APRIL 1978 PPPL-1435
: Uc-20g

A PROGRAM GENERATOR FOR THE
INCOMPLETE CHOLESKY CONJUGATE
GRADIENT (ICCG) METHOD

BY

G. KUO-PETRAVIC AND M. PETRAVIC

PLASMA PHYSICS
LABORATORY

(R
i ,.|||||,

DISTRIBULION OF 1HIS DUCUVENT 15 €NUMITED L

PRINCETON UNIVERSITY.
PRINCETON, NEW JERSEY

This work was supported by tha U. S. Departﬁent of Emergy ”Wif

Contract No. EY-76-C~02~3073. Reproduction, translatiom, 1

publication, use and disposal, in whole or ic part, by or
for the United States Government is permitted.

ABSTRACT

The Incomplete Cholesky Conjugate Gradient (ICCG) method
has been found very effective foi the solution of sparse systems
of linear equations. 1Its implementation on a computer, however,
requires a considerable amount of careful coding to achieve good

machine efficiency. Furthermore, the resulting code is necessarily
inflexible and cannot be easily adapted to different problems.

We present in this paper a code generator GENIC which, given a
small amount of information concerning the sparsity pattern and
size of the system of equations. generates a solver package.

This package, called SOLIC, is tailor made for a particular

problem and can.be easily incorporated into any user program.

TH

1w ey 1

i i

-2-

PROGRAM SUMMARY

Title of Program: GENIC

Catalogue number:

Program obtainable from: CPC Program Library, Queen's

University of Belfast, N. Ireland, GB ’
Computer: PDP 10 Installation: Computer Centre, Plasma Physics
Laboratory, Princeton University, James Forrestal Campus, P.O.

Box 451, Princeton, NJ 08540 USA

Operating system: TOPS-10, version 6.03

Programming language usecd: Fortran IV

High speed storage required: 11,280 words for source module

14,463 words for relocatable module

Number of bits in a word: 36 bits/word

Overlay structure: None

Number of magnetic tapes required: None

Othexr peripherals used: None

Number of cards in combined program and test deck: approximately

1,800 cards

Card punching code: ASCII

Keywords: Linear Sparse System, Incomplete Cholesky Decomposition,
Conjugate Gradient, Code Generator

Nature of physical prxoblem : s

‘The pProgram generator GENIC and the resultant Incomplete-Cholesky
Conjﬁgate Gradient (ICCG) Solver SOLIC are applicable to a wide
range of physical problehs, in particulér these modelled by
partial differential equétions. Elliptic, parabolic and hyper-

tolic types of equations are all covered since the method can

-3

be used to solve any sparse system of linear equations with

a positive definite matrix of coefficients.

Method of solution

The Incompleté Cholesky Conjugate Gradient method, known

as the ICCG method, based on the work of Meijerink and VanderVorst

[1] and Hestenes and Stiefel [2] is used.

Restrictions on vhe complexity of the problem

The method - .11 work for systems with any degree of sparsity.
However, the particular generator is most efficient for sparse
matrices with a definite band structure with only a few 2Zeros

in the sub-diagonals rontaining non-zero coefficients, If

these conditions are not satisfied an unnecessarily large

amount of redundant expressions will be computed. The generator
GENIC alsc assumes a repetitive block structure, discussed in
detail in the lo.7y write up. At present the dimensions of arrays
which describe the beginnings and ends of diagonal kands in the
problem matrix are set at 20, which means not more than 40 bands
can appear in the problem matrix, This numbéiy.however, can

easily be varied by re~dimensioning the Common list in GENIC.

Typical running time: For GENIC to produce the test solver

SOLIC shown in this paper the typical running time is around 1.5 secs.
References: 0.A. Meijerink.and H. A. VanDer Vorst, "An Iterative
.SOIution Method for Linear Systems of which the Coefficient Matrix
is a Symmetric M-matrix," Technical report TR-1, Academic

Computer Centre, Budapestlaan 6, de Uithof ~-UTRECHT, The Nether-

lands (1976).

-4-

*This work was supported by United States Department of Energy

Contract no. EY-76-C-02-3073.

*Also Lawrence Livermore Laboratory, Livermore, CA 94550

Contract no. W-7405-ENG-48.

LONG WRITE UP

1. Introduction

Many different problems in physics and engineering often
result in a common type of a mathematical equation. If the
solution domains are such that the common equation can also be
solved by the same method, a fixed solver program can usually
be provided thereby avoiding a lot of program duplication.

The core of a solver usually contains a computer programmed

form of a particular numerical algorithm and usually requires
only the actual equation coefficients to be input to produce a
solution. & solver, being a fixed program, usually has to
balance generality against efficiency. If many of the coeffi-
cients can be zero in some problems, a fixed program may find
itself doin¢y unnecessary work. Solving large sparse systems of
linear equations resulting from differencing partial differential
equations on a point grid is one typical example.

The awlkwardness of a fixed program becomes especially
obvious wher. a number of variants ¢f the same numerical method
are available but the choice between them cannot be made until
the numerical values of, say, matrix coefficients are known.
This type of problem can often be best solved by writing a
program generator rather than a fixed program. Since the
actual solver program produced by a generator usually gets
executed many times during a computer run, £he overheads of
program generators are quite small. The advantages of the
program generator approach are therefore two-fold: vVariation

and experimentation with a numerical algorithm becomes virtually

-6-

effortless, and the tailor-made solver program is generally very
efficient. The improvement in speed comes from both being able
i to choose the best variant of a numerical algorithm and from
moving work from the execution stage into the generation ari
compilation stages. The actual gains in execution speed depend
strongly on a particular computer-compiler combination and even
more on the numericél algorithm. Ih many instances a carefully
Assembler coded fixed program will turn out to be the best answer
to a particular need but there are also substantial areas of
numerical analysis where coding by means of code generators has
distinct advantag=s. Most likelycandidates for code generation
are problems for which not only variations of the solution

method are possible but which also require elaborate coding

involving a lot of hand calculation by a programmer.

