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Abstract

HIGR steam generator tube welds with circumferential
cracks in their highest stress reglon were assessed by
linear elastic fracture mechanics methods. The computed
stress intensity factors were below the threshold level
for propagation and crack propagation will not occur for
the pipe geometry (radius and thickness of tube wall) and
the stress levels considered. 1In addition crack arrest
may be expected if the predominant stress field is a
thermally induced bending stress field.
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1. Introduction ‘

The justification for applying fracture mechanics approaches to tha evaluation
of tube weldments derives from the hypothesis that cracks, flaws,and defects may
éxist in the steam generator tube welds. The approach is then directed toward
supplying quantitative information on questions such as:

1. What are the critical crack sizes (i.e., sizes required to cause failure)

in the various portions of steam generator tube welds at the expected
tast and/or operational stress ievels?

2. Will cracks initially present, but below critical size, grow to critical
slze and cause failure during the expected service life of the steam
generator?

3. If a critical crack size does exist, will the resulting failure be
ralatively small in extent, causing a major break in the steam generator?

Ig may ba noted that these three questions involve the three aspects of

-~ fracture mechanic¢s analyses:

1. Crack-growth initiation.

2. Crack propagation.

3. Crack propagation arrest.

Small flaws or cracks may grow when subjected to cyclic loads (fatigue),
aggressive environments (corrosion fatigue and stress corrosion), or a com-
bination of all these factors. A crack in a tube wall will propagate
perpendicularly to the main stress axis. Thus, a crack will advance through the
wall thickness at a rate faster than it elongates in the longitudinal or
circumferentiai directions. Having extended through the wall, the crack
produces either a leak or a rupture, depending on whether the crack has
reached a critical length. A subcritical crack producing leakage may grow
longitudinally causing a bulging failure.
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To assess the integrity of the HIGR steam generator tube welds, linear
elastic fracture mechanics methods were used to evaluate the characteristics
of circumferential cracks in tubes with representative dimensions supporting
operating loads. In these analyses,the materials were assumad to retain their
virgin material mechanical properties. As a refinement of this procedure,
the change in the mechanical properties of these materials due to the
long-term exposurz to elevated temperatures must be made.

Several snalysis techniques may be used to solve problems
of stress and strain singularities at crack tips. With the finite element
method, the singularities may be characterized in the following ways.(l)

1. Direct Method - Conventional elements are used defining the region
near the singularity with an extremely fine grid. This is obviously a very
costly and inefficient procedure.

2. Energy Release Method - Conventional elements are used defining the

singul#r region with a relatiﬁely fine grid. The energy of the syst;m is
then monitored as the crack length grows (i.e., several static solutioms with
increasing crack length are run). This method proves to be more accurate
than tha; shown in Ref. (1) and requires significantly fewer elements,but it
remains awkward and time consuming and requires the sclution to several similar
problems. One drawback of this method is the inability to distinguish
between Mode I and Mode II intensities.

3. Suﬁerposition Method - Conventional elements with coarse grids are
used in conjunction with a classical solution. The method is somewhat cumbersome.

4.  Singularity Function Formulations - A special element is formulated

that contains the proper singularity. This procedure requires the formulation



of a complicated element stiffness matrix but can be coupled easily to
conventional elements. Coarse meshing gives very accurate results.

(2)

The present. analyses were conducted with the APES finite element
computer program. This code uses a singzularity function formulation to
model elastic bodies with singular points. The latest version of APES

contains subroutines that calculate the state of strain at the tip of a

crack in either plane stress, plane-strain,or axisymmetric geometries.

Linear isotropic stress-strain material properties are used and small strain

theory is assumed.

2. Weld Geometry

The structural evaluatlons were performed using the standard weld joint

geometry shown in Figure la. Various combinations of base metal and weld
filler metal were considered. The material combinations and the tube

dimensions treated are summarized in Table 1.

