
(.C "Of\ •?••>< «.rw. ,r.„' **<} Ï \\\ 
C U.. 1./ c 

R. STORA 

Centre de Physique Théorique, CNRS , Marseille 

Lectures given at the International School of Mathematical Physics, 
Erice, 27 June - 9 July, 1977. 

SEPTEK3ER 1977 

77/P.9M 

Poital Address : Centre de Physique Théorique, CNRS 
31, chemin Joseph Aiguier 
F - 13Z74 MARSEILLE CEDEX Z (France) 



VANG MIUS U1S1ANT0NS, GEOMETRICAL ASPECTS 
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'•- FOREWORD -

These notes are based on seminar notes prepared during the year 
J1976-1977 a t the Centre de Physique Théorique du CfiRS, M a r s e i l l e , by : 
W. F rank l i n , C.P. Kor tha ls -A l tes , J . Madore, J .L . Richard, R. S tora , and p r i va te 
l lecturcs by l .M. Singer to the author , t o whom, however a l l incor rec t ions should 
be a t t r i b u t e d . 
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I - INTRODUCTION 

' The word instanton [l] has been coined by analogy with the word soliton. 
They both refer to solutions of elliptic non linear field equations with boundary 
conditions at infinity (of euclidean space time in the first case, euclidean space 
in the second case)lying on the set of classical vacua in such a way that stable 
topological properties emerge, susceptible to survive quantum effects, if those 
arc small. Under this assumption, instantons are believed to be relevant to the 
description of tunnelling effects between classical vacua [2] and signal some 
characteristics of the vacuum at the quantum level, whereas solitons should be 
associated with particles, i.e. discrete points in the mass spectrum ; In one 
case the euclidean action is finite, in the other case, the energy is finite. 
FroT, the mathematical point of view, the geometrical phenomena associated with the 
existence of solitons have forced physicists to learn rudiments of algebraic topo­
logy [3] . The study of euclidean classical Vang Hills fields involves naturally 
mathematical items falling under the headings : 

- differential geometry.{fibre bundles, connections) 
- differential topology (characteristic classes, index theory) 

and, more recently 
- algebraic geometry. 

Most of the machinery is old enough so that it can be learnt from matheira-' 
tical books or sets of lecture notes where complete bibliographies can be found. 
It is out of question to give here a complete review of the mathematical apparatus. 
We shall ruther pick out some of the results and'show how they apply to the specific' 
case at hand. 

These notes are divided as follows : 
Section II is devoted to a description of the physiclst'sviews 
Section III is devoted to the mathematician'sviews. 

These notes are sketchy in the sense that very few technii-al details are 
fully described. Displaying them all wculd have required reproducing large portions 
of mathematical books. Emphasis has been put on some details of the 19th century 
tjeo~otry which is not easily accessible anymore, and not currently known to physicists 
The more accessible mathematical items are referred to as accurately as possible, 
including chapters, paragraphs, page numbers. It is .thus hoped that these notes can 
be used as a guide through the recent literature. 



I I - THE PHYSICIST'S VUvIS 

The problem to be solved is the following : find euclidean Vang Mil ls 

•fields A p ( x ) which minimize locally the euclidean action 

The notations are as follows 

E ta 
four dimensional euclidean space. 

d : lahels an orthonormal basis of the Lie algebra &. of a simple compact 
Lie group GJ. unless otherwise specified QmZU2, for which there is 
the largest available information. 

â«tû : Killing f o r m °^ 

QV* : f l a t riemannian metric in S. 

d X : volume element in _ E corresponding to Q' 

cd r 
' A^j. : structure constants of Of . 
' The f i r s t class of instantons found by Belavin et al Du is by now well 
known. I t IKS the following characteristics : 

S <<x> K y ( x ) —•*• o 
' [K.\-KO 

where the homotûpy class of corresponds tc the integer W.= ±- j . 
Both cases, Yls£*1 are treated together, by considering a Vang Mills f ie ld f\£ 
with value in the Lie algebra of S O i ) which is the direct sun of two copies of 
the SUS Lie algebra. The topological number W is related tc a Chern number 
!(the integral of a Chern characteristic class) : 

. i . . . . . . . . . _ . 