2. Application to the ICCG Method

One case where conditions for code generation seem well
satisfied is the Incomplete Cholesky Conjugate Gradient (ICCG)
method as applied to solving partial differential equations
using implicit finite difference schemes. The ICCG method is
a much improved version of the conjugate gradient method
developed by Hestenes and Stiefel ([2] in the early 50's, the
improvement resﬁlting from replacing the iterations with the
original problem matrix A in Ax = P by iteration with an
approximate inverse of A. 1In the ICCG method the approximate
inverse is obtained by imcomplete Cholesky L-U decomposition as
proposed by Meijerink and Van Der Vorst [1]. The usual Cholesky

version of Gaussian elimination is used but a pre-selected

-

-7~

sparsity pattern is forced upon the L and U matrices. The
pattern is usually that of the original problem matrix. The
freedom of choosing this Sparsity pattern in different ways and
the dependence of convergence rate on it, mske for a type of
coding very suitable for code generators. In the first code
generator we make available, the allowed sparsity patterns
are rather restricted since they consist ornly of variable
location and width digonal and sub-diagonal bands. Even so,
this modest amount of extra flexibility allows not only for
instantaneous coding ‘of many finite difference schemes in two
or three dimensions but it also makes tuning practicable
resulting in improvements in- speed of more than 4G% over the

-

standard sparsity pattern in the test case shown in this paper.

3. The Numerical Algorithm

Extensive literature exists on both the original Conjugate
Gradient method [2,3,4]) and its extension the ICCG method
[1,5,6], sc we present only the actual algorithm Eoded by the
generator. The algorithm solves a linear system of the form:
Ax = b , where x and b arecolumn vectors and A is a non-singular
positive definite»square matrix. Since A need not be symmetric,
this algorithm is somewhat more elaborate then the original
Merjerink and Van Der Vorst algorithm. It can, however, be easily
derived from the conjugate gradient algorithm of Hestenes [3],
P. 93 and is essentially the sume as that proposed by Kershaw [6],
The algorithm consists of successively approximating thé solution

X by a series of direction vectors 1 mutually conjugate with

. T
respect to the matrix N = A'HA and also orthogonal te a sequence

-8~

of gradient vectors g; - The gradient vectors are in turn
conjugate with respect to matrix K. The metxics H and K are
arbitrary positive Hermitian matrics, which also makes N a
positive Hermitian; AT is a transpose of A,

The recursive procedure for constructing the Ei's involves
two other vector sequences, that of the residual vectors
r, = P - Afi and subsidiary vectors s; = Hfi . The code
generator assumes all the matrices to be real and uses the

choice H = (LLY)™! and k = (ulu~t

, where LU is an approximate
of A obtained by the already described imcomplete Cholesky
decomposition process and LT and vt are the transposes of L

and U respectively. Our particular algorithum for solving

Ax = 9 (1) then reads as follows:
- _ . - T, -1 .
r,=b - ax_ (2:1) s = (LLh)Tr (2:2)
T T -1
95 ~ 9)go (2:3) P, = (U"u) g (2:4)
_ (fi, Sy -
i 7 p; 8y) (2:5) ¥i+1 =% toegp; (2:6)
_ _ . _ T -1
Ti +1 = L3 — oAp; (2:7) sy 4= @WLT) Tz oL, (2:8)
i +1,51 + 1)
i (r; » s;) (2:9)
T) . T |
9 41" As; 40t BY (210 p L, = Wolg L (21

-0

The following relationships hold

gradient vectors:

(gi ’ ng) = 0 (i
(gl ’ NEJ) =0 (i
(py - 95) =¢C; (]
(Ei'gj)=0 (1
Also, the residuals satisfy:
(r; » Hry) = (r; , 850 =0
The
the exact

is the dimension of the system.

among the direction and

5) {3:1)
#£ 3) (3:2)
=0, l,..., i) (3:3)
=0, 1,...,3-1) (3:4)

(i # 3) (3:5)

conjugate gradient methed ensures convergence to
solution within a maximum of N jterations, where N

This fact is only of theoretical

significance since in practice sufficiently good approximations

must be obtained in around /R iterations or less.

The method minimizes]ki -

algorithms of the form:

=X + P

~0 i- (DT (x -

X
X5) v

xHN for all i and for all

(4:1)

where P is a polynomial of degree i -~ 1 in T and

(wlo) ~1aT @ity 1a

=3
1

KN =

(4:2)

-10-

The upper bound on the error is then [1]:

2i 2
2 Ve = 1
ey - xll g < [—/gﬁ] =, - xllg -8
where ¢ = Amax(r)/kmin(T) . :

)

Since T is constructed to approximate the unit matrix,
the expectations are that the algorithm will converge much
faster than the original CG method. The performance of the

method in practice is discussed at length in [1] and [6].

4. The Generator Program

The ICCG method is most effect ve when A is spafse
and in particular when all the non;zero elements are concentrated
on the main diagonal and a small number of sub-diagonals. The
5,7,9, etc., point finite difference schemes result in precisely
such matrices with the sub-diagonals usually clustering together
to form bands. This structure permits easy compression of
the full matrix A since only the diagonals containing non-zero
elements need be stored. These sub-diagonals together with
t.'e main diagonal are stored in two 2D arrays ADU and ADIL
corresponding to the upper and lower triangular parts of & and
both containing the main diagonal. ADU is of dimension N,KP
where N equals the dimension of A and KP is the number of non-zero
diagonals in the upper triangle of A. Obviously, the diagonals
of A are thenmapped onto columns of ADU while rows are mapped
onto rows. The same applies to ADL and the lower triangle of A.
It is up to the user to pack the problém matrix A intb the form

required by the generated solver program. The generator program

-1l

itself on the other hand does not work on A directly and

requires only information about the band and block structure

of A. The task of the generator is to write a complete

solver package SOLIC in Fortran which contains the implementation
of the ICCG algorithm (2).

The solver is aimed principally at physics problems
solved by finite difference methods on rectangular meshes,
Hence 21l the non-zero diagonals are assumed to be full. How-
ever,lsome boundary conditions can produce non-zero diagonals
which are very sparse but with fegular patterns of non-zero
elements, rezsulting in a block structure within A. While more
general ways of specifying sparsity patterns will be provided
in the future code generator a very simple optional device is
provided in GENIC. Assume that all the elements of A are zero:
beyond the columia JLIM for the first IR rows, beyond the column
JLIM + IR for the next IR rows and so on throughout A, and
that this pattern is symmetric. That can be commuiiicated to
GENIC by simply giving IR and JLIM actual values through the
namelist DIMS. If such a structure does not exist JLIM must
be set equal to N.