Table 1

Tube Dimensions

Material i Inner Radius Thickness

Superheater Tube . Incoloy 800

(Inconel 82) _ 0.3625" 0.2"

Superheater Tube 5 Incoloy 800 +
2 1/4 Cr-Mo '
(Inconel 82)

e st e

Reheater Tube . Incoloy 800 :

0.3625" f 0.2"

(Inconel 82) ' 0.6725" ) 0.14"




3. Material Duta
The material properties employed in the study for both base and filler

metals are shown in Table 2.(3) No attempt was made to account for base

metal dilution or its effect upon the properties.

Table 2

Material Data

Temp. Incoloy 800 Inconkl 82 2 1/4 Cr.Mo
Modulus of Elasticity 900°F 23.9 x 10° 27.85 x 10 | 26.05 x 10°
(psi) 103COF 23.4 x 106 27.1 =x 106 _—
Poisson's Ratio 900°F 0.365 0.3075 0.289
1030°F 0.367 0.314 —-
Thermal Coefficient of ° -6 -6 -6
Expansion 900°F 9.3 x 10 8.25 x 10_6 7.65 x 10
(°F-1) 1030°F 9.4 x 1070 8.4 x 10 .

4. Lloading Conditions

The tubes were evaluated for the expected normal conditions of operation, both

thermal and pressure.

stress free state was chosen to correspond to both 1350°F and 70°F.

In addition, as regard to thermal stresses, the initial

The lower

temperature corresponds to analyses wherein welding operation induced residual

stress effects are ignored while the higher temperature allows some accounting

of these effects.



Table 3

Loading Conditions

He Side Steam Side Radial
Pressure Pressure Tube Temp. Gradient
Superheater Tube 710 psi 2,600 psi 900°F 50°F
Superheater Tube o o
{Bimetallic) 710 psi 2,600 psi 860 F 45°F
Reheater Tube 725ps1 . 640 pst |  955°F °  8s5°F
2)

5. Computer Program "APES"

APES is an acronym for "Axisymmetric/Planar Elastic Structures". It is a
finite element computer program which incorporates a l2-node quadrilateral
isoarametric element having a bicubic displacement assumption and adapted to
plane strain, plane stress and axisymmetric conditions of structural hehavior.
For linear élastic fracture mechanics applicaticns, two different special e
elements are employed for predicting stress intensity factors: (1) a small
circular "core" element which surrounds the crack tip and which reproduces the
singular nature of the stresses there, and (2) "enriched" 12-node isoparametric
elements which have the elastic singular solution superimposed so that a corner
node corresponds to a crack tip. The formulations of these elements are out-
lined briefly tiere to indicate the finite element appioximations involved in
the use of the APES computer progran.

1. Conventional Quad-12 Element

The Quad-12 element and its local, nonorthdgonal (in general) coordinate
system (s,t) are shown in Figure 2. The edges of the element correspond to

values of £ or t of + 1, and the midside nodes correspond to values of s or t

of +1/3.



The displacement assumptions for the QUAD-12 element are given by

12
U=Z Ni (s,t) Ui

i=]
12

V=2 N (s,8) V (1)
qgmy 10074

where U and V = x and y components of displacement Ui and Vi = the displacement

compoanents at node i.

N1 (s,t) = polynomials which interpolate the displacement over the element.
The element is made to be isoparametric (same parameters) by letting the

geometry vary in a fashion as the displacements

12
x=Z Nl (s,t) X,
i=]

12

y=I N, (s,t) ¥y (2)
ial i i

where x and y define positions within the element and xy and y, are the

coordinates of Node 1i.

The specific N1 for the QUAD-12 element are given by

Ni = %E {1-t) (1-s) [-10 + 9 (32 + tz)]

N

9 2
) =33 (1-t) (1-s") (1~3s)

N =-39-5 (1-t) (1-s2) (1+3s)

3

N, = %7 (1-t) (1+s) [-10 + 9 (s2 + t2)]

4

-6~



(1+s) (1-t3) (1-3t)

(1+s) (1-t2) (1+3t)

2
[]

; (+e) (1+0) [-10 + 9 (sPee?))

