
The algorithm consists of successively approximating the solution 
x by a series of direction vectors p. mutually conjugate with 
respect to the matrix N = ATHA and also orthogonal to a sequence 
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of gradient vectors g. . The gradient vectors are in turn 
conjugate with respect to matrix K. The metrics H and K are 
arbitrary positive Hermitian matrics, which also makes N a 

T positive Hermitian; A is a transpose of A. 
The recursive procedure for constructing the p^'s involves 

two other vector sequences, that of the residual vectors 
r. = b - Ax. and subsidiary vectors s. - Hr. . The code 
generator assumes all the matrices to be real and uses the 

T -1 T -1 
choice H = (LL ) and K = CU U) , where LU is an approximate 
of A obtained by the already described imcomplete Cholesky 

T T decomposition process and L and U are the transposes of L 
and U respectively. Our particular algorithum for solving 
Ax = b (1) then reads as follows: 

r Q = b - A X Q (2:1) S Q = (LL T) - 1r o (2:2) 

?o " ^ 5 © ( 2 : 3 ) ?o = ( ° T D , ~ 1 ? O ( 2 : 4 ) 

, r . s . . 
" i = C P i ' g*) (2:5) ? i + l = X i + a i ? i < 2 i 6 > 

li + i = £ i - aA?± ( 2 : 7 ) 5i + i = ( L L T ) _ 1 £ i + i < 2 : 8 > 

R _ (El + l , ~i + i) . . 
h ( r ± , s ± ) ( 2 : 9 ) 

Si + I = & T 5 i + 1 + hn ( 2 : 1 0 ) e i + 1 = ( u T u ) _ 1 ? i + 1 ( 2 ? i 1 ) 
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The following relationships hold among the direction and 
gradient vectors: 

( ? i , Kg..) = 0 

(p± , N P j) = 0 

(?i - h] =c± 
{ ? i ' ?j > = ° 

Also, the residuals satisfy: 

(r± , Hr.) = (r± , s.) = 0 (i ? j) (3:51 

The conjugate gradient method ensures convergence to 
the exact solution within a maximum of N iterations, where N 
is the dimension of the system. This fact is only of theoretical 
significance since in practice sufficiently good approximations 
must be obtained in around /N iterations or less. 

The method minimizes ||x. - x||„ for all i and for all 
algorithms of the form: 

x. = x + P. (T)T(x - x ) , (4:1) 
— 1 ~0 1 — J. ~ -O 

where P is a polynomial of degree i - 1 in T and 

T = KN = ( U T U ) ~ 1 A T ( L L T r 1 A (4:2) 

( i ? j ) C3:l) 

( i + j ) (3:2) 

(j = o , 1 , . . . , i ) (3:3) 

( i = o, l , . . . , j - l ) (3:4) 
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The upper bound on the error is then II]: 

««i-;ii2s (ffr} 2 l | l?o - d ^ 

where c = ^ C D / A ^ C T ) . 
Since T is constructed to approximate tiie unit matrix, 

the expectations are that the algorithm will converge much 
faster than the original CG method. The performance of the 
method in practice is discussed at length in [1] and [6]. 

4. The Generator Program 
The ICCG method is most effective when A is sparse 

and in particular when all the non-zero elements are concentrated 
on the main diagonal and a small number of sub-diagonals. The 
5,7,9, etc., point finite difference schemes result in precisely-
such matrices with the sub-diagonals usually clustering together 
to form bands. This structure permits easy compression of 
the full matrix A since only the diagonals containing non-zero 
elements need be stored. These sub-diagonals together with 
t̂ e main diagonal are stored in two 2D arrays ADU and ADL 
corresponding to the upper and lower triangular parts of A and 
both containing the main diagonal. ADU is of dimension N,KP 
where N equals the dimension of A and KP is the number of non-zero 
diagonals in the upper triangle of A. Obviously, the diagonals 
of A are then mapped onto columns of ADU while rows are mapped 
onto rows. The same applies to ADL and the lower triangle of A. 
It is up to the user to pack the problem matrix A into the form 
required by the generated solver program. The generator program 
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itself on the other hand does not work on A directly and 
requires only information about the band and block structure 
of A. The task of the generator is to write a complete 
solver package SOLIC in Fortran which contains the implementation 
of the ICCG algorithm (2). 

The solver is aimed principally at physics problems 
solved by finite difference methods on rectangular meshes. 
Hence all the non-zero diagonals are assumed to be full. How­
ever, some boundary conditions can produce non-zero diagonals 
which are very sparse but with regular patterns of non-zero 
elements, rssulting in a block structure within A. While more 
general ways of specifying sparsity patterns will be provided 
in the future code generator a very simple optional device is 
provided in GENIC. Assume that all the elements of A are zero: 
beyond the column JLIM for the first IR rows, beyond the column 
JLIM + IR for the next IR rows and so on throughout A, and 
that this pattern is symmetric. That can be communicated to 
GENIC by simply giving IR and JLIM actual values through the 
namelist DIMS. If such a structure does not exist JLIM must 
be set equal to N. 

The generator program performs the following sub-tasks: 
1. Computation of the width of matrix bands and the 

actual array indices from the input information. 
2. Output of the contents of the main solver sub­

routine SOLIC. 
3. Output of subroutine SETLU which copies the contents 

of the two parts of A, ADL and ADU, into the work­
space for decomposition and iteration: LD and UD. 
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4. Generation and output of LUDCMP which performs 
incomplete L-U decomposition. 