The generator program performs the following sub-tasks:

1. Computation of the width of matrix bands and the

actual afray indices from the input information.

2. Output of the contents of the main solver sub-

routine SOLIC.

3. Output of subroutine SETLU which copies the contents

of the two parts of A, ADL and ADU, into the work-

space for decomposition and iteration: LD and UD.

i o

& i

e

-12~

4, Generation and output of LUDCMP which performs
incomplete L-U decomposition. ‘
5. Generation and output of ADOTV and ATDOTV
which performs matrix-vector multiplication,
6. Generation and output of LLTINV and UTUINV
which solve two subsidiary triangular systems.
The first of the sub-tasks is performed by the main program
while 2-6 are carried out by the subroutines OUMAIN, SETLU,
GENLU, OUTAV, OUTATV, OUTLLT, and OUTUTU used in an uninter-
ruped sequence of calls in the order listed. & call to OUTUTU

ends the program,

5. Description of Data Input to the Generator Program GENIC
When inputing data for GENIC, the user has to concern
himself ouly with the structure of the full system of N
equations which in vector form reads Ax = b . Take first the
full matrix A and number its rows and columns 1 to N in the
usual way starting from the upper left hand corner. Next
imagine a splitting of A into a lower triangular matrix ADL
and the upper triangular ADU, with both ADL and ADU containing
the main diagonal, and number the diagonals of ALL by the row
number of their first column elements. Also number the diagonals
of ADU by the column number of their first row elements. The
numbering is therefore in both cases from the main diagonal
which bears the number 1. One is now ready to define the non-
zero sub~diagonals. (A non-zero sub-diagonal must contain at
least one non-zero element.) It is quite possible to provide

- GENIC with the numbers of all the non-zero elements but since

-13- .

they are usually clustered in bands, it is sufficient to

provide only the starts and finisheé of the bands by giving

the ordinal numbers of sub-diagonals at each side of every

band.

Data input ig through two namelists:

NAMELIST/DIMS/ NOUT, NOUTPP, N, JLIM, IR

NAMELIST/ABANDS/ IDFAUT, AUS, AUF, ALS, ALF, US, UF, LS, LF.

The user has to do the following:

1.

Set the input channel number for reading the name-
lists by changing the first executable statement
of GENIC which defines NIN.
Read via DIMS:
a. the output channel numbers NOUT for

GENIC and NOUTPP for SOLIC, and
b. the system dimension N and the al-

ready described block structure

parameters JLIM and IR, If there

is no block structure JLIM and IR

should be made equal to N,
Use namelist ABANDS to define the end of the
first non~zero band of ADU starting from the
main diagonal by setting AUF (1). AUS (1)
being the start of the first band is auvto-
matically assumed equal to 1. Thendefine the
limits of the second band through AUS (2)
and AUF (2) and likewise fér any additional

bands. Note that one_mﬁst always have

s

~14-

AUS(L) < AUF(L), the eguality sign correspond-
ing to a degenerate band consisting of a single
sub-diagonal.
The bands of ADL, UD and LD have to be defined only if they are
different from those of ADU. The following rules must be
observed:
4, Band pattern of A symmetric:
a. pattern of LU the same as that of A:
set IDFAUT = 1, define elements of
AUS and AUF only.
b. pattern of LU different from A but
symmetric: set IDFAUT = 3, and
define elements of AUS, AUF, US qnd:
UF only.
5. Band pattern of A non-symmetric:
a. pattern of LU the same as that of A:
set IDFAUT = 2, and set elements of
ALS and ALF as well as AUS and AUF.
b. pattern of LU different from A:
set IDFAUT = 4, and set elements of

AUSs, AUF, ALS, ALF, US, UF, LS, LF.

6. Output of the Generator Program GENIC

The output of GENIC is the solver proéram package SOLIC,
in Fortran, which consists of the principal subroutine of the
same name and six subsidiary subroutineés: SETLU, LUDCMP, ADOTV,
ATDOTV, LLTINV and UTUINV. Their combined purpose is to provideb

a linear system solver based on the CG algorithm (2), the

-15~

individunal subroutines performing the following tasks: SOLIC
contains the main body of the algorithm which it carries out
with the help of subsidiary subroutines all of which are called
only from SOLIC.

Having received the problem matrix A in the compacted
form ADU and ADL, the right hand side 9 and the trial vector
X for Ax = b , SOLIC first copies the contents of ADU and ADL
into UD and LD by calling SETLU. It then calls LUDCMP which
performs the incomplete decomposition within UD and LD after
which the algorithm (2) is applied. Several specialized
tasks with the algorithm are performcd by the subroutines:
Operations by A and AT (transpose of A} on any vector Y
are performed by calling ADOTV (result, ¥) and ATDOTV (result,
¥) raspectively. They correspond to sections (2:3) and (2:7)
of the algorithm. Similarly the triangular systems (2:8) and
(2:11) are s?}ved with the help of LLTINV and UTUINV, The

value of NOUT, which is input through the namelist DIMS into

GENIC, determines the medium on which SOLIC is to appear.

7. Data Input for the Solver Program SOLIC
The user interface is quite a simple ¥ and consists
of two parameters of subroutine SOLIC (ISTOP, CONVEG) and a
labelled common block: COMMON/IC/ADU (D1, D2), ADL (Dl, D2),
XICCG (D1}, RHS (Dl). The meiuning of the two parameters are:
1. Integar ISTOP = the maximum number of
iterations to be performed before passing
control from SOLIC to the calling sub-program.

2. Real CONVEG = specification of the convergence

-16-

criterion. SOLIC returns control to the
calling sub-program when || r;|l /[l %, .
where ri'= bh - Axi ;, becomes less or

~

equal to CONVEG.