=z
]

(1+£) (1-s2) (1+3s)

=
[ ]

(1+t) (1-s?) (1-3s)

z
[ ]

(l+t) (1-s) [-10 +9 (s +t )]
(1 s) (1-t ) (1+3¢t)

%5 (1-8) (1-t?) (1-31) (3)

It may be seen that the displacements within the element vary cubically as
opposed to a linear variation in the constant-stress element. These shape
functions are equivalent to a displacement assumption for a "conventional"
quadrilateral finite element with sides parallel to the x~ and y- axes given
by

2 2 3 2 2
Usc.l+oz2x+oz3y+oz4x +a5xt+a6y +a7x +a8xy+u9xy

3 3 3
R T A TR A P

a ., _,0 2.0 ¢ . 2.a 3, 60

Ve=a
AT AR TR T Lo A T AT

2
13 + 20 7Y
2 3 3 3
+ Qley + a22y + a23x y + uzaxy (4)

where the a's are undetermined parameters (generalized coordinates). The



first three terms in each of Equations (4) correspond to the constant-stress
triangular element; the remaining terms demonstrate the "higher order" of the
QUAD-12 element. Ncte that the displacements vary cubically over the element
and that the geometry of the element edges may also vary cubically in space,
so that strains and stresses vary quadratically overtﬁeelement.

2. "Core" Crack Tip Element

The special circular crack tip or "core element" is showm in Figure 3.
The element is a half-disk for symmetric Mode I problems, and becomes a full
circle for combined mode problems. The edges of the QUAD-12 elements that
join the core element are curved, providing geometric continuity between the

two =2lement types.

The displacement assumptlon taken from the singular core element corresponds

to the first (singular) terms of the elasticity series expansion for the

displacements in the immediate vicinity of a crack tip. It has the form:

U) (U K Y ({cosc ,-sina (2K~-1) cos g . cos 3
BN )
g .
v Vo AG 2w Usina , cosg (2K+1) sin 3 -~ sin Eg
KH‘/T cosa ,—sina: [(2K+3) sin% + sin %9-]
+ — —
AG 2w isina » COSQ (2R-3) cos %- - cos %g (5)

where

Mode I and Mode II stress intensity factors

Y *r

u, Vv = displacements
G = glastic shear modulus
K = (3=4v) for plane strain or axisymmetric

(3=-v/1+v) for plane stress

-8-



\ = Poisson's ratio
Y,@ = polar coordinates centered at the crack tip as shown in Figure 2.
-1/2
o 1/2

The corresponding stress fiezld is gij =3J,.( ,C) which tends to infinity

1]
as Y tends to zero.

The unknowns associated with the core element are the two crack tip
displacements Uo and V0 and the stress intencity factors KI and KII' The
singular core element is joined to the conventional QUAD~12 elements by
requiring that the displacements of nodes that join the core element match
the singular solution evaluated at Yo (the outer radius of the core element)
and at the appropriate angle ¢. The fracture mechanics stress intensity
factors are calculated at the same time as the nodal displacement. The
incompatibility between the core and the standard finite elements has been
found to be of negligible effect provided (1) a sufflcient number of elements
surround the core aelement (10 nodes have proven adequate for the Mode I half-
disk element, implyiig that 19 nodes are adequate for the combined mode
problem); and (2) that the radius of the core element Yo is taken as 2 or 3
percent of the crack length, with a ratio of k (the basic dimension of the
QUAD-12 element) to Yo in the range of about 6 to 10. Note that thermsl
loading is not programmed for this element at the present time.