5. Generation and output of ADOTV and ATDOTV 
which performs matrix-vector multiplication. 

6. Generation and output of LLTINV and CJTUINV 
which solve two subsidiary triangular systems. « 

The first of the sub-tasks is performed by the main program 
while 2-6 are carried out by the subroutines OUMAIN, SETLU, 
GENLU, OUTAV, OUTATV, OUTLLT, and OUTUTU used in an uninter-
ruped sequence of calls in the order listed. A call to OUTUTU 
ends the program. 

5. Description of Data Input to the Generator Program GENIC 
When inputing data for GENIC, the user has to concern 

himself only with the structure of the full system of N 
equations which in vector form reads Ax = b . Take first the 
full matrix A and number its rows and columns 1 to N in the 
usual way starting from the upper left hand corner. Next 
imagine a splitting of A into a lower triangular matrix ADL 
and the upper triangular ADU, with both ADL and ADU containing 
the main diagonal, and number the diagonals of ALL by the row 
number of their first column elements. Also number the diagonals 
of ADU by the column number of their first row elements. The 
numbering is therefore in both cases from the main diagonal 
which bears the number 1. One is now ready to define the non­
zero sub-diagonals. CA non-zero sub-diagonal must contain at 
least one non-zero element.) It is quite possible to provide 
GENIC with the numbers of all the non-zero elements but since 
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they are usually clustered in bands, it is sufficient to 
provide only the starts and finishes of the bands by giving 
the ordinal numbers of sub-diagonals at each side of every 
band. 

Data input is through two namelists: 
NAMELIST/DIMS/ NOUT,- NOUTPP, N, JLIM, IR 
NAMELIST/ABANDS/ IDFAUT, AUS, AUF, ALS, ALF, US, UF, LS, LF. 
The user has to do the following: 

1. Set the input channel number for reading the name-
lists by changing the first executable statement 
of GENIC which defines NIN. 

2. Read via DIMS: 
a. the output channel numbers NOUT for 

GENIC and NOUTPP for SOLIC, and 
b. the system dimension N and the al­

ready described block structure 
parameters JLIM and IR. If there 
is no block structure JLIM and IR 
should be made equal to N, 

3. Use namelist ABANDS to define the end of the 
first non-zero band of ADU starting from the 
main diagonal by setting AUF CI)• AUS (1) 
being the start of the first band is auto­
matically assumed equal to 1. Then define the 
limits of the second band through AUS (2) 
and AUF (21 and likewise for any additional 
bands. Note that one must always have 
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AUS(L) < AUP(X), the equality sign correspond­
ing to a degenerate band consisting of a single 
sub-diagonal. 

The bands of ADL, UD and LD have to be defined only if they are 
different from those of ADU. The following rules must be 
observed: 

4. Band pattern of A symmetric: 
a. pattern of LU the same as that of A: 

set IDFAUT = 1 , define elements of 
AUS and AUP only. 

b. pattern of LU different from A but 
symmetric: set IDFAUT = 3 , and 
define elements of AUS, AUF, US and 
UF only. 

5. Band pattern of A non-symmetric: 
a. pattern of LC the same as that of A: 

set IDFAUT = 2, and set elements of 
ATJS and ALF as well as AUS and AUF. 

b. pattern of LU different from A: 
set IDFAUT = 4, and set elements of 
AUS, PUF, ALS, ALF, US, UF, LS, LF. 

6. Output of the Generator Program GENIC 
The output of GENIC is the solver program package SOLIC, 

in Fortran, which consists of the principal subroutine of the 
same name and six subsidiary subroutines: SETLU, LUDCMP, ADOTV, 
ATDOTV, LLTINV and UTUINV. Their combined purpose is to provide 
a linear system solver based on the CG algorithm (2), the 
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individual subroutines performing the following tasks: SOLIC 
contains the main body of the algorithm which it carries out 
with the help of subsidiary subroutines all of which are called 
only from SOLIC. 

Having received the problem matrix A in the compacted 
form ADU and ADL, the right hand side b and the trial vector 
x for Ax = b , SOLIC first copies the contents of ADU and ADL 
into UD and LD by calling SETLU. It then calls LUDCMP which 
performs the incomplete decomposition within UD and LD after 
which the algorithm (.2) is applied. Several specialized 
tasks with the algorithm are performed by the subroutines: 
Operations by A and A (transpose of A) on any vector Y 
are performed by calling ADOTV (result, Y) and ATDOTV (result, 
Y) respectively. They correspond to sections (2:3) and (2:7) 
of the algorithm. Similarly the triangular systems (2:8) and 
(2:11) are solved with the help of LLTINV and UTUINV, The 
value of NOUT, which is input through the namelist DIMS into 
GENIC, determines the medium on which SOLIC is to appear. 

7. Data Input for the Solver Program SOLIC 
The user interface is quite a simple o ^ and consists 

of two parameters of subroutine SOLIC (ISTOP, CONVEG) and a 
labelled common block: COMMON/IC/ADU (Dl, D2), ADL (Dl, D2), 
XICCG (Dl), RHS (Dl). The meaning of the two parameters are: 

1. Integar ISTOP = the maximum number of 
iterations to be performed before passing 
control from SOLIC to the calling sub-program. 

2. Real CONVEG = specification of the convergence 
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criterion. SOLIC returns control to the 
calling sub-program when || ri|| /j| x^\\ , 
where r. = b - Ax. , becomes less or ~i ~i 
equal to CONVEG. 