The labelled common block COMMON/IC/ should be included in the
calling program and all elements of the four arrays in it are

to be set. 2HS must equal the right hand side vector b of (1)
and XICCG the trial vector X of (2:1). ADU and ADL must con-
tain the problem matrix A of (1) in a compacted form described
earlier. It is important to note that A must be normalized

so that &ll main diagonal elements are equal to 1. The symbolic
dimension D1l has the meaning of row and D2 the diagonal of the

A matrix. Dl and D2 will appear as absolute constants in SOLIC.
The user must set ADU (I,KP) =A (I,KP) where ADU contains the
upper triangular half of A; here I is the row index of A and KP
is the packed diagonal index K of A. KP is determined from K
simply by counting only the non-zero sub-diagonals sequentially
starting from the main diagecnal which is counted as 1. Similarly
ADL (I,KP) = A (I,KP) where ADL contains the lower triangular
portion of A. Again KP is an index of the non-zero sub-diagonals
starting with the main diagonal which is counted as 1. Since A
is assumed normalized, there is no need to copy into ADU (I, 1)
and ADL (I,l). The space taken up by these locations are later

equivalenced to working arrays in SOLIC,

-17-

8. Output of the Solver Program SOLIC

SOLIC outputs only a small amount of diagonstic messages
on an output channel defined by NOUTPP, a parameter read in
through the namelist DIMS. The diagonstic output contains the

following information:

1. ITSTEP = the actual number of iterations
performed in the present call to SOLIC.

2., XNORM = || xs I

3. RNORM = || r; I

4. SIRI = (51 ' Ei). This is a measure of

orthogonality of S; and - Though
neither vector is normalized, this
is still a good indication of the
proper functioning of the code. SIRI
should be normally around 10 10 |

The solution of the system (1) is returned in XICCG and the

vector b is overwritten by the residue r, .

=

9. Test Case Input and Output

The sample output of GENIC as shown in this paper has been

produced with an input as follows:

$DIME NOUT=3s NOUTPP=5»N=&00s JLIM=30: IR=15%
BABAMDE IDFAUT=3s AUS=1»15s RUF=2:17s US=1ls13s UF=g»17 % EMD

This input corresponds to a linear-system arising from a 9 point
discretization of a partial differential equation on a rectangulax
domain with aperiodic boundary conditions. After considerable
optimization on the time required to reach a certain convergence

ratio, it was found that adding 2 more sub-diagonals on the inside

-18-

of the side bands in UD and LD reduced the number of iterations
required from 28 to 18 with a consequent saving in time of 40%.
This gain is the result of a more complete L-U decomposition

and naturally varies with the actual coefficients of the problem
matrix A. The program stands to gain a great deal from the
vector processing capabilities of modern computers. Subrcutines
SOLIC, ADOTV and ATDOTV can be completely vectored while sub-
routines LUDCMP, LLTINV, UTUINV, because of the recursive

nature of the expressions, cannot. Although the vector capa-
bilities of the CDC 7600 are limited, reprogramming the sub-
routines SOLIC, ADOTV and ATDOTV to make use of it [7] has

yielded a further gain in speed of a factor of 2.

ACKNOWLEGMENTS

We would like to thank Dr. B, McNamara for useful

discussions.

-19~

REFERENCES

i1l J. A. Meijerink and H. A. Van Der Vorst, "An Iterative
Solution Method for Linear Systems of which the Coefficient
Matrix is a Symmetric M-matrix," Technical report TR-1,
Academic Computer Centre, Budapestlaan 6, de Uithof-
UTRECHT, The Netherlands (1976).

[21 M. R. Hestenes and E. Stiefel, Journal of Research of
National Bureau of Standards, 49 (1952) 409.

{31 M. R. Hestenes, "Process of Sympqgia on Applied Matk, VI
Numerical Analysis," (McGraw-Hill; New York 1956).

[4] J. K. Reid, “dh'the Method of Conjugate Gradients for the
Solution of Large Sparse Systems of Linear Equations,"
Proceeds of Conference, "Large Sparse System§ of Linear
Equations," Academic Press, New York (1971). .

[5] P. Concus, G. H, Golub, D. P. O'Leary, "A Generalized
Conjugate Gradient Mehtod for the Numerical Selution of
Elliptic Partial Differential Equations," Lawrence Berkeley
Laboratory, PublicationLBL~4604, Berkeley, CA, (1975},

[6] D. S. Kershaw, Journal of Computational Physics, in
press, (1978) or UCRL, preprint - 78333.

7} f. H. McMahon, L. J, Sloan and G. A. Long, "Stacklib - 2
Vector Function Library of Optimum Stack-loops for the
DCD 7600," Lawrence Livermore Laboratory, Pubiication

UCID -~ 30083, Livermore, CA, (1976).

e

THIS PROGRAM PACKAGE SOLIC IJSES THE FRLLOMING
ARAMETERS WMICH HAVE BEEN INPUT:

IDFRUT- 3 NDUT- 3 NDUTPP- G N= 688 JLIM= 38 IR= 15
RUSC]Y = 15] a 54 a a g e]] a [8 9
AUFCD = 2 I7 [G 2] 2 a 2] a a 4] 5] a 8 [4]
ALS()= 1 15 2}] 8 8 2 -] 2] a 8 a a 8
ALF(D= 2 17 2] B a @ 2} a il 3 B 8 8 8 <] e
(L= 1 13 a @ 8 8 2] 8 2] 4] 2] g a a e 0
UF(]I)= 2 i7 @ 9 [} i) a 8 2 8 8 a 8 a a a
LS{Is 1 13 a B 8] 5] 8 e 4] e [4] <}
LF(D}= 2 17 a a a 8 a8 e 8 8 8 a 2] 9 a

[elnlols InEalzIyTelzlziz]y]

fxly)

SUBDUTINE SOLIC(ISTOP,CONVER)

COMMIN/ICAADUC 688, 59.ADL: 608, 5) XICCi3¢ 608).RHS(688)
COMICHANLAIBC G, 7)

COMMON/LL-LDC B8R, 7)

REAL LD
THIS SUBRDUTINE IS CALLED BY THE PROBLEM PROGRAM. IT
CONTAINS THE-MAIN CONJUGATE ERADIENT LOOP
DIMENSION RIC 598),GI(&09).VIEMP(§88),51¢ 58B),PI(588
lzlé\'ﬁ(llb gESIYTFMP(I) JADL(1.12Y, (SIC1Y L ABUCL, 13, (B1C1),LD41, 1))
- P

TerEre

CQLL LUbCHP
FORM RESIDUAL VECTOR fNR STORE IN R1
CALL ADCTV(VTEMR, XICCE)

L0 18 M=1, &
19 RICM =RHSCM -VTEMP (M)