For given. TV • absolute minima of . O . are reached for 
' • • ' • • • c < 



which in particular imply the usual f ie ld equations 

yW = w (5a) 

V^dfFj^O (5b) 

However, all solutions which have been so far constructed saturate the absolute 
bound 

s-g 'M (6, 
3 

deduced from the identi ty 

The Y l e ^ solutions assume several equivalent forms [ l ] . [ 5 ] , [ l ] 

(9) 

where 

Through a conformai transformation which leaves both the euclidean action 
and the topological invariant unchanged, or a gauge transformation one gets the 
following equivalent form [ l j : 

later generalised bv ' t Hooft [6] for higher n-values : 

... The S 0 4 version which puts together solutions pertaining to opposite n's reads . 



..._ .jçi S are the matrix elements of the 5 0 4 Lie algebra : 

i This collection of solutions has been enlarged by Jackiw, Nohl and Rebbi 
[ 7 ] into a 5n*4 parameter family with 

(K) P - ^ + f ^ 
It was also argued by these authors that there ought to be solutions depending on 

5n + 3(n-l) = 8n - 3 parameters corresponding to n-1 relative orientations of 

isospin axis, for instanton number n and this was checked in the neighbourhood of 

the known '.olutions, in the linear approximation [8]. This situation has been further 

analyzed by Brown, Carlitz, Lee \$\ who relate the dimensionality of instanton fluc­

tuations to that of minimally coupled massless fermions belonging to the adjoint 

representation. The latter is connected to the Adler anomaly, through an argument 

of S. Coleman [lO], and hence to the instanton number. 

Although the fermion problem is interesting in itself [l] and can be 

handled for an arbitrary compactification of E •[ll] • i* ' s o n V directly 

related to the instanton problem in the case where the metric is flat. The argument 

can then be summarized as follows : 

' L e t 

A j » /£ + <£ (15) 
and let us impose the Landau gauge [ l l ] condition in the background f ie ld A which 
we assume to correspond to a self dual solution : 

1 . • 

V* â . s o (i6) 

The linearized system then reads 

. !? a .-0 (17) 

Iwhere 

J* V (18) 



Of is determined by its first column Q , 

(19) 

Conversely, for each solution Q . of this spinor equation, there corresponds a 

two dimensional real manifold of solutions of the initial equation, corresponding 

to the one dioensional complex manifold of solutions CX Q. , A complex. This 

in turn.is equivalent to the mass less Dirac equation 

&q=Q (20) 

together w i t h the c h i r a l i t y cond i t ion 

4> =&•<]> (21) 

( i n the Key! represen ta t ion) . 

The res t o f tne argument which f i t s very we l l w i t h i n the methods, t o be 

described i n the next sec t ion involves several steps : 

i ) f o r a given s e l f or a n t i - s e l f d u a l i t y property of the gauge f i e l d , the 

Oirac equation possesses only c h i r a l or a n t i - c h i r a l so lu t ions 

i i ) tbe d i f fe rence between the number o f c h i r a l and a n t i - c h i r a l so lu t ions can 

be evaluated i n terms of the Adler anom?ly, i . e . the ins tanton number. 

This developping subject owes much to phys ic is ts who have f i r s t mad? 

Ù number of remarkable guesses. I t seems however tha t mathematicians have taken 

over w i t h powerful - and r igorous - techniques. I t i s t o be no t iced t ha t one o f the 

f i r s t con t r i bu to r s , A.S. Schwarz [ l j . [ n j l e f t a name in the theory of c h a r a c t e r i s t i c 

classes and was the f i r s t to have used the powerful index theory as ear ly as A p r i l 

197S [ l 2 J . Later , M.F. At iyah and I.M. Singer, the main con t r ibu to rs in th i s ten 

year old theory, and co l laborators [ l3J , have both reproduced A.S. Schwarz's 

woK' and gone beyond w i th the help of the h i t h e r t o unused techniques of a lgebraic 

geometry [ l 4 j . 

Some mathematical aspects dug out by phys ic is ts have not been exp lo i ted 

so f a r , namely, those re la ted t o the general conformai invar iance of the problem : 

the funct ion P involved i n the ' t Hooft ansatz can be i d e n t i f i e d w i th the 

conformity fac to r [ l5J occurr ing i n the l i n e element of a non compact mani fo ld 

conformai to E ^ ( f l a t f o r s e l f or a n t i - s e l f dual T^iv . w i t h constant 

curvature i n the casé o f gene-a 1 ' .olut ions of the f i e l d equat ions) . These remarks 

have not been f u l l y exp lo i ted v . , because much o f the mathematics used so f a r 

Since every quaternion 

or.e has 

^ Q r O 



relies on the compactness of the manifolds that are used. 