The labelled common block COMMON/IC/ should be included in the 
calling program and all elements of the four arrays in it are 
to be set. JIHS must equal the right hand side vector b of CD 
and XICCG the trial vector x of (2:1). ADU and ADL must con-

~o 
tain the problem matrix A of (1) in a compacted form described 
earlier. It is important to note that A must be normalized 
so that all main diagonal elements are equal to 1. The symbolic 
dimension Dl has the meaning of row and D2 the diagonal of the 
A matrix. Dl and D2 will appear as absolute constants in SOLIC. 
The user must set ADU (I,KP) =A (I,KP) where ADU contains the 
upper triangular half of A; here I is the row index of A and KP 
is the packed diagonal index K of A. KP is determined from K 
simply by counting only the non-zero sub-diagonals sequentially 
starting from the main diagonal which is counted as 1. Similarly 
ADL (I,KP) = A (I,KP) where ADL contains the lower triangular 
portion of A. Again KP is an index of the non-zero sub-diagonals 
starting with the main diagonal which is counted as 1. Since A 
is assumed normalized, there is no need to copy into ADU (1,1) 
and ADL (1,1). The space taken up by these locations are letter 
equivalenced to working arrays in SOLIC. 
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8. Output of the Solver Program SOLIC 
SOLIC outputs only a small amount of diagonstic messages 

on an output channel defined by NODTPP, a parameter read in 
through the namelist DIMS. The diagonstic output contains the 
following information: 

1. ITSTEP = the actual number of iterations 
performed in the present call to SOLIC. 

2. XNORM = || x. || 
3. RNORM = || r. || 
4. SIRI = (s. , r.) . This is a measure of 

~i ~i 

orthogonality of s. and r. . Though 
neither vector is normalized, this 
is still a good indication of the 
proper functioning of the code. SIRI 
should be normally around 10 

The solution of the system (1) is returned in XICCG and the 
vector b is overwritten by the residue rn. . 
9. Test Case Input and Output 

The sample output of GENIC as shown in this paper has been 
produced with an input as follows: 

SDIMS NOUT=3>NDUTPP=6>N=600JJLIM=30JIR=15$ 
SRBflNDS IDFflUT=3> flUS=l>15> RUF=£>17? US=1>13T UF=£>17 $ END 
This input corresponds to a linear-system arising from a 9 point 
discretization of a partial differential equation on a rectangular 
domain with aperiodic boundary conditions. After considerable 
optimization on the time required to reach a certain convergence 
ratio, it was found that adding 2 more sub-diagonals on the inside 
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of the side bands in VD and LD reduced the number of iterations 
required from 28 to 18 with a consequent saving in time of 40%. 
This gain is the result of a more complete L-U decomposition 
and naturally varies with the actual coefficients of the problem 
matrix A. The program stands to gain a great deal from the 
vector processing capabilities of modern computers. Subroutines 
SOLIC, ADOTV and ATDOTV can be completely vectored while sub­
routines LUDCMP, LLTINVf UTUINV, because of the recursive 
nature of the expressions/ cannot. Although the vector capa­
bilities of the CDC 7600 are limited, reprogramming the sub­
routines SOLIC, ADOTV and ATDOTV to make use of it [7] has 
yielded a further gain In speed of a factor of 2. 
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THIS PROGRAM PACKAGE SOLIC USES THE FOLLDIJING 
PARAMETERS IJHICH HAVE BEEN INPUT: 

: IDFAUT- a 1 NOU' U 3 NDUTPP - c H= 638 JLIM" 3B IR= 15 
; fiusti)- 1 15 a a a 8 9 8 a 0 0 : AUF<n« 2 IF 0 B a a a a a 0 a : ALsm- 1 15 a a a a a a a 0 0 : ALFU)- 2 1? a a a H a a a a e : uscn- 1 13 a a e 8 e e s a a : UF(»- 2 1? e s a a a a a a a ; Lscn- 1 13 a a a 8 a a a 8 a : LF<n» Z \7 a a a s e e 8 s B e 8 s 

SUB0UT1NE SOLICUSTOP.CONvee) 
COMMON/'lOtAMK £88. 5>.ftDLi 688. 5),XICCG< 6B35.RHSC £38) 
cramoM/uu/ust saa. 7) 
COMIOH/LL^LBC 683, 7) 
REAL LD 

: THIS SUBROUTINE IS CALLED BY THE PROBLEM PROGRAM. IT 
: CONTAINS THEMAIN CONJUGATE GRADIENT LOOP 

DIMENSION R K S B B J . G K eea).VTEMP( sea) ,s ic S 8 8 > , P I < sag) EQUIVALENCE CVTEMP(1).ADL<1.13), (SI<1),AMJ(1,1)),(GU1).LB(1,1)) . ,<RIC1),RHSU>> CALL SETLU ITSTEP-1 CALL LUDCMP C FORM RESJDUAL VECTOR AND STORE IN RI CALL ADOTV<VTEMP,XICCG) 
DO is M-i. see 

