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"1 - INTRGIUCTION

*The word instanton [1] has been coined by analogy with the word soliton.
They both refer to soluticns of elliptic non 1inear_fic1d equations with boundary
corditions at infinity (of euclidean space time in the first case, euclidean space
in the second case)lying on the set of classical vacua- in such a way that stable
topological properties cmerge, susceptible to survive quantum effects, if those
are small. Under this assumption, instantons are believed to be relevant to the o
description of tunnclling effects between classical vacua [2] and signal some
characteristics of the vacuum at the quantum level, whereas solitons should be
asscciated with particles, i.e. discrete points in the mass spectrum : In one
case the euclidean action is finite, in the other case, the energy is finite.
From the mathematical point of view, the geometrical phenomena assocjated with the
existence of solitons have forced physicists to learn rudiments of algebraic topo-
logy [3] . The study of euclidean classical Yang Mills fields involves maturally
mathematical items falling under the headings : '

- differential geometry. {fibre bundles, connections)
- differential topology (characteristic classes, index theory)

and, more recently
- a]gebra1c geometry.

Most of the machinery is u]d enough so that it can be learnt from mathema-’
tical books or sets of lecture notes where complete bibliographies can be found.
It is out of question to give here a complete review of the mathematical apparatus.
We shall rcther pick out some of the results and show how they app]y to the specific,
case at hand.

These notes are d1v1ded as fol]ows.'

Section I1 is devoted to a description of the physicist'sviews
Secticn III is devoted to the mathematician'sviews.

These notes ere sketchy in the sense that very few technical details are
fully described. Displaying them all wculd have required reproducing large portions
of mathematical books. Emphasis has been put on some details of the 19tk century
geometry which is not casily accessible anymore, and not currently known to physicists
1h wore accessible matnematica) 1tems are referred to a5 accurate1y as poss1b1e. )
1nc.ad1ng chapters, paragraphs, page numbers. 1t is thus hoped that these notes tan
‘be used as a gy1qe through the recentll1terature.l' .



1] - THE PHYSICIST'S VIcWS

The problem to be solved is the following : find euclidean Yang Mills

t
‘fields /. (’c) which minimize locally the euclidean action
' ¢

A \lr p

S:..Z d'z T, Pg 'Fj;, ()
)
The notatwns are as fonows
: X e E" four dimensiona) euclidean space.
o : labals an orthonormal basis of the Lie algebra of 2 simple compect

“Lie group G ;unless otherwise specified GwSUZ for which there is
the largest availsble information.

Killing form of

‘2:5.
-8

dx

. F 3 Ay < Bu + 'FN /\Is Ax (2)

flat riemannian metric in E"

volume element in gh corresponding to %’"

-}-Px : structure constants of @

The first class of instantons found by Belavin et al [4] is by now well
known. It hzs the following charactoristics :

.S <o F;w(x)mo

A}(x) i g(R) B q(R)

where the homotopy class af S 3% -&c- G corresponds tc the integer Ylz 4.
Both cases, Ylz=&4 are treated together, by considering a Yang Mills field A}‘
'with value in the Lie algebra of SO&4 which is the direct sum of two copies of
‘the SU2 Lie algebra. The topological number Y1 is related tc a Chern number
E(the integral of a Chern characteristic c]ass) :

o Rpa =l ' -
2n =£;.~. XF e Fe d= @ |
For given n . absolute mmma of . S are reached for :
:F;tvi-'-‘-:': EG"V f"’ ...t(\-rF) ) (4)
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‘which in particular imply the usual field equations

7" F. av =0 : : (52)
VIR, - -

However, all solutions which have been so far constructed saturate the absolute
bound ’

l

Y

S -2 |r] )

3

dcduced from the identity

[ (8 #9720 g1 g7 (2 2 o7 )l 30

'The n:-i solutions assume several equivalent forms [4}.[5].[13

o
A = 5 [0 B g0a] .
' - |2°t 2x¥
where }*'\' xl‘l’A‘
L Kge %S X
g(x) —q-ﬁj‘ = o
Tl;v kx G, O, 0""

Through a confarmal transformation which leaves both the cuclidean action

and the topological invariant unchanged, or a gauge transformation one gets the
follomng equivalenl form [l]

_QP,B lcg(—l+ ) | (;01'

jater gencralized bv 't Hooft [6] far higher n-values :

Ad = le -a\' lbg P

ne SRS N +
S =0 = *{+_‘ Lx_;(-)z I

. The S04 version thich puts together solutions pertaining to opposite n's reads .