FORM GRQDIENT VECTOR
ST=iL.LT)ox~1.R1
caALL LLTINV(SI RI.VTEMP}
GI=AT.S1
‘CALL RTDOTV(GI sD
PI=(UT.U)%ok=
cALL UTUINV(F‘I G1.VTEMP)

CALCULATE ALFAI
ANUM=2

DD 26 M=1, 680
ANUM=ANUM+RT (M) AS 1 (M)

28
188 CONTINUE

fe s]

[]

DENDH-I
0 39 M-1, 660
38 RDENDI‘I-RBENDM-PPI (MYAGT{M
ALFAT=ANUM/ADENDM

PO 48 M=),
48 XICCE(MJ-XICCG(M)*RLFRMPI(H)
FIND NEW RES

CALL ﬂDDTV(V‘TEMP.PI)

D0 56 M=1, 660
) RI(H)-PI(H)-RLFHI*VTEMP(I‘D

SIO®

cCEOo®

BFOR

Qoo

QOO

ECO

-oz_

€ CHECK FOR CONVERGENCE
’ RNORM=8,2

¥NORM=0.0 :
D0 69 M=1, 608
RNORHRNORM FRHS (M) #RHS (M
. XNORMXNORMHXICCR (MY %7 ICCG)
€3 CONTINUE
RATIO=SORT (RNORM/XNORM)

Colvlojoickinioinicioklololoiok
C THIS SECTION DEFARCATED BY scioiiolcdSERVE FOR DIRGNOSTIC
£ PURPDSES DMLY AND CAN BE DELETED FOR PRDDUCTICN RUNS
XNORM1=GORT(XNORM)
RNORM] =SGRT {RNORM}
SIRt=2.B
D0 78 M=1, 683
7@ SIRI=SIRI+RI(MNSI(M)
WRITECNOUTPP, 161) ITSTEP,XNORM1,RNORMI,RATIO,SIRI
looIfolokACKAOKHDIIOIOIOIOIK
IF (RATIO.LE.CONVEG) GO TO leea
IF (ITSTEP.EQ.ISTOP) GO TC 1880
c ITSTEP'ITSTEFH

c
€ CALCULATE SI
CALL LLTINVC(SI,RI,VTEMP)

BNUM=B
D0 B3 M=1,
83 BNUMBNUMIR l (H) HRIM AT
BETA1=BNUM/ANUM
c ANUM=BNUM
c

EALL ATDOTVLVTEMP.S1)
DD 94 M=1, &
.92 GI (M =VTEMP (M) +BETAIXG 1 (M)
E CRLL UTUINV(PI,GI.VTEMP)
GO TG 1@
181 FORMAT(IH ,"ITETEP=",]3," XNDRM-",EB.2,
« RNORM=",EQ.2,° RATI0-",E9.2. " SIRI=1,E9.2
1298 EE’;URN

C
C

SUBROUTINE SETLU

COMMON~1C/ADUC GEB. S),ADLC 689, T),XICCG(886} ,.RHS: 688)
COMMON/UL/UDC 6688, 7)

CDPI‘DH/LL/LD(SBQ ”

EAL LD
c THIS SUBROUTINE SETS UD AND LD TO THE VALUES GIVEN
C 1IN ADU.AND APL BY THE USER
DD 18 J=1, ?
D0 18 M=1,” 609
UD(M, 3y =8,
18 CONTIKUE
DD 28 J=1, ¥
D0 2@ ii=1, ©@a

2e L'UNT[NUE‘
UD(H.]) 1°9

~T2-

UD(M, 2Y=ADUM, 2)
CONTINUE

D0 48 Me1, 528
LD(M, 2)=ADL(M, 2)
CONTINUE

49
c
C
Do 58 3= 3. S
DD 59 M=1, 508
UBCM, J+ 25 =ADUCM,)
52 CUNTINUE
c
c
DO 8B J= 3, 8
DO 6P M=1, 668
LD(H..H- 23 =ADL 01, 1)
68 COMTINU
RETURN
END
[~
C

SUBROUTIHE LUDCHMP

COMMON-IC/ADUC 680, 5),ADLC BB, S),XICCGC 608),RHSC €92)
COMMON-UU/UDC 688, 7)

COMMON/LLALBC GBE; a

REAL LD
THIS SUBROUTINE PERFORMS THE INCOMPLETE L-U DECOMP-
OSITION OF THE ORIGIMAL MATRIY ACADM ANL ADL)
RESULTS OF THE DECOMPOSITION ARE STORED IN UD AND LD
PIVOTL=1,0E~18
QP IVOT=SART(PIVOTL)
D0 1 JMIN= 1, 571, 15
J1=JMIN+ e

noa

J=J1,J2
IF(RBS(UD(J 1)) .LT.PIVOTL
. UD(3, 1398 1GNP TVOT, UD (1. 1))
RUDJJ=1.@-UDC], 1)
LDCJ+ 1, 2)=LD(I+ 1, 2)RRUDJIJ

1, 2)
UBCI+ 1. D=UDCI+ 1, DRD{T, 22
UDCJ+ 1, 3d=UD{J+ 1. 3)4R#UDCI. @)
i+ 1, Q=UDI+ 1, 4)+RHD(J, 5
UDCJ+ 1, D=UDCI+ 1, SI+RxUD(I. B
UDGJ+ 1, 6)=UDR(J+ 1, S)+R#UD(S, 73
LDCJ+ 12, 3)=LD(J+ 12, 3)4RUDJJ
Re-LDLJ+ 12, 3))
UDCJ+ 12, D=UDCI+ 12, 1)HRUDCS,. 3)
UDCI+ 12, 2)«UDCJ+ 12, 2)+RxUD(T, 4)
LD{J+ 13, 4)=LD(J+ 13, A)*RUDJI
R=-LDCJ+ 13, 4)
LD(J+ 13, 3)=LD(J+ 13, 3)+R¥UDLS, 2)
LRCI+ 13, 2)=LD(J+ 13, 2)4R4UD(JT, 3)
UD(3+ 13, 13aUDCI+ 13, 1-HOIDCGT, 4
UDCJ+. 13, 2)=UDCI+ 13, 2+, 5)
LD+ 14, S)=LD(J+ 14, SINRUDIY
Re<LD¢J+ 14, 5)
LDI+ 14, 4)elDCI+ 14, D+RAUDCT, 2)

v t

-ZC~

)