3. "Enriched" QUAD-12 Element

The effects of the singularity are included in this element by "enriching"
a bicubic element displacement assumption with terms that give the proper
singularity at node (s,t),

2 2 3 2
U (s,t) = al + 0,8 + aat + a4s + asst + a6t + a7s + ass t
3

' 3 3
+ (igSt + ulot + allst + oy ts + KIfl(s,t) + KIIgl(s,t) (6)



where the a's are undetermined constants (as are KI and KII) and fl (s,t) and
8; (s,t) are the second and third terms of the first of Equation (5) evaluated
in terms of the local element coordinates s and t. A similar expression

exists for the V component of displacement. In matrix form, Equation (6) may

be written
U(s,t) = [P(s,t)] {a} + KI fl(s,t) + KII gl(s,t) . (7)

Evaluating Equaticn (7) at each of the nodes, the following matrix

equation may be written
= 3} 4
{u} = fc] {a} + 5, {£,} + R {g,} (8)

in which all matrices are known except {U} and {«}.
Solving Lquation (8) for the unknown coefficients {a} in terms of the
nodal displacements, Ui wvhere 1 = 1, 12, the displacement assumption may be

written as
U(s,t) = LN, U, +K; [fl(s,t) - N £ ]+ Ky [sl(s,t) - I N g,] €))]

where the subscripts on fl and g indicate "evaluated at Node i'. The

analogous expression for the V-component of displacement is

V(s,t) = I Ni v, + KI [fz(s,t) -z Ni EZi] + KII [gz(s,t) -1 Ni gzi] . (10

i
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The terms enclosed in the parentheses in Equation (9) and (10) account
for the singularity. An enriched QUAD-12 elementc connected to a standard
QUAD-12 element would produce a slight incompatibility between the adjoining
elements. This incompatibility can be removed by altering the displacement

assumption of Equation (9) and (10Q) to

U(s,t)) (E N0 K [f,(s,t) ~ ZN,E ] +K_[g (s,6) - L N,g__]
{ } . { ;_1} s Res,p TR 1F14) * Kppley 1811 }(11)
V(s,t) I NV KI [fz(s,t) -z NiEZi] + KII[gz(s,t) -z NigZi]

i'i
where R(s,t) 1s chosen such that it equals 1 on boundaries adjacent to "enriched”
elements and equals 0 on boundaries adjacent to standard elements.

Using the assumption given by Equation (11) in a standard finite element =

formulation, the left~hand side of the equilibrium equations for an element

become
kll klZ T
oo (%
K11
where
U = element nodal point displacements
kll = 'regular" stiffness matrix
k12 = coupled stiffness matrix from regular and enrichment terms
kzl =  transpose (klz).

Integration of klz nust be done very accurately because they contain
singular terms. TFor this work a high order (8x8) gaussian quadrature is

required for the enriched QUAD-12 elements.

-11-



6. Results of the Analyses

The stress analyses were conducted in two phases:

1. elastic calculations to determine the stress profiles in defect free

tubes under normal conditions of loading;

2. fracture mechanics calculations to evaluate the effects of cracks in

the most highly stressed regions.

The elastic an;lyses were performed with the APES code using only the
conventional finite elements. For similar base metal weldments,symmet:y about
the weld center line was taken advantage of and the finite element grid
(Figure 1b) had 514 nodes and 90 elements. For the general weldment, the grid
was symmetric about the weld center line and contalned 1,009 nodes and 180
elements, For each of the analyses nodes 496-514 were constrained in the
longitudinal direction. Pressure loads were applied as radial forces to the
inner and outermost nodes and, in addition, thermal loads were applied to each
node wifh node-wise temperature distribution.

The pertinent results of the elastic analyses are depicted graphically
in Figures 4-9. Figures 4, 5 and 6 correspond to the 70°F stress-free
temperature state assumption while Figures 7, 8 and 9 to the 1350°F stress
free state assumption. Tl results shown are traces of the radial, (cr),
longitudinal (cz) and hoop (ce) stresses along the inner and outer tube
surfaces,node lines 1-496 and 19-514, respectively. Figures 4 and 7 correspond
to the 1800/182/1800 superheater weldment, Figures 5 and 8 to the I800/182/
I800 reheater weldment,and Figures 6 and 9 to the I300/I82/2 1/4Cr-Mo weldment.
For the cases corresponding to the 1350°F assumption, Figures 7-9, the stress
stateSat room temperature and operating temperature are shown. In additionm,
in Figures 10, 11 and 12 the through thickness stress variations are shown for
various node lines and each of the cases.