~



A“F'= e Log? . | (.m

. "( F
where the Z}J,s S are the matrix elements of the SO Lie algebra :

| 'Z),_\, -5 88 80 S (13

' ’ This collection of solutions has been enlarged by Jackiw, Nohl and Rebbi
[7] into a 5n#¥4 parameter family with
. . n 2

Padty + 2 ()
(X% 4 (XK=
:lt was also argued by these authors that there ought to be solutions depending on
5n + 3{n-1} = 8n - J paremeters corresponding to n-1 relative orientations of
isospin axis, for instonton number & and this was checked in the neighbourhood of
the known <olutions, in the lincar approximation [8] This situation has been further
analyzed by Brown, Carlitz, Lee [:9] who relate the dimensfonality of instanton fluc-
tuat19ns to that of minimally coupled massless fermions belonging to the adjoint
representation. The latter is connected to the Adler anomaly, through an argument
of S. Coleman [10]. and hence to the instanton number.

: Although the fermion prohlem is mterestmg in {tself [1] and can be
‘handled for an arbitrary cornpactlf\cat‘lon of E [11] , 1t is only directly
‘related to the instanton problem in ‘the case where the metric is flat. The argument
‘can then be summarized as follows :

.Lgt
_A A +0f- L - 19)

‘and let us impose the Landau gauge [11] condition in the background field A which
we assume to correspond to a self dual solution 3

R " S
_V a, _oA o (16)
The Yinearized systerr.n then x.'ea'ds
ki Q =0 . a7
\where ar et
V= 0. V' {18)
Q= Op @&



Since every quaternion a, is determined by its first column Q ,
ore has

6‘_(_1 =0 (19}

‘Conversely, for each solution QL of this spinor equation, there corresponds é
two dimensional real manifold of solutions of the initial equation, corresponding
to the one dimensional complex manifold of solutions A g} ., A complex. This
' : .

in turn. is equivalent to the massiess Dirac equation

& $=0 (20)

together with the chirality condition

UED, U B (21)
{(in the Weyl representation).

The rest af the argument which fits very well within the methods to be
described in the next section involves several steps ¢

i) for a given self or anti-self duality property of the gauge field, the
Dirac equation possesses only chiral or anti-chiral solutions

ii) the difference between the number of chiral and anti-chiral solutions can
be evaluated in terms of the Adler anomaly, i.e. the instanton number.

This developping subject owes much to physicists who have first mads
a nurber of remarkable guesses. It scems however that mathematicians have taken
‘over with powerful - and rigorous - techniques. It is to be noticed that one of the
first contributdrs, A.S. Schwarz [ﬁ].[}]] left a name in the theory of characteristic
classes and was the first to have used the powerful index theory as early as April
1976 [iZ]. Later, M.F. Atiyah and !.M. Singer, the main contributors in this ten
year old theory, and collaboraztors [13] , have both reproduced A.S. Schwarz's
wor” and gone beyond with the help of the hitherto unused techniques of algebraic
ceometry [14]. )

Some mathematical aspects dug out by physicists have not been explyited
sa far, namely, those related to the gencral conformal invariance of the probiem :
the function 33 involved in the ‘t Hooft ansatz can be identified with the
:conformity factar (}S] occurring in the line element of a non compact manifald
.cenformal to g4 (flat for self or anti-self dual 13:; » with constant
‘curvature in the case of gene-a' :olutions of the field equations). These remarks
have not been fully exploited ¥ ., because much of the maghematics used so far



]re‘xies on the compactness of the manifolds that are used.



111 - THE MATHEMATICIAN'S VIEWS

It is a matter of philosophy whether in principle a Yang Mills fields
ought to be associated with a connection on a principal fibre bundle [16] .
It is a fact that Yang Mills fields considered in the previous section are of
this type and that the corresponding mathematical apparatus can be used either
to streamline previously obtained results or to obtain new results.

We shall now review the various items enumerated in the previaus section
from a more mathematical point of view.