LDCJ+ 14, 2)=LD(J+
undJ+ 14, H=UD(J+
uDCJ+ 14, 2)=ib(J+
LD¢I+ 15, G)=LD(J+
Re-LD(J+ 15, 6)

LDCJ+ 15, S)eLD{J+

LD{J+ 16, P)=LDCJ+
Re-LD{J+ 16. 7)

LD{J+ 16, €)=LD(J+
LD{J+ 16, 2)=LD{J+
updJ+ i6. 1) =UD(J+

19 CONTINUE

J=JtiIN+

2)+RMUDCT,
132R*UDCT,
2Y DT,
8)4RUDJIJ

S +RMUDL(T .
2)+RaUDCJ,
1HHUD(T,
2)+RWUD(J,
7)3RUDIS

8)4R%UD LI,
2) 4R (),

6. 1) RAIDLI,

14
IF(ABSCUD(], 1)) .LT.PIVOTL
« UDCY, 1) =SIGHCAPIVOT, UBC(T, 13)

RUDJJ=1.8-UD(T. 1)
LP(J+ 1, 2)=LD{J+
Re=LD(J+ 1, 2)
Up<(J+ 1, 1)=UD(J+
updJ+ 1, 3)=UD(J+
UG+ 1, A=UD(J+
up¢J+ 1. 5)=UD(J+
LD{J+ 12, 3)=LD(J+
R=-LD(J+ 12, 3)
UDd+ 12, 1)=UDLJ+
UDCJ+ 12, 2)=UD(J+
LDC¢J+ 13, D =LD(J+
R=-LD(J+ 13, 4)
LDCJ+ 13, 3)=LD(I+

LB(J+ 14, S)~LD(J+
R=-LD(J+ 14, 5)

LD{JI+ 14, A1 =LD(J+
LI+ 14, 2)=LD(J+
UDCJ+ 14, 1)=UD(J+
upCJ+ 14, 2y=UD(J+
LD{J+ 15, 6)=LD(J+
R=-LD{Jj+ 13, 6)

LB+ 15, S)=LD(J+
LB(J+ 15, 2)=LD(J+
UDLI+ 15, 1 =UD(JI+

.

1,
1.
1.

1
12,

15,
15,

1S5,

2)%RUD.IJ

1X+R¥MUD(J,
3)+RMUDCI,
4)+R¥UD(J,
S)+HRMID (T,
33HRUNIT

1y+R¥Ub I,
2)+R¥UDCT,
) *RUDIT

J+RAUD T,
2)+R#UD(J .
1)+RAURCT,
2Y4RMUD (T,
SY#RUDIS

4)+R¥UD(J,
2)+RHUD (I,
1)+R4UD LT,

» 234R¥UDCJ.

6)#RUDJJ

S)+RMUD(J,
2)1RMUD (],
D+RUD LY,

1 CONTINUE
C GENERATION COMPLETED FOR BLOCK O 1
JHIN» 586

JoJHIN+ z
IF(ABS{UD(J, 1)), LT.PIVOTL
- UDBL, 1) =SIGHCAP IVOT, U (I, 1))

RUDJJ=1.8/UDCJ, 1)
LD¢J+ 1, 2)sLD(J+
Re-LD{J+ 1, 2}

UDCJ+ 1, 1=UD(J+
UpcJ+ 1, 3d=UD¢J+
updJ+ 1, 4)=UDJ+
LDOJ+ 12, 3)=LD(J+
Re-LD(J+ 12. 3

[

-

-

1,

2)*¥RUDJIS

D4R¥UD(T,
3)HUDC(I .

1, 4)+R¥UDC(T,

12,

3)#RUDIJ

43
)

&)

2)

oo
~=

el

2)
&)
i)

2)

a1
=

2)

5)

_E -

2

UD(3+ 12, 1)=UD{J+ 12, 1)4RWUD(J, 3)
UDCI+ 12, 2)=UD(J+ 12, 2)+R¥UDLT, B
LDCJ+ 13, 4)=LD(J+ 13, A#RUDJJ
Ha-LD(J+ 13, 4)

LDtJ+ 13. 33=LD(J+ 13, 333R¥UDCT, 23
LD¢I+ 13, 2)sLDCJ+ 13, 2)+R¥UDCI, 3)
UDCI+ 13, 1)=UD(I+ 13, D+RHEIDG,
UD(J+ 13, 2)=UD(J+ 13, 2)+R:UD(I, 5)
LD(J+ 14, S)=LD(J+ 14, 535RUDJJ
Re-LD(J+ 14, B)

LDCJ+ 14, 4)=LDCJ+ 14, 4)4RSUDCI, 2)
LDCJ+ 14, 2)=LD(J+ 14, 2)+RAUDCI,)
ub(J+ 14, n-un<.1+ 14, D4RMDLI, 5)
J=JMIN+

lFmBsrunu £33 .LT.PIVOTL

. UDed, l)-SlGN(RPlWT.IJDtJ.l))
RUDJJ=1.8UDCJ,

LDCJ+ 1, .2>-LD(J+ 1, 2IRRIDIJ
R=-LDCJ+ 1, 2) .

UD¢I+ 1, D=UDtJ+ 1, 1)4R¥UD(I, 2)
UD¢J+ 1, 2ysUDCJ+ 1, I34R*UDCI,)
LD¢J+ 12, 3)=LDCJ+ 12, 3)aRUDJJ .
Re-LD(J+ 12, 3) .
UDCJ+ 12, 13sUDCJ+ 12, DHRMD(I, 3)
UD(I+ 12, 2)sUDCJ+ 12, 2)+HMD(I, 4
LDUJ+ 13, 4)=LD(J+ 13, dX*RUDJS

: 3

LDCJ+ 13, 3)=LD(J+ 13, 23RN, 2)
] » 2)+RHID(I. 2)
UpeJ+ 13. 1)=UD(J+ 13. D +RAIDCI. &)
JuJIMIN+

IF(ABSCUD(J, 1D3.LT.PIVOTL

« WD, l)-SlGH(DPlVOT ubdr, 133
RUDJJ=1.0-UD{J, 1)

LbeJ+ 1, 2)=LDCI+ 1, 2)%RUDJJ
Re~LD(J+ .1, 2)