I l l - THE HATHEWTICIAH'S VIEWS 

I t is a matter of philosophy whether in principle a Yang Hi l ls f ields 
ought to be associated with a connection on a principal fibre bundle [ lo j . 
I t is a fact that Yang Mills f ields considered in the previous section are of 
this type and that the corresponding mathematical apparatus can be used either 
to streamline previously obtained results or to obtain new results. 

He shall now review the various items enumerated in the previous section 
from a more mathematical point of view. 

1, The n=l instantons. a geometrical description [ 5 ] , [ 1 5 ] . f t 3 ] • 

Let us f i r a t map E g » into S c E through a stereographic 
projection. Call & , " F , the dif ferential forms 

a = Aji. d^ev (22) 

where ^ , is « basis of Gj . . He shall not distinguish the forms on E <J co and 
their inverse images on S^ . Since the stereographic projection is conformai, 
i t preserves 

an. = 1^0,0 
(24) 

(25) 

where rt denotes the dual for whatever Riemannian metric is involved, and ( , ) 
is tne Ki l l ing form of GL . 

There are concrete examples of fibre bundle with structure group either 
SOtf or SU2. X ZU2f pertinent to the instanton antiinstanton doublingor SU2, , 

pertinent to single instanton or antiinstanton description : 
the S04principal bundles with basis S are known to depend on two integers [}7~], 
The simplestnon t r i v i a l one is SOff (Sa5"\S04 = S* ) . The Maurer Cartan form on 

SO!) , d ) a 9 " d 4 w i t h value in the Lie algebu of SOST can be restricted to the 
Lie algebra of SO*/ [l8J and one can check by choosing coordinates that i t is the 
n = 1 instanton in i ts i n i t i a l version, which is SOS invariant. The conformai 
transforms of this solution are obtained by restricting the Mauror Cartan form on 
SOjS/Oto a r ight coset modulo SOS , and then to the Lie algebra of SOA . We-thus 
obtain a f ive parameter family of solutions indexed by a point of ScJS/O \S05", each 
solution being invariant under l e f t translation by a subgroup of SC^ff.^) conjugate 



c 4 r- ' ' 
to Z05 • In this version one has to go from 5 to b. by a stenographic 
projection, and i t is actually much more direct to work with the covering groups 
USte>2» f f SO£> - the 2 x 2 unitary group with quaternion elements - =nd 
S L I ^ I H ) - the 2 x 2 unimodular group with quaternion elements - of SOS,4 . 
The quotie.t U S J>Jt\Soa*£(J2 is the projective quaternioic line "PA { H) , 
i .e . th'. set of pairs of quaternions ( X I Y ) under the equivalence relation 
lji,y).<v» (q X , G[ V 3 w n e r e q is an arbitrary non vanishing quaternion. 

"Rj ( r r^ « n be used naturally as a model of compoctified E and the 
formulae given by Jackiw and Rebbi [5] are directly recovered by the constructions 
indicated above. In particular, i t is easy to verify that the corresponding curva­
ture f u l f i l l s the self-duality condition [4 J ,-by using i ts e:pression in terras of 
the Haurer Cartan form on the one hand, and local coordinates on the other hand [ l 3 ] . 

One can similarly deal with the SU2 version by considering S .r USJ»2 \tC4 

and appropriately restr ict ing the Haurer Cartan form 

2. The ' t Hooft instantons as connections on principal bundles [_6j«|_19J-

On S * (resp. ?.,( r l ) ) , <X has n singularities i t X t- , Cs-i...tl 
i nd . i n the neighbourhood of such a singularity 

ss.»x. 
(26) 

where Q^ is the translated by X ; of 9 given by fornija (9) . Cover 
S (resp. T^ i (H) ) by H+4 open sets : n ball-neighbourloods i " l ; of X t-

{ ^ n X l j ^ 0 ). i l , » (J V ^ i / a 
Oefine 

a*. » a 
' * • . 127) 

a c -a«{ 3 ?a + 3. À£ 
Then, by the conventional construction of principal bundles, there is a bunole wi-.h 
transition functions . . . 