-12-



Referring to Figures 4-9 it is evident that for all cases strong stress
gradients exist near the fusion zone, large through thickness (bending) variations
existr>and the longitudinal stresses are greatest on the inner surface. For
most cases the longitudinal stress component attains the peak stress levels.
Referring to Figures 10-12 it is evident that strong through thickness bending
stress gradients exist for the longitudinal and hoop stress components.
Lastly, for all cases the longitudinal stress component attains its peak
value on the inner surface near the fusion line.

For the fracture mechanics analysessonly circumferential cracks were
considered. These result from either stress corrosion cracking or sustained
load cracking and are commonly observed in tubes. For such cracks the
longitudinal load or stress field is the dominant load parameter affecting
both crack severity and growth characteristics. For a given weldment the
most detrimental circumferential crack will be located at the point where
the longitudinal stress component attains a maximum. From the elastic
analyses this point is the fusion line at the inner surface for all the
cases. This was taken as the crack location for all the fracture analyses.

For the fracture runs, enriched element crack tip models were employed.
The gross finite element grid was similar to that used in the elastic
analyses with adjustments in the vicinity of the crack. Figure 13 depicts
exploded views of the grid surrounding the crack for crack lengths of 12.5,
25, 50, 75, and 87.5 percent of the wall thickness. Each weldment was
analyzed for the 12.5% crack while the I800/182/I800 superheater weldment
was analyzed for all the crack lengths.

The computed stress intensity factors are summarized in Table 4 and

shown graphically in Figures 14 and 15. Figure 14 shows the results

13~



corresponding to the operating temperature stress fields while Figure 15
shows the results for the room temperature stress fields. In both cases the
results are for the 1350°F stress free state assumption.

The computed stress intensity factors range from 1 to 4 Ksivin. The
highest computed factor is still below Kth (6 Xsivin @ 1000°F) for the
(4)

material and coansequentliy, there 1s no possibility of crack growth. For
the deep cracks, the presence of the crack itself markedly reduces the through
wall thickness stress gradients and peak stresses which results in low values
the stress intensity factors. This implies that if a small crack propagates

in a tube wall having a steep stress gradilent, crack «rrest will occur after
£

sowme propagation.
Table 4

Computed Stress Intensity Factors [psi/EH'Units]

a ! Superheater Tube Superheater Tube Reheater Tube
b | 1800/182/1800 1800/182/2 1/4Cc—-Mo 1800/182/1800
0.125! 3834.4 3046.0 4040,2
Operating 0.125 3172.1 (temp. 3931.8 (temp. .
. alone) : alone)
Temperature 0.125 662.3 (press.
alone)
Stress Free
at 1350°F T 0.25 3799.6
0.50 : 2589,2
0.75 2460,8
0.875"' 3918.2 .
o 04125 2690.0 966.3 1781.5
i 0.25 1149.3 )
Room ! 0.50 -1027.9
Temperature @ 0.75 ! - 594.6
Stress Free .,
at 1350°F " 0.875 1519.0

7. Conclusions
An assessment of HTGR steam generator tube weld integrity has been completed.

Circumferential cracks were evaluated using linear elastic fracture mechanics

14—




theory. It was concluded that:
(a) Circumferential cracks do not propagate for the present pipe geometry
(radius and thickness of tube wall) and the stress level.
(b) For thermally induced stress gradients, crack arrest may be expected

i1f initial crack propagation does occur.
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APPENDIX

Validation of Apes Fracture Mechanics Calculation

The APES computer code was modified to increase the number of nodes
(400 -+ 1500), elements (50 -+ 200} and nodes across the front (40 - 80), and
to include the capability of analyzing thermal loading conditions. The code
was checked out with the supplied, as well as newly developed test problems.
The validation of the APES fracture mechanics calculations is described below.