1. The n=1 instantons, a geometrical description [5},[15].[18].

Let us first map E%eo into S"C‘Es through a stereographic

_projection. Call G, T , the differentia) forms

Q= A;. daxt e, L (2)

F= % F;v AxFadx e, (23)

where e., is a basis of %, We shall not distinguish the forms on E“um and
their inverse images on S4° |, since the stereographic projection js conformal,
it preserves

=4\ 3
Sz ” I(‘F,-r'F) _ (28

_4 ((er @
an = =23 (Ft \d )

where s denotes the dual for whatever Riemanaian metric is involved, and ( , )
ifs tne Killing form of %, . :

There are concrete examples af fibre bundle with structure group either
S04 or SU2Z x SUZ pertinent to the instanton antiinstanton doubling-or SUZR ,
pertinent to single instanton or antiinstanton description :
the $84principal bundles with basis Sq are knoun to depend on two integers [17].
The simplestnon trivial one is S$QF (50.’:‘\504 = S"). The Maurer Cartan form on
S05 W= 3'28, with valuve in the Lie algebra of SOS can be restricted to the
Lie algebra of SO4 [18] and one can check by chonsing coordinates that it is the
n = 1 instanton in jts initial version, which is SO invariant. The conformal
transforms of this splution are obtained by restricting the Maurer Cartan form on
SQ[SMto a risht coset modulo SOS , and then to the Lie algebra of SO4 . We ‘thus
obtain a five parameter femily of solutions fndexed by a point of S¢G,4) \SOS", each

solution being invariant under left translation by a subgroup of SG(§,4) conjugate



s . 4 i .
to SoO5 . In this version one has to go frem S to E by a stercographic
projection, and it is actually much more direct to work with the covering groups
UsSp2 ¢f SO5 . the 2 x 2 unitary group with quatersion elements - <nd
S L@.,H) - the 2 x 2 unimodular group with quaternion elerents - of SO5,4 .
The quotient US pRA\SU2SU2 is the projective guaternioric line TIH) .
j.e. th. set of pairs of quaternions (X.V) under the equivalence relation
(.‘:,‘(j_-u (qx,qy) where € s an arbitrary non vanishing quaternion.

Py ( H)  czn be used naturally as a model of compactified EY and the
fgrmulae given by Jackiw and Rebbi [SJ are directly recovered by the constructions
indicsted above. In particular, it is easy to verify that the correspanding curva-

_ture fulfills the self-duality condition [4] .- by using its espression in terms of
the Maurer Cartan form on the one hand, and local coordinates on the other hand [18].

One can similarly deal with the SU2 version by considring S%x Usp2 o2
and appropriately restricting the Maurer Cartan form [18 . .

2. The 't Hooft instantons as connections on principal bundles{ﬁ].[lS].

on $% (resp. ?4(!") }» Q has nsingularities & X, tad.R
and,. in the neighbourhood of such 2 singularity .

-1
a . da;
| o, 3 98 (26)
wherg 3; is the translated by X of 3 given by formda ({9} . Cover
8% (resp. 'P_,(H) yby h+d  open sets : n ball-neighbauricods JL; of X
{ Q;R-QJ'-_- @& h n, = E L)D-.-/z
" Define : . ¢ X
Q. = a
° 19, \27)

a.

ad 3:4 Qs+ §. dg;‘

Then, by the conventional construction of principal bundles, there is a bunule with
transition functions

80 = 95 . m g,

(28)

and a connection defined by Qg Qg , (a4, ~on it (cf. Kobarashi Nomizu (18],
. p. 66).

Although there are canonical evamples of SO fibre buncles over S"
for arbitrary allowed topologies [ZD] - indexed by twp integers - tiny have not
suggested >0 far any geometrical characterization of the connections #hich minimize



the euclidean action,

3._ihe menifold of connectiors minimizing the Y- dideon acticn, local aspects,

There arc two essentially cquivalent versions of [11} [13] of the study
of the manifold of solutions of the self or antiself duality-condition Eq. 4 .