10 RKtfl-RHSCMJ-VTEMPCM) 
C 
c 
C FORM GRADIENT VECTOR B S1-(L.LT)**-I.R1 CALL LLTINVCSI.RI.VTEMPJ C GI-AT.SI 

CALL ATDOTV(GI.SI) C PI-(UT.U)**-1.GI 
CALL UTUINVCPI.GI.VTEMP) C C C CALCULATE ALFA I 
ANUM-0 
DO 28 n - i . sea 

28 AMJM-ANUM+R1(M)*SI(M) 
188 CONTINUE 

ABENQM-B 
DO 33 M- l , 689 

30 ADENOM-ADENOM+PItM)*GUM) 
ALFAI-ANUM/ADENOM 

r 

DO 48 M- l , 680 
<M XICCG<M)-XICCG<M)+ALFAI*PI<M) 

C FIND NEU RESIDUE 
CALL ADOTVtVTEMP.PI) 
DO sa M - I , sea 

5B RKM>-RI<M)-ALFAl*VTEMP<n> 



C CHECK FOR CONVERGENCE 
RNORll-B.e 
XNDRM-a.e 
DO eg M-i. saa 
RNORM-RNORM l-RHS (M) *RHS (M) 
XNORM"XNORM+XICCR<M>«;'ICCG<n) 

ea CONTINUE 
F.ATIO-SQRT<RN0RM/XN0RM) 

C THIS SECTION DEMARCATED BV ****K**SERVE FOR DIAGNOSTIC C PURPOSES ONLY AND CAN BE DELETED FOR PRODUCTION RUNS XNORMl-SQRT(XNORM) RNORMJ-SQRTtRNORM) S1R1-8.B 
DO 78 M-l, 6BS 

?B SIRI-SIRI+RHM)*SKM> 
URITE<NOUTPP.161) ITSTEP.XNORMi.RNORMl.RATIO.SIRI 

C»tolQBBiQI«mQICHCMOtotololc4^iW<t)^HaHi^^ 
IF (RATIO.LE.CONVEG) GO TO 1BBB IF (ITSTEP.EQ.ISTOP) GO TO 1803 
ITSTEP-ITSTEP+I 

C 
C 
C CALCULATE 51 

CALL LLT1NVCSI.RI,VTEI1P) 
BNUM-0 
DC BB M- l , EBB 

SB BNUM-BNUM+RI<M)+RI(M)*SI(M) 
BETAI-BNUrt/ANUM 
ANUM-BNUM 

C 
c 

CALL ATDDTV<VTEW.£n 
DO 98 11-1, SBB 

9B GICM>=VTEMP<M)+BETAI*SKM> 
CALL UTUINV(PI,GI.VTEMP) GO TO IBB 1B1 FORMATdH >"ITSTEP-\!3." XN0RM=".E8.2. , RN0RM-",E8.a." RATIO-".E9.2," SIRI-".E9.2 10BB RETURN END 

C -. 
c—: , 

SUBROUTINE SETLU COMMON/IC/ADUC SBB, S),ADL< S39, 5).XICCG< 6B0>,RHS< 688) COItaN/'UU/UDC SBB, 7) COMION/LL'LDC SBB. 7) REAL LD C THIS SUBROUTINE SETS UB AND LD TO THE VALUES GIVEN C IN ADU AND AEL BY THE USER DO IB .1-1, 7 DO IB M-l," SBB 
UD(M.J)-e.a 

10 CONTINUE DO 20 J-l, 7 
DO 20 M - I . em 
LD(M,J>-0.0 2B CONTINUE DO 3B M - I , eaa UD<n. n-i.a 



inxrt, 2)•muni, 2) 
30 CONTINUE 

so 48 M-i. sea 
LDCM, 2>-ABL(M, 2) 

49 CONTINUE 

BO 50 J« 3, S 
SO 59 N-l. 6B8 
UD«1.J+ 2>-A»U<M.J> 

SB CONTINUE 

sa 

BO 68 J - 3 . S 
DO SB M-l, 683 
LBtI1,J+ 2>=M>LC1.J> 
CONTINUE 

RETURN 
END 

5>.ABL< SBB, 5>.XICCG< 680>,RHS< 688) 
?> 
?) 

SUBROUTINE LUBCMP 
COMMON.'IC-'ADUC 680. 
COMMON/UUAIB( 60B, 
CBMMON/LL/'LBC 688, 
REAL LB 

C THIS SUBROUTINE PERFORMS THE INCOMPLETE L-U DECOMP-
C OSITION OF THE ORIGINHL MATRIX fi<ADU AND ADL) 
C RESULTS OF THE DECOMPOSITION fiRE STORED IN U» AMP LB 

PIVOTL-1.0E-1B 
QPIVOT-SORTCPIVOTD 
BO 1 JlilN- 1, 5 7 1 . 15 
J1-JMIN+ 8 
J2-JK1N+ 13 
DO IB J - J 1 . J 2 
IF(ABS<UBCJ, 1) ) .LT.PIVOTL 
. UB«.l>-SIGNiaPlVOT,U»<J.m 
RUDJJ-l.B/tlBCJ.U 
LDCJ+ 1, 2)-LB(J+ 1. 2)«RUDJJ 
R--LBU+ 1, 2) 
UDCJ+ 1, I)-UB(J+ 1. 1>+R*UD(J, 2) 
UDCJ+ 1, 3>-UD<J+ 1. 3)+R*UD(J. 4) 
UBCJ+ 1. 4)-UDCJ+ 1. 4)+R*UDCJ, 5) 
UB(J+ 1, 5J-UDU+ 1, 5>+R*UD<J. 6) 
UDCJ+ 1, 6)-UDCJ+ 1, S)+R*UB<J, 7 ) 
LD(J+ 12. 3)-=LD(J+ 12, 3)*RUDJJ 
R—LB(J+ 12, 3) 
UDU+ 12. U-UDCJ+ 12. U+R*UD(J, 3 ) 
UD<J+ 12. 2)-UDCJ+ 12. 2HR*UBU, 4) 
LDCJ+ 13, 4)-LBCJ+ 13, 4)*RUDJJ 
R--LDU+ 13. 4) 
LDCJ+ 13, 3J-LDU+ 13, 3>+R*UBCJ, 2) 
LBCJ+ 13, 2J-LBU+ 13, 2>+R*UB(J. 3) 
UDU+ 13, n-UB(J+ 13. 1)+R*UBU, 4> 
UDU+ 13. 2>»UD<J+ 13. 2)+R*UB(J, S) 
LDCJ+ 14, S)=LB(J+ 14. 5)«RUBJJ 
R—LB<J+ 14 . 5> 
LB<J+ 14, 4 )»LBU+ 14, 4)+fi*U»(J, 