UDCJ+ 1. 1D=UDCI+ 1, 1D+RD(I, 2)
LDCJ+ 12, 3)=LD(J+ 12, Z)*RUDJJ

-
o
~
(3
¥
-
w
-

N
=
=4
~
[
+
o

R==LD(J+ 12, 3}
ubD¢g+ 12, l)-UD(J+ 12, D+RAUDT, 3)
J1=JMIN+ 3
J2=JMIN+ 13

b0 28-JI=J1,32
IF{ABSCUD(S, 1)).LT.PIVOTL
.~ . UDLT, 1)-51GN(IJPIVUT,LID(J,I))
“ "RUDJT=1. B8/UD(J.1
LD+ 1, f_),-lé‘l‘)(.ﬂ 1, 2)%RUDJJ

uD¢J+ ul- 12=UDCJ+ 1, 1RSI, 2)
" 2 CONTINUE
£ GENERATION COMPLETED FOR BLOCK NO 2
. RE;II.)IRN

SUBROUTINE ADOTV{(RESULT,COLVED) .
COMON-IC-ADUC 608, S),.ADLC GBB. 5),XICCEC §80),.RHS(680)
COMMON-UDAUDC 588, 7)

COMMON/LLALDC 688, 7)

v ¥

-pZ-

D
SION RESULT(1),COLVEC(1)
g THIS SUERDUTINE F’ERFURM.. A DOT PRODUCT OF MATRIX A -
€ EUngTEsRESULT-ﬁ CUL\'EC)
9 RESULTCM) <COLVEC(H)

C
c
Ke 2
TUL IM=GB1-K
KP =K
3 19 M=1,

TULIM
’ RESULT(H) RESULT(H) HADU (M, KP) #COLVEC CK=-14D
18 CONTINUE

[ely}

DQ 28 K= 15, 17

TUL THe601~K

KPeKP+1
..D0- 28 M=1, JULIM

© "RESHLT (M) sRESULT(M) +ADY (M. KPYFCOLVEC (K14
28 CONTINUE

.

K
xLLm-K
Kpei

~'BO 30 _MeILLIi1, 600
RESULTCH) =RESULTCM HIDL (M, KP) 4COLVEC (M-K+1)
38 CONTINUE

s 1)

D0 4@ K= 15, 1?7

ILE IM=K

KP=KP+1

DD 48 M=ILLIM,E

RESULTD -RE"ULT(MJ +ADL (M, KP) *COLVEC (M=-K+1)
48 CONTINUE

FETURN

END

SUBROUTINE ATDOTY(RESULT,COLVEC)

COMMON~IC/ADUL GBB. 5),ADL(608, 5).XICCG(€B88),RHS(6B3)
COMMON-ULAUD(& >

Egﬂl‘_ﬁN/LL/LDC SBI, "

AL “LD

DIMENSION RESULTCI),COLVEC(!)
THIS' SUBRDUTINE PERFORMS A DUT PRBDUI:T OF THE TRANSPOSE OF
TUE MATRIM A WITH A cnl UMN JECTIN
"C'Mmm: RFEULT-RT.CD

Do
2 RESULT (,M) -CULVEC [y

LRy lys

DO 1@ H=ILL IM, 68B
RESULTCH) REOLT(M 4ADUCH-KC+1, KP)SCOLVES (- 41)
18 CONTINUE

—sz-

20720 K= 15. 17
ICL IM=K:
: KPKP+
. DB 20 MeILLIM,G!
o RESULT&H) -RESULT(MHQDU(M—KH KMSCOLVEC (M-K+1)

g -

UL IM=GB1-K
KP=i.
D038 Mei,

TUL IM
RESULTCM) =RESULT("‘I) HADL (M- 1, KPIHCOLVEC (MH= 1)
I8 CONTINUE

a0

DO 48 Ke 15, 17
IULIM=601-K
KF-‘I\P+1
DU 43 M=1, IULIM

g RE“ULT(NJ -RESULT(H!#'IDL‘H'I'K-l KPIRCOLYED (MHK~-12
“@ RN

END
g
- SUBROUT INE LLTINV(RESULT COLYEC,AUX)
COMMON1C/ADUC &A0, S5 ,.ADLC 660, 5).XICCGE 608) ,BHSC 620)
COMMON-UU-UD(600, 7)
COMMON-LLADC s88, 7)
REAL LD

DIMENSION RESULT(1),COLVECC1),AUN(1)
THIS SUBROUTINE PERFORMS THE OPERRTIDN (L.LCTRANSPOSED) #ck-1%"C A COLUMN VECTOR
CAMPUTE RESULTw (L . LT) o= MCOLYE
FIRST - AUX=Lak- 1%COLVEC
- THEN RESULT-L’I'M—I*RUX
“SECTION
... RUX(1)-CDLVEC(0

D |'1 2, 12
18 AUX(M ~COLVEC (M)
. -LD(M, 2)¥AUX(M- 1D
SECTION C: BAND NUMBER IBAND= 2
AUXC 13)=COLVECC 13)
. -LD¢ 13, 21¥AUX(12)
. ~LDC 13, 3MAUR(1)
AUXC 14> =COLVEC(14)
. -LDC 14, 2)¥NUXC 13)
.- -'.D(14, Iymuidd 2y
{14, A=0X D

1S5, 2P%AUKC 14
SHAURL B
-LD(1S, A*AUX(2
15, SIKAUARC 1)

RUX(lG)'CULVFC(16
-LD(16, 2Y%AUNC 15)
N “LDC 16, 31xAUAC 4

0 nOonoo

(2]

SLid

BLeeRs

525k
-
(1]
:

? A

. =LD(16, 4y*AUX(3
. ~LD{ 16, SIXAUXL)
. -LD¢ 16, S)wAUXC 1)
C SECTION D: BRNI\ NUI‘BER IBAND= 2
DO 20 M=~ 17,60
28 AUX(MD -\BULVEC (H)
. ~LDP(M, 2)3AUK(M- 1)
. =LDCHM, 3yxAUNCM- 12)
- -LD(M, A)3UX(M- 13)
. =LDeM, SYHAUX(M- 14)
- ~LD(M, GYHAUXK(M- 15)
. ~LDEM, PIHRAUX(M- 162