One §5 based on the Yinearized system
~t

v Q =0 (29)
A

in the ne\'gﬁbcdrhood of a solution 6, , a connection on some grincipal bundie a3

over S, Q, is a section of the SOALG bundle T' S‘DX 5’ with basis SY
associated with (D and the riemannian structure on S% V is a first order
elliptic.operator i.e. its first order symbol '§v (obtained by replacing gx

by L% in the higher degree terms) is invertible for .§¢#O . It maps sections
of THsY 5 Cg into sections of (T*OGT,. )(5'9 x % ° where Tf 9
denotes the space of self dual 2-forms. Since V L elhptu, the dimensionaliity ~

of the space of solutions ker is finite 23] since S is rompact.
The index theorem can be applied : [22) (23 [24] [25)
. rh\J PR
Ind @: dim ker F_dim kee'TT a0

can be .computed in terms of topological data { %l'r now maps (T&? ‘I‘:") CS"&'Q
into T‘('(S") é % , and is the usual adjoint) because of its “"universaiity”.
The calculation proceeds through g formal algebra of characteristic classes whose
terms factor out into factors involving the % fibration, expressible by wzans
of the character of the adjoint representation, and factors involving the basts,
expressible in terms of the character of the S0k representation in T" S")
and (TM@ T‘z)(S") respectively. For G=SUN the formula reads

Tnd ¥ = 4 N n(a) - (xcs*) + ;;/(gtsv>>(u=_4)‘ e
y _

X = Euler Poincaré characteristic ; X(S“j:Z; BY(TLS9) = Pontrjagin number
of SY; P‘(T(S“)):O; NLLY = chern number of & .

Next one shows that

dim ker T .0 (32)

The ca’lcu’latwn is a b\t 1engthy and repeated]y mnkes use of two arguments
which are schematized below : a positivity argument classical in the Hodge theory
of harmonic forms [23:] .[29] s and an irreducibility argument concerning ("1 N



Froa ,
VHeo Ra(h, §)
*0 (33)
he T"% %
@
na
feT] 5%
v-e leduce
(@Ew¥) .o -

Sh
hence, from positivity

Vh=0 ' (35
~which in turn im ‘es }
Vh = [’f?'.h] =0 (6)

A':tuany Eq. 36 is equivalent to Eq. 35 :

0= Ss«(h' @*h) = S (Ph, Vi) (37)

hence, Eq. 35 Tolleas from positivity.
o
1f F spans the SUL-Lie algebra everywhere, (the irreducibility

property, which is true here, it follows that 1% vanishes. This argurent incident-

ally shows why the background .andau gauge does not leave any gaugje freedom (Eq. 36
has no non-vanishing solution).

The method used by Atiyah, Hitchin and Singer [13] is essentially ecuivalent.:

they consider the elliptic complex [23][211] [25]
o ° o .
4 s v, #1 . .
0 — T*"(sf«)é g L TG BT (5V5Gm0

[-d i e
(V. VY, =0 by the self-duality of E ).

‘Under the irreducibility hypithesis for ¥ . the topoloyical index of this cemplex

is identical with the one previously computed and so is its anaiytical indzx {sum
of dimensions of vairious kernels). The formulation is howeve: slightly differant :
insteud « ~ removing the gauge freedom by fixing thg background L;mdau gauge ceadi-
tion, :the gauge freedom is eliminated by subtracting dim Im ¥V, which is
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correct in all cases.’

Once the linearized system has been analyzed, there remains to prove that
each solution of the linearized system gives rise to a true solution, in a neigh-
bourhood of (o.'b . This requires the use of the infinite dimensicial implicit function
theorem ar top of ’ :

Adim Ker ?T.: o

in the-first version,

dim ker Vf].:' =0

‘n the second version [25] whei2 the ouestion is to study the deformation of the
complex (38)., .

The last question [11) connected with tllis has to do with the solutions
of the massless Dirac equation Eqs. (20, 21). S is an elliptic operator from
positive riirality fields to negative chirality fields, andecoincides with its
adjoint, the two spaces being interchanged. The index of & ., M, »
(g = #£ positive chirality of fermion zero modes) can be computed again using

. negative
topolegical data [22],[11],{13],[9] . On the other hand, it is related to the
Adler Bardeen anomaly, as remarked by 5. Coleman [10] : it can be computed by
investigating the corresponding Laplacian and ¢iffusion operator [25] [27] [30] H

- SEAtYr 53 o °
IndF=0(t) tre ke et F

(39a)