1 
to 



LDCJ+ 14, 2)-LDCJ+ 14, 2)+R*UBCJ, 
UD(J+ 14, D-UDCJ+ 14, 1MR*UB(J, 
UBU+ 14, a)-uD(J+ 14. 2)+R*UlXJ, 
LBCJ+ 15. 6J-LBU+ 15. 6)*RUBJJ 
R~LB(J+ IS. 6) 
LD(J+ 15, 5)-LB<J+ 15, 5)+R«UI)(J, 
LDU+ 15. 2>-LBU+ 15. 2)+R*UB<J. 
UD<J+ 15. D-UDO+ 15. 1)+R*UD<J. 
UD(J+ 15, 2>-U»CJ+ 15, 2)+R*UBCJ. 
LBCJ+ 16, ?)-LBU+ IS. 7>*RUDJJ 
R—LBCJ+ IS. ?•) 
LBU+ 16. 6>-LDCJ+ IS. S)4R*UB(J. 

•" 2) - l .BU+ 1G, 2)+R*U»<J, 
D - U B U + 16. D+RWJ1KJ. 

LD<J+ 16, 
UBU+ 16 

19 CONTINUE 
J-JMIN+ 14 
IF(ABS(UnCJ,1>).LT.PIV0TL 

. UB(J,l)-SIGN(OPIVOT,llB(J,li) 
R U D j j - i . e / U B ( j . n 
LBU+ 1, 2>-LB(J+ 1. 2)*RUD.IJ 
R—LB(J+ 1, 2) 
UBCJ+ 1, 1>-UB(J+ 1, 
UTKJ+ 1, 3)-UBCJ+ 1, 
UBU+ 1, 4)-UB<J+ 1, 
UBU+ 1. 5>-UD<J+ 1, 

1>+R*UD(J, 
3)+R*UB(J. 
4>+R*UB(J, 
5)+R*UB(J, 
3>*RU»JJ LB<J+ 12, 3>-LD(J+ 12, 

R--LBCJ+ 12, 3) 
UBU+ 12, 1>-UBCJ+ 12, n+R*UB(J, 
UBU+ 12, 2)-UB(J+ 12, 2)+R*UB(J. 
LB<J+ 13, 4)-LB(J+ 13, 4)*RUBJJ 
R—LBCJ+ 13, 4) 
LBCJ+ 13, 3)"LB(J+ 13, 3)+R*JB(J, 

2J-LBCJ+ 13, 2>+R*UB(J, 
D-UBCJ+ 13, 1)+R*UB(J, 
2)"UD(J+ 13. 2>+R*UB<J. 
5)«LB(J+ 14. 5)*RUBJJ 

4) 
5) 
S) 

2) 
5) 
S) 
7) 

LDCJ+ 13, 
UD(J+ 13, 
UD<J+ 13, 
LB(J+ 14, 
R— LB(J+ 14, 5) 
LDU+ 14. 43-LS(J+ 14. 4)+R*UB(J 
LDU+ 14. 2J-LDU+ 14, 2>+R*UB(J 
UB<J+ 14, 1)-UB(J+ 14. D+R*UD(J 
UBtJ+ 14. 2)«UB(J+ 14; " " 
LB(J+ 15, SJ«LB(J+ IS, 
R—LSU* 15, 6) 
LB<J+ 15, 5>-LD<J+ 15, 
LD(J+ 15. 2)-LD<J+ IB, 2HR*UB(J 
UD(J+ 15, 1)«U»U+ 15, 1>+R»UDU 

1 CONTINUE 
GENERATION COMPLETES FOR BLOCK NO 1 

JMIN- 586 
J-JMIN+ a 
IF(ABS<UBtJ,1)).LT.PIVOTL 

. UBCJ,1)-SIEH<QP1V0T,UB<J,1)) 
RUPJJ-!.B/U»(J.1) 

2) 
3) 
4) 
5) 

21+R*UB(J. 
6)*RUDJJ 

5>+R*UD(J, 

2) 
4) 
S> 
£) 

LBCJ+ 1, 2>-LPU+ 1, 2)*RUBJJ 
R— LBU+ 1, 2.1 
UBCJ+ 1, !)»UB(J+ 1, 1)+R*UB(J, 2) 
UD(J+ 1, 3>"UB(J+ 1, 3)+R*UU(J, 4) 
UDU+ 1, 4)-UB(J+ 1. 4)+R*UB(J, 5) 
LDCJ+ 12, 3)-LB(J+ 12. 3)*RUDJJ 
R—LB(J+ 12. 3) 