NOW GENERATE BACKUARD SUFEP
SECTIDN E
RESUL T(608) =AUX(EB2)
SECTION F
DO 4B M= 2,12
tHR=681-M
48 RESULT(MD =AUX(MR)
a ~LDCMR+
C SECTIOM G: BAMD NUMBER I
RESULT(SBB) =RUX(S98)
~LD{583, 2)#RESULT(5B9)
LD(EBB. I¥RESULT (508)
RESULT(SB?) =AUN(SE7
-LD(EBB. 2IHRESULT(SB3)
. -LD(J99. 2)HRESULT(59)
D608, 4)HRESULT(698)
"RESULT(S86) -RUK(SBS)
-LD(GB7, 2)4RESULT(587)
-LD(598, 3)*RESULT(599)
-LD(599, 4)*RESULT(599)
-LD(EA9, S)*RESULT(E08)
RESULT(585) =AUX (555>
-LD(G86, 2)¥RESULT(S25)
-LD(S97, 3)*RESULT(597)
-LD(598, 4)+RESULT(S99)
-LD(599, SIARESULT(SSD)
. -LD(588, &)¥RESULT(EE8)
C SECTION H: BAND NUMEER IBAND= 2
DO 90 M= 17.60@

MR=6a1~

S8 RESULT(MR) »AUX(MR)

~LDCMR+ 1. 2)HRESULT(MR+ 1)
~LDC(MR+ 12, SH#RESULT(MR+ 12)
~LDCMR+ 13, 4)RPESULT(MRT 13)
~LD{MR+ 14, S5)¥ ESULT(MR+ 14)
~LDCMR+ IS, B)uRESULT(MR+ 1S3
~LD(MR+ 16. 7IHRESULT(MR+ it)

o ooon

l. 2)*RESULT(I‘1E+ 1

RETURH
END

SUBROUTINE UTUINV(RESULT,COLVEC, AUX)

COMMON-IC/ADUC 688, 5),ADL(P8, S),XICCE(688) ,RHS(698)
© COMMON-UU/UDS 568, 7)

COMMON/LLALDC 605, 7)

REAL LD

-£E-

DII‘ENS]UH PESULT(‘) COLVEC(1), HUX(I

THIS SUBROUTIHE PERFORMS THE OPERAT:ON (UCTRANSPOSEDY #UY¥ox~-14"C @ CALUMN VECTOR
- COMPUTE RESUL T=(UT . U) Noke- 1XCOLYED
FIRST AUR=UTixr-1%COLVEC
THEN . RESUL T slmie-1#AL%
SECTION A

AUXC 1) =(COLVEC!

YAt

SECTION B

g M= 2, 12
1@ AUN(M) «(COLVEC(M) R
- ~UB(M- 1, 2)FAUNM- 1)
- J/UDCM, 1)
C SECTION C: BAND NUMBER 1BAND= 2
AUXC 13)=(COLVECS 13)
. =UBC 12, 23malix(12)
. =UDC 1, 3HAUKC 1)
JADC 13,1
"Ruxd 14)-(CI:ILVhC\ 4
DC 13, 2)%AUR(13)
—UD(2. TapUuxe 2
1, ¥AUXC 1D
UK 14,13
RUAL 15) =(CTLVECL 15)
-UDC 14, 2)HUX(14)
~UBC 3, 23AUKC 3D
=UDC 2, 4)aUX(2D
=Ub¢ f, SIxAUKC 1)
- 3/UDL 15,1
AUXC 18) =CCOLVECC 16)
=UDC 15, 2)3AUX(15)
-UDC 4, ZyxAUXC 4)
HNEAUKC 3)

aoaao’

1
1,1}

y
¢
»

a

P L LY
~p
==
o
~

s e 1Y

e e
]
c
2o
~~
o
»

C SECTION B: BRND NUI’BER IBRHD" 2
Do 28 M= 17,6688
28 ALXCM) =(COLVECCHD
=UD{M= 1, 2)¥AUX(M- 13
~Up(M- 12, 3IFRUN(M-~ 12)
 =UDCH- 13, 4YHAULLH- 13)
SYHAUXIM- 14
=Un(M- 15, 6YFAUX(MN- 15)
“UD(M- 16, TIHAUX(M- 16)
ZUD(M, l)

s e wena
1
(=4
o
S
1
-
5
y

£

c

E gﬂhl GENERRTE BACKWARD SWEEP
RESULT(EBEJ =AUX (6881 /UD(5BE, 1)

£ SECTION F

Do 40 M= 2,12
MR=£8 1-M
48 RESULT(MR)-(RUX(NR
. ~UD(MR, Zy»RESULTC(MR+ 1)
J/UDCMR, 13

t SECTiON G' HAND NUFBER IBAND= 2
FESULT(S88) = (RUX(508)
. -UD(58y, 2)wRESULT(SBI)

€ v

_82-

. ~UN(SB8, 2)#RESULT(G0B)
1/UD(SB86, 1)
*RESULT(587) AL
~UD(587, 2)4RESULT(S8A)
-Up(507, I)IRCSULT(E99)
SUPESDT,) RESULT (66>
AUDSEY, 1)
RESULT(538) = (aux('-
tsas. 2)5RESULT(587>
-uv(bas. 2)HRESU_T(E98)
~UD(585, 4IWRESULTIS9%)
-un(sss, 2 SIRESULT(660)
RESULT(S85) = mumsssa
L 2IMRESULT (S586)
o (S&:. 3PHRESULT(S97)
4)%RESULT(598)
~UD(SE5, 5)#RESULT(599)
~UD(585, &)#RESULT(EER)
. y/UD (585, 13
€ SECTION H: BAND HUMBER IBAND= 2
D0 5¢ M= 17,680

R=601-M
§8 RESULTIMR) =¢AUXCMR)
~UD(MR, 2}*RESULT(MR+ 1)

-UP{HR, 3)HRESULTGMR 12)
=~UP<MR. 4»IRESULTIMR+ 13)
SYIRESULTIMR+: 14)
=~UD(MR, SIMRESULTIMR+ 15)
=UpMR. PIIRESULTIMRE 16)
3/UDCMR, 1)

Y

I\.ll

- ae .
3
=4
=]
~
U
w
a

4

]
]
[(=4
< =2
~ ~
et
2
A

RETURN
END

-6Z—