2x

= O(t%) [ tr veet¥ : (39b)

where the sysbol OUE®) means : selecting the zeroth order term in the asymptotic
expansion [28} of the indicated quantity for E-w Q4 , from which the negative
powers of & involved in each term of (39a) drop out. This method of calculation
turns out to be quite close to the physicist's version [9] based on the evaluation
f Feynman graphs, to which it provides a firm foundation. The result can also be
btained by the purely algebraic methods involving the relevant representations of
S02 25U % % . The coefficient of n comes out a half of what it ws3 in
the Yang Mi115 case, but the coefficient of dim G changes significantly, in
particular the term proportional to XCS%) is missing : in non flat space

the relaticrship between the Dirac and Yang Mills problems is unclear, since here
again positivity and the irréducibﬂity of the connection take care of the absence
of solutions of the adjoint system.



4, The manifold of connections minimizirg the Euclidean action, global aspects.

Progress has recently been made [31] [32] towards a global study of self
or antiself dvality equations (Eq. 4)

'F.\(, =% Q‘F):v

So far, only G=SUZ has been dealt with. 3ince this is a quasilinear elliptic
system, one expects solutions to ppssess analyticity properties. These analyticity
properties have been found [31] and restrict the differential geametry framework,
to the algebraic geometry framework. Most of the geometry involved is related to
general views put forward by R. Penrose [33] » which ought to apply to a general
class of conformal jnvariant euclidean field .theories.

It may be of interest, for the purpose of orientation to review 2 simpler
problem which bears some resemblance to the Yang Mills problem, namely the non
linear Q@ model in two dimensions [34] .

One looks for minima of
" S= j ph(x). % G(=) d*x (40)

with the constraint

3
3 d) *
O AU )
ard the boundary condition
- = 4
P —> P @ =4 (42)
(R .
Thus . .
. 2
RV 3 x —» YEx) & S
F
defines a mapping from Rv oo to Sz whose degree is given by

: - - O = . :
"“-‘ S(‘P, o9, 3,:‘9) d*x SN EN
i  Buz Cuv IV
G:iven: n ', . S }-eaches an absolute minimum for
%t =t Px R (44)
iRz in{ ‘



13

as stems from the positivity condition

. -> - -0 2. a . A
E% (3. £ Fx%g) dx 2o )
- A S z%n
It is convenient to use the variables

=z = X|O'|.Xz
3: g’,ﬂ»(‘&.’

Sl
where S_( » §g are the coordinates of the stereographic projection of (p on
RF . In terms of these variables

(46}

’ -
- 2§ 1 [é_&_ dz dZ
S 3( S+ 181) G55
e fEED s
= o=l =~ 3z | / (w18)" .
and (44) reads ’ ’ .
35 o or ?—E =0 (48)
RE °2F
according to the sign of n .,
The general solution reads :
. A
S(L"): *Z_ z—-%; - &o . (49)

in the holomorphic case. 3 should be replaced by F in the antiholomorphic
case. ')\. N _.5_1‘, » are arbitrary complex numbers, 3’0 , the stereographic
projection of “D‘, .

Hod, it has been often argued that thers are similarities between the
non linear §° mode) in two dimensions and thr “ang Mills model in four dimensions.
There is an obvious analogy here in the derivat 'n of Eq. 48, to be compared with
the self-duality condition Eq. 4, from the pos..ivity condition (45) analogous to
Eq. 7.

. . On the other hand, there is a suustantial difference between S" and ‘S“ :
there is a unique complex structure [35] on Sz'v(up to a sign), which rnakes it
an analytic manifold, and is SO& invariant. It is associated with the system
of isatropic lines on the sphere. On s* . there is no global complex structure.
Loccally, the analogue of the isotranic generators, of S:' is provided by any: .
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isotropic 2-plane. Such two planes are parametrized by a point on P(¢) , 1oe,
S"' , and so0 are, locally, the complex structures of S

q .
'P"(H) . for convenience, an isotropic two pl-ne is parametrized by

working with
T(P(W)2X=ue A (rsp Jou

) {50)
with, UL fixed spinor up to scaling, A variable spinor

) (X.X): dek X =0

(51)
Thus the direction of this two plane §s poramctrized by L) . Stmitary,
a comple: structure compatible with DOk
Y—g :’F\XJ Ti. 4 vTﬂ'Tg'.L (52)
can be parametrized by
X = utI) X v(3I)
u‘(s)l. v(J) & Su2 e

fow, all possible J's are of the form [35]