I 



UDU+ 12. 1)-UB(J+ 12, 1)+R*UBCJ, 3) 
' UDU+ 12. 2>-UB(J+ 12, 2)+RlUB<J, 4> 

LDCJ+ 13. 4>-UNJ+ 13, 4)»RUDJJ 
R— LBU+ 13. 4) 
LBU+ 13. 3)-LB(J+ 13, 35+R*UB<J, 2) 
LDCJ+ 13. 2)=LD(J+ 13, 2)+R*UD<J. 3) 
UB<J+ 13, 1)-UB<J+ 13, 1>+R«U1)(J. 4) 
UDU+ 13, 2>-UB<J+ 13, 2>+R*UlXJ. 5) 
LDU+ 14, S)-LD<J+ 14, SJSRUBJJ 
R— LB(J+ 14, 5) 
LB<J+ 14. 4 ) - L B U + 14, 4)+R*UD<J, 2) 
LBU+ 14. 2)«LB(J+ 14, 2)+R*UB<J. 4) 
UBCJ+ 14, 1)-UB<J+ 14. 1>+R*UD<J. 5) 
J-JMIN+ 1 
IF<ABS<UDCJ. ft-) .LT.PIVOTL 

. UB<J.1>-S1GNCGPIV0T.IJB(J,1)) 
RUBJJ-1.9xUBU,l> 
UHJ+ 1. 2 ) -LDU+ ! , 2)*RUDJJ 
R—LDCJ+ 1. 2) 
UD<J+ 1, 1)-UB(J+ 1, 1)+R*UB(J, 2) 
UD(J+ 1, 3>«UBCJ+ 1, 3)+R*UB<J, 4) 
LBCJ+ 12, 3)-LB(J+ 13, 3)*RU»JJ 
R— LB(J+ 12, 3) 
UBU+ 12. 1)-UB<J+ 12, 1>+R*U»<J, 3) 
UBCJ+ 12, 2J-UDC.H- 12, 2)+R*UB(J, 4) 
LBU+ 13, 4 ) -LBU+ 13. 4)*RUDJJ 
R--LDCJ+ 13 . 4) 
LBCJ+ 13, 3)-LD<J+ 13. 3)+R*U»U, 2) 
LB(J+ 13, 2)-LD(J+ 13. 2)+R*UD<J. 3) 
UBCJ+ 13. »-UD<J+ 13. 1)+R*UD(J. 4) 
J-JM1H+ 2 
IF<ABSOHNJ,l>>.LT.PIV0TL 

. UD<J,1)-S1GH(QPIV0T,UBU.U) 
RUDJJ-1.0/UDU.O 
LDCJ+ 1. 25-LBU+ 1, 2)*RUBJJ 
R—LB(J+ . 1 . 2) 
UDCJ+ 1. 1)-UB(J+ 1, 1)+R*UB(J, 2) 
LDU+ 12, 3>-LB<J+ 12, 3>*RUBJJ 
R— LBU+ 12, 3) 
UDU+ 12. l)"UBi(J+ 12, 1)+R*UB(J, 3) 
J1-JMIN+ 3 
J2-JHIN+ 13 
BO 2B J - J 1 . J 2 
IFCABS<UBU,1)).LT.PIV0TL 

. UB<J,l)-SIBHCQPIVOT,UD(J,n) 
RUDJJ-l.B/UDCJ.l) 
LBCJ+ 1. 2)-LB<J+ 1, 2)*RUBJJ 
R--LD<J+ 1, 2) 
UB(J+ 1 . D-UDU+ 1 , D+R*UD(J, 2) 

23 CONTINUE 
Z CONTINUE 

C GENERATION COMPLETEB FOR BLOCK NO 2 
RETURN 

ENB 
C . 
c .. 

SUBROUTINE flDOTV(RESULT.COLVEC) 
COMM0Ny'IC^DU< 600 . 5),f i»L( S00. 5),XICCG( 600),RHS< 660) 
coMMON/tiU/uB( see. ?) 
COMMON-'U./LBC 600 , 7) 



REAL LD 
DIMENSION RESULT<l).COLVECCl} 

THIS SUBROUTINE PERFORMS fl DOT PRODUCT OF MATRIX fl 
UITH fl COLUMN VECTOR 
COMPUTE RESULT-fi.COLVEC 

SO 9 N-1.S63 
9 RESULT<M>-COLVEC<M> 

K» 2 
IULIM-G01-K 
KP-K 
SO 18 M-l.IULIM 
RESULT<M>-RESULT<M>+ADU<M,KP>*COLYEC;K-I+II> 

I B CONTINUE 

DO 20 K- 15, 17 
IULIM-601-K 
KP-KP+1 
DO 20 M-1.IUL1M 
RESULTtM>-RESULT(M>+ADU(tt,KP)*COLVEC<K-l+M) 
CONTINUE 

K- 2 
ILLIM-K 
KP-K 
DO 33 M-ILLII1.SB0 
RESULT<M) -RESULTM -KIDL (M, KP)*COLVEC CM-K+1) 
CONTINUE 

DO 40 K- IS . 17 
ILLIM-K 
KP-KP+1 
DO 43 M-ILL1M.6B0 
RESULTED-RESULT(H)+flDL<M,KP)*COLVEC(M-K+n 
CONTINUE 

RETURN 
END 

SUBROUTINE ATDOTV'.RESULT,COLVGC> 
COMMON/ICADU< £99, 5).flDL( 688. 5).XICCS< 638).RH3! CBS) 
COMMONxUU/UD( 600. ?> 
COItBN/tL/UX 600. 7) 
REAL LD 