1. Single-Edge Crack in a Compact Tension Specimen

The problem of a plate 5 units square and containing a central edge crack
of length a=1.5 units was considered. The problem is symmetric about the
crack line and treated as a plane-strain problem. The reference value for K
for this specimen geometry 1s 4.016, The APES results for K (4.096 and 4.080)
shown in Figure A-1 and A~2 were 2.0 percent higher than the reference value.

2. 45-Degree Slant Crack in a Tension Specimen

This example is a combined node plane strain problem. The geometry is
shown in Figure A-3 and A-4 along with the finite element idealizations used.
The computed results for KI and KII are also shown in the Figures. Ths
reference values of KI and KII are 1.86 and 0.88. The results shown in
Figure A-3 indicate that the value of KI varied from 4.0 percent below to
2.4 percent above the reference value and that the value of KII varied from
2.9 percent below to 1.4 perceat above the reference value. For an
isothermal loading case the values of KI and KII are zero as expected.

The results using a core crack tip element are shown in Figure A-4.

They indicate that ghe value of KI was 24 percent below the reference value

and KII was 30 percent below the reference value.

=42~




3. Cracked Bar

This problem was a bar with a circumferential crack with a depth of half
the bar radius. The results shown in Figure A-~5 indicate that the value of
K was 7.6% below the reference value.

4. Cylinder with Internal Circumferential or Internal Axial Cracks "

For the analysis cylinders with internal circumferential or internal
axial cracks were evaluated. ZLoading conditions similar to those used for
the Incoloy-~800 superheater tube were used. The results shown in Figure A-6
and A-7 were compared with those developed below using the weight function
concept.

The crack opening stress 0(x) can be approximated by a polynomial.

- :—:- }—{- 2 ------------ S
o(x) =0, + {3} oy + {3} "oz + +1{5 o (1)
For a crack subjected to a node I pressure 6(x), the stress intensity

factor can be calculated when the weight function m(%, 2) is known for the

crack geometry.

=~ fa o& D v
K = /% A —2_ B o(x)dx (2)
a=X

Substituting Eq. (1) into Eq. (2) yields

K = /T [ooio @ + B oty @ + e + (2} o {-g-}] (3)
and
s a a
/= f{a i nE R
2y -1 /2 X" _a P :
1, G == /a‘/o. =} — dx (4)
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The value of i, can be calculated exactly or by using an appropriate

3

numerical method. The limit values of ij (%) when a/B =+ o are the same for
all cracks in all structures, that of a crack in a semi-infinite hal{ plane.
These limit values can be calculated using Eq. (4) and the following

Equation (5).
m (50} = 1+0.6147 {1 -2} + 0.2502 {1 - %)* (5

*
Limit values of i, when a/B + o were taken from J. Heliot and J. Vagner.

3

£ 0 1 2 3 4

1,(0) - .12 0.687 g 0.528 0.446 0.389

For the present analysis (a/B = 0.125 and R/B = 1.825) i, (a/B) can be

3
approximated to be ij(O). Thus Eq. (3) can be given by

K = Vi {1.12' o, + 0.687 {3} o, +0.528 {Z}%0, + 0.446 {3}%0, +

0.389 {§}‘*cu} . (6)

The stress distribution predicted with the present model is shown in
Figure A-8 for an approximate stress function.
The stress intemsity factor can then be calculated using Eq. (6). The

results are shown below as well as the values predicted with APES.

* Heliot, J. and Vagner, J., "Use of the weight function concept and the

crack closing method for calculating stress intensity factors im plane or
axisymmetric problems,” MS 241, ICF &4, Waterloo, 1977.
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‘Reference Value APES Value

!Circumfefential Crack Plane Strain 101,000 109468.5

Axisymmetric 32,266 ) 32544.8
Axial Crack Plane Strain 3,355 3589.7
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