J=3J. 5-4,

S € S04
where 3’, is a special solution.
.So, choosing Jg ¢

~y ot ~ .,

X = JoX = X

10z
we can. parametrize J by '

. ~ -4 N a
X - X v(T) , V{Desv2, Vi1
V(.‘.S') is uniquély detormined by its eigensubspace pertaining to the eigervalve +¢ ,
so that the D04 invariant complex structures are locally labelled by 'P*(C) .
. Now.. 'PI_H-) can be fibred by its complex structu

res iato 'P3(€) which

is a complex analytic manifold . .
P . 1 " . -
PO B PUw) 54
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The fibration can be described as follows. Let

Cqsa ) uw et o (s)
70 a:"/{ ~ 22, €340

The iavolution T on

) o o
5 ~(25)

with square -1 induces an involution [GJ with square +1 on ?2@) . This
involution has no fixed point, but fixed lines images of

) e @
=(q‘“)w . w:@)e?‘(@) qluye {u csmu?)

QJ 1
) qv) =@ 079%)
These lines are atelled by —PZH) since the change .
)= GLg ey .

() = 9(v) 9

only corresponds to 4 different parametrization.

The subgreup of S k{4 ,C) , which acts on ?SCG'—) , and commutes with
[0"] is just S L(?.H) which therefore acts.on the real lines images of

2, = (’:;") ve PO (59)

according to '
8

S tz.H) 3 (C_ D_) Xe HJ’ —_ th-Bc

as expected.

eH (60)

x+D

Angther useful description of these real lines is through the introduction
of their Plucker coordinates. Let

F:- 2. A 02, (6)

Then it is 'easy to check that, up to an overall scale which depends on UV alone,
T s determined by % and that



-}r'F:«-'F':o - ' (62)

The components of F are called the Plicker coordinates of X [36],[37] and
Eq. 62 is the equation of the Pliicker quadric Q,, in P* , which is left
invarient by SC5,4), .

This concludes a brief summary of the cuclidean version of the geometrical

framework introduced by R. Penrose.

The relevance of isotropic two planes is the following [32].[38] ,[39] :
if one assumes that the solutions to our problem can be analytically continced in
some neighbourhood of X , the s 1f duality condition Eq. 4 means that the curva-
ture vanishes on all isotropic two~planes. One thus infers that the connection,
restricted to such a two plane is a gauge. If '(:'L is the projective spinor defining
the direction of an isotropic twr-plane, and O the quaternion associated to Q

~ _ Ced 3
wWa = Hi(z,u)u = Ho(x,w) (63)

The fundamental theorem of the theory, due to Atiyah and Hard [31] actually shows
nos the gauge function. H{%,W) can be found, in principle :

To each principal SUR bundle, and connection with (aati) self dual
curvature, there corresponds in a unique way a holomorphic (algebraic) d: bundle
aver ? (C) The complex structure is defined uniquely by the connection.

The construchon is summarized by the following diagram [40]

€(sta.c)
was
N £ 70 B(sv2)
P(C) B(sLa,c)
[

T 1”(@) a ot@.‘C) (64) .

2 B(sv2)
PULH) svz

where :

- ® (SU2) s tne principal SU.’L bundle over P (H) » Q. the connection
def'nmng hor1zonta‘l subspaces.

<
[SLQ.C) is the unique SL2,C extension of (B[SU.Z) QU7 the extension
. oF : :



- B(su2) B(SLR,C) are the inverse images of B(s2) ., BsLzL)
by the projection T : ?3(C) T Plew) previously described ; [T*Q ,
Q% . the inverse images of Q , ‘% respectively. .

) An almost complex structure J s defined on ‘€(SL.2.C) by the complex
structure of SL@,C) , along the fibres, and by 1ifting the complex structure
of P3(€) to the horizontal subspaces defined- by N*QS .