DIMENSION RESULTtn.COLVECCl) 
THIS SUBROUTINE PERFORMS fl DOT PRODUCT OP THE TRANSPOSE OF 
THE MATRIX fl IJITH fl COLUMN VECTOR 
CClNOl.lTF RCSULT-flT.COLVEC 

DO 9 M-1,603 
9 RESULT (M)-COLVEC(M) 

=•• ILLIM-K 
; KP-K • 

DO 10 M-ILLIM.60B 
RESULT(M)-RESULT(M)+flIHJ(M-K+l.KP)*COLVEC(M-K+l) 

10 CONTINUE 

I 
to 



C " 
DO 20 K« 15, 17 
ILLIM-K 
KP-KP+1 
DO 20 M-IL1.IM.6BB 
RESULTCM)-RESULTCM)+fiDU<M-K+l.KP)*COLVECCMH<+l) 

29 CONTINUE 
C 
C ' " 

K- 2 
IULIM-GB1-K 
KP-K 
DO 30 M-1.1ULIM 
RESULTCM)•RESULTtM) +flDLCM+K-1,KP)*COLVECCM+K-1> 

30 CONTINUE 
C 
C 

- ••• DO 4B K- IS, 17 
1ULIM-S01-K 
KP'KP+1 
DO 43 M-1,IUUM 
RESULTCM) -RESULTCM) +fiDUM+K-1 ,KP) *COLVEC CM+K-1) 

40 CONTINUE 
RETURN 
END 

SUBROUTINE LLTINVCRESULT.COLVEC.flUX) 
COMMON/IC/fMMC 600, 5).«DLC 600, 5J.XICCGC 600),RHS< 600) 
COMMON/UU/UDC 60S. 7) ' 
COMMON^LL/LD( 600, 7) 
REAL LD 

DIMENSION RESULTC1),C0LVECC1),AUXC1> 
C THIS SUBROUTINE PERFORMS THE OPERATION CL.LCTR«NSP0SED))**-1*'C ft COLUMN VECTOR 
C CUMPUTE RESULT-CL.LT)**-1*C0LVEC 
C f IRST flUX-L**-1 *COLVEC 
C THEN RESULT-LT**-l*ftUX 
C SECTION ft 

(1UX( D-COLVECC 1) 
C SECTION B 

DO 10 M- 2 . 12 
19 fiUXCM)-COLVECCM) 

-LDCM. 2)*fiUXCM- 1) 
C SECTION C: BAND NUMBER IBfiND- 2 

flUXC !3)-C0LVECC 13) 
-LD( 13, 2)*AUXC 12) 
-LD< 13, 3)*fiUXC !) 

BUX< 14)-C0LVEC< 14) 
-LD( 14, 2)*flUXC 13) 

. -LBC 14, 3)*ft'JX( ?*> 
-LDC 14, a)*fWX( h 

flUXC 15)-C0LVEC< !5> 
-L»< 15, 2)*ftU>« 14) 
-LDC 15. 3)*fiUXC 3) 
-LDC IS, 4)*flUXC 2) 
-LDC 15, 5)*AUX< 1) 

FlUXC 16>-C0LVECC 16) 
-LDC 16, 2)*fiUXC 15) 
-LDC 16. 3)*flUXC 4) 



- U K 16. 4)*AUX< 
-LS< IS, 5)*AUX< 
-LB< IS , 6>*AUX< 

SECTION D: BAND NUMBER IBflND- 2 
BO 20 M- 17.608 

20 fflJX(M)°COLVEC<M> 
-LB(M, 2)*AUX<M-
-LD<M, 3)*AUX<M- 12) 
-LDCM, 4)*AUXCM- 13) 
-LDCM, 5)*AUXCM- 14) 
-LDCM, G)*AUXCM- 15) 
-LDCM, 7)*flUXCM- 16) 

3) 
2) 
1) 

1) 

! • 
NOU GENERATE BACKWARD SUEEP 

c SECTION E 
RESULTCEBB)=fluxcsea> 

c SECTION F 
DO 40 M- 2 . 12 
MR-SBI-M 

40 RESULTCHH) -AUXCMR) 
-LDCMR+ 1 , 2)*RESULT(MR+ 1) 

c SECTION 3: BAND NUMBER IBAND- 2 
RESULTC588)-AUXC5SB) 

-LD<589. 2)*RESULT(5B9) 
-LDCSOa, 3)*RESULTCS0B) 

RESULTC58?)-AUXC587) 
-LD(588, 3)*RESULTC588) 
-LDC599, 3>*3ESULTC599) 
-LDCEBB, 4)*REsuLT<6aa) 

RESULTC586)-AUXC58S) 
-LDC587, 2>*RESULT<:58?) 
-LBC598, 3)*RESULTC5S8) 
-LBC599, 4>*RESULTC599) 
-LBteaa, 5)*REsuLT(6ae) 

RESULTC585)-AUXC5S5) 
-LBC586. 2)*RESULT(5PS) 
-LDC597, 3)*RESULTCS97> 
-LD<59B, 4)*RESULTCS98) 
-LBCS89. 5)*RESULTC5S9> 
-LD(SB8, 6)M«ESULTC60B) 