The integrability condition [35]

\T([ xY] - [Ix ,J'YJ) [Tx] +XTY] . (65)

where X, Y are arbitrary vector fields, which insures that the Lie bracket of

two holomorphic vector fields X+¢J X , Y+{TIY  is again holomorphic, i.e.

of the form Z+{ JZ is known to be sufficient for J to define a complex
structure. 1t can be chocked here by choosing for X , and Y e;'ther horizontal

or vertical fields. The self-duality condition is part of the integrability condi-
tion (63), for X , Y horizontal . [x. YJ vertical, the other parts being
trivially checked. This shows that B &LR,C) is holomorphic. (SL.2(C) has

two further properties : a reality property related to its construction from CB(SUZ)
of which it is a kind of complexification, and a triviality property : the restriction
o ‘€C$L2,C) to real lines of ?'{(H) is trivial. This leads to the comscruction
of the dauge function H{X,W) in Eq. 63 as indicated by Ward [32] and also used
by other authors [38] ,[39]. as follows. Cover ’P‘(CJ by the two open sets Qb ,ﬂ‘:

E) o
Q. - §u=(4 , ®e® t66)
The restriction of ‘@(SI:.C) to a real line X is defined by a transi-

tion function F(XL) holomorphic in Qoﬂ oo 5 with value in SL@.G) .
Or the other hand T {X U) 1is not arbitrary :

=4

Fxw= G (v,u) ]V v (67)
' i €  ~E
vihere G is the transition funntion of ‘@(SLZC) in Q,‘ n S.L.a . whereQ—o

2
. ; 3 se s -

dengtes a neighbourhcod of 2, in ? CC) . Thus, F is invariant under the

translation X eeX+A@WO; and thus fulfills the differential equation

Du. T: =0 . . (68}
where . .
: i 3
Dee w2 : : (69)




is the operator‘appearing in Eq. 63. Of course G is homogeneous of degree O
in L,y ,andso F s homogeneous of degree © in &L . Triviality reans
that one may split ¥ according to :

T T, Fo (20)

-F& in SL@ ¢} . holomorphic in -Q&
It follows that

-4 —- :
-F; :D“-FT t:»: IDVF 71

both sides continue each other in D.o (5] SL and because they are homo-
geneous of degree 1 in W , they are linear in W, so that one may write

wd = F,'D,F . Fo D Fa. _ 02)

-~
where Q1 depends only on X and is identified with the connection; furthermore
the idetity

D (-F;-‘ DVF) - Dv (F;—‘Du F) _[FO',LF)“F, 1 DvF]=o

yields the self duality condition on the curvature. This essentially summarizes
Ward's argument [32].

(73)

Nos the structure of  S(SL2CY contains lots of information into which
the author cannot go by mere lack of competence. For instance, thce lines 25 on
which triviality breaks down are represented by intersecting the Pliicker quadric
with an algebraic surface of degree n

—Ph (F)‘: o ' _Ph herogencous (74}
polynemial
of degree n
Such lines are called jumping lines, and will appedr as singularitics of a ,
since {72} will break down.
In particular, the n=1 instanton is associatedwith a hyperalaae section of Q" B
The set of n=} instantons s parametrized by such hyperplanes (5 parometers) and
transformed into one another by SO&4A\SOS |, SO5 being the stabilizer of
one rcal hyperplane. The corresponding model for the associated < bundie, the
so-called null correlation bundie [36].[41] is explicit enough so that one may
reconstruct the known solution [18] , for which now uniqueness is proved.

Nhereaé the information on the manifold of singularities of Q. is far
from complete, nothing is- known about their nature. On the other hani, the problem
can be Hnearizgd in principle through a sequence of nested Ansatz [31}.[42] which
generalize the *t Hooft Ansatz through the introduction of massless.free fields
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with higher spins. However the gauge freedom
1:; - <;o Fi
?i- - G%t Fia

where G& belongs to S L(2.G), is holamorphic in D.%and fulfilTs

Du Go =0 ' o (7'5)
2 .

'L.'e. F.. G° F G: (75)

does not seem to have lead so far to very tractable formulae. The occurrence of
nassless fields is a consequence of £q. 68 together with detailed properties of

‘2 (S LZ,C) according to which T can be yauged into a triangular form
characterized by its non diagonal element.

This concludes & rather imperfect description of the subjett. Many omissions,
in particular in this last part, are due to the author's puor understanding of the
already published results for which written proofs are yet to come but it is hoped
that the bibliography will help the puzzled reader to abtain information at the
right source. .
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