C SECTION H: BAND NUMBER IBAND- 2 
00 58 M- 17,SBS 
MR-S81-M 

50 RESIJLT<MR>«AUXCMR> 
-I.DCMR+ 1 , 2)*RESULTCKR+ 1) 

. . -LDCMRl- 12, 3>*RESULTCMR+ 12) 
-LDCMR+ 13, 4)*PE6ULT(MRf 13) 
-LDCMR+ 14, 5)*;ESULTCMR+ 14) 
-LDCNR+ 15, S)iw?ESlJLT<MR+ 15) 
-LBCMR+ IS . 7)*RESULT(MR+ 

RETURN 
END 

16) 

t SUBROUTINE UTU INVCRE5ULT. COLVEC, AU» 
COMKQN/ICADUC SBB. 5),ADL( 680, 5),XICCGC GB0),RHS( GBB) 
COMHON/UIMJBC .SBB, 7) 
COMMON/LL/LD( 60C, 7) 
REAL LD 



DIMENSIOH RESULT<i),COLVECCl),aUXU) 
C THIS SUBSOUTIHE PERFORMS THE OPERATION i 
C COMPUTE RESULT»(UT.U)*lvl*COLVEC 
C FIRST AUX=UT**-lsCOLVEC 
C THEN RESULT=U»-l*fla'< 
C SECTION fl 

AUXC l)»CCOLVEC< 1) 
JVUDC 1,1) C SECTION B DO 18 K- 2, 12 IS AUXCM)"<COLVECCM) 
-UBCM- ) , 2)«fiUX<M- 1) 
)AHXM. l ) 

C SECTION C: BAND NUMBER IBfiNI 1" 2 
AUXC I3)-CCOLVECi 13) 

-UDC 12, 2)* f l l«< 12) 
-UDC 1, 3)*flUXC 1) 
)AJDC 13.1) 

AUXC 14)-CC0LVEC< 14) 
-UDC 13, 2>*RUXC 13) 
-UDC 2 , 3)*PUX( 2) 
-UDC 1 , 4)*fflJXC 1) 
)^JD( 14.1) 

fiUXl 15-)=lttH-VECl 15) 
-UDC 14. 2)*flUXC 14) 
-UDC 3, 3)*flUXC 3) 
-HBt 2 , 4)*«JX( 2) 
-UBt 1, S)*flUX( 1) 
)/UDC 15,1) 

AUXC 16)-(C0LVEC( IS) 
-UDC IS, 2)*>KJXC IS) 
-UDC 4 , 3)*|SUXC 4) 
-UDC 3, 4)*AUX< 3) 
-UDC 2 , 5)*AUX< 2) 
-UDC 1, 6)*AUX< 1) 
>*/»< ie,!> 

C SECTION B: BflNB NUMBER IBAHD" 2 
DO 28 M- 17.SB8 

20 flUXCM)'(COLVECCM) 
HJDCM- 1, 2)*AUXCM- 1) 
-UDCM- 12, 3)*fflJXCM- 12) 
-UDCM- 13, 4)*AUXCH- 13) 
-UDCM- 14. 5)*AUXCM- 14) 
-UDCM- 15, 6)*AUX(M- 15) 
-UDCM- IS. 7)*ftUXCM- 16) 
)AiD(M, 1) 

C 
C 
C NOU GENERATE BACKWARD SUEEP 
C SECTION E 

RESULTCG0B)'ftUXC68a)/UD(S06.i) 
C SECTION F 

DO 48 M- 2 , 12 
MR-6B1-M 

40 RESULTCMR)-CfiUXCMR) 
-UDCMR, 2)*R£SULTCMI?+ 1) 
)/UDCMR, I ) 

C SECTION G: BAND NUMBER IBAND- 2 
PESULTCSB8)-CfiUXC5BBi 

-UDlSBB. 2)*RESULTC589) 

X A COLUMN VECTOR 



-UD<5B8, 3)*RESUI_TtS8B) 
)/UD<58B,1) 

RESULT<387> "(flUX<58"> 
-UD<5B7. 2>*RFSULT<5Bm 
-UD<5B7, 3)*RrSUUT(599) 
-UIX507, 4)*RESULTC6B8> 
)/UD<S87,l> 

RESULT<596) - (AUW586) 
-UD<586. 2).\f!ESULT<59?> 
-UIXS36. 3)*RESLILT<n38) 
-UD(386, 4)*StESULTl599> 
-UD<586„ 5)*RESU1-T<6e9) 
)^UDC586,1> 

RESULT(585)-(flUX<585) 
-UDl'SSS, 2>*EEStiLT<58S> 
-UDCS85. 3>*RESUL.TC59r) 
-UD(535, 4)*RESULT<596) 
-UDC585, 5)*RESULT<599> 
-UDC585. 6>*RESULT(SB8> 
VUIKSBS,!) 

: SECTION H: BAND NUMBER IBfiND= 2 
DO 58 H- 17,689 
l«-601-M 

S9 RESULTCMR)-<fiU«MR) 
-UBtMR, 2>*RESULTCMRH 1) 
-UDttiR, 3)*RESUM'i:MRI- 12) 
-USKMR, 4)»RESULT(MR+ 13) 
-UDCKR, 5)>«PESULT(M!5+ 14) 
-UPtflR, S)«Rf-:SULT(MS+ 15) 
-UDtMR. ?>>«ESULT(MR+ IS) 
)AJDCMR. 1) 

RETURN 
END 