3<o - 9 7 • • •«• ^ ^ o (28) 

and a connection defined by Q C 1 Q.j , <.'« •).... ft., on i t (cf. Koba;ashi Nomizu [ i s ] , 
p. 66). 

Although there are canonical e.-.imples of SOA fibre bun.-.les over S 
for arbitrary allowed topologies £zo] - indexed by two integers - tiny have not 
suggested ao far any geometrical characterization of the connections rfhich minimize 



the euclidean action. 

3. The i r jn i fo l ' . : of connection'. - i ^ r , i ,-jjv; Ih.? I~.. 1 iti'.vn a c t i r n , local aspects. 

There are two essentially equivalent versions of [ l l j [ l3 j of the study 

of the manifold of solutions of the self or antiself duality-condition Eq. 4 . 

One is based on the linearized system 

"7 a =• O (29) 
in the neighbourhood of 3 solution Q. , a connection on sotr.e fr incipal bundle UJ 
over S1* . O. is a section of the SOlinG bundle T ' t S l J X Gr with basis S * 
associated with Co and the riemannian structure on S . 7 is a f i r s t order 

• ^ * *a 
ell iptic.operator i .e. i ts f i r s t order symbol s . (obtained by replacing —• 
by u in the higher degree terms) is invertible for •B' frO . I t maps sections 
of T Y s " ) ^ ^ into sections of ( T ^ e s T ^ J C S * J g <£ ' where T?X&) 
denotes the space Df self dual 2-forms. Since V is e l l i p t i c , the dimensionality 
of the space of solutions ker V is f i n i t e [23] since 5 is rompact. 
The index theorem can be applied : [22] [23] [24] [25] 

. I n d ^ = di»w ker-^-d>m ker V T 

(30) 

can be-computed in terms of topological data ( ^ ? T now maps 
into ~T ( S*) * *k , and is the usual adjoint) because of i ts "universality". 
The calculation proceeds through a formal algebra of characteristic classes vihose 
terms factor out into factors involving the Of f ibrat ion, expressible by rrsans 
of the character of the adjoint representation, and factors involving the basis, 
expressible in terms of the character of the SOt . representation in T * ( S ) 
and ( T M < 3 T f a ) 0 ' ' ) respectively. For <a=fSON the formula reads 

Xnd V = k N n(<3) - {™& + &ptf)(uU) {,i, 
' "A p 

"X. n Euler Poincaré characteristic ; X C S * 1 ] ^ ; P CHS'Oj • Pontrjagin number 

of S* ; (5"(TCS''))=Oj H ( ^ ) - Chern number of (Q . 
Next one shows that 

d i n ker ' $ ' T = 0 («) 

The calculation is a b i t lengthy and repeatedly makes use of two arguments 
which are schematized below : a posit iv i ty argument classical in the Hodge theory 
of harmonic forms [23] ,[29] , and an i r reducib i l i ty argument concerning Q, ; 



Frea 

K<LT*\\ ( 3 3 ) 

we Jeduce 

s < 1 

hence, from posit iv l ty 

V l l r O 

(34) 

(«> 
which in turn 1m, °s 

$*h..»[f > ] =o w 
Actually Eq. 36 is equivalent to Eq. 35 : 

O-^Ch.^h). J(?k.$M C37, 
hence, Eq. 35 follow; from posi t iv i ty. 

o 
I f F spans the S U i - L i e algebra everywhere, (the i r reducibi l i ty 

property, which is true here, i t follows that \% vanishes. T l i i s argun.er.1 incident­
al ly shows vihy Vie background '.andau gauge does not leave any gauge freedom (Eq. 36 
has no non-vanishing solution). 

The method used by Atiyah, Hitchin and Singer [i3J is essentially equivalent 
they consider the e l l i p t i c complex [23] [24] [25] 

0 _ T * V ) * < à *- T*4(s«jx^ !s .T r (s^ - *o ( 3 ) 

( \ V + rr O by the self-duality of Ç" ). 
Under the i rreducibi l i ty hypithesis for "F , the topological index of this complex 
is identical with the one previously computed and so is i ts analytical indjx (sum 
j f di.nensions of various kernels). The formulation is however sl ight ly different : 
Insteud t ' renoving the gauge freedom by f ixing the background Landau gauge condi­
t ion, the gauge freedom is eliminated by subtracting di«w Irrt V , which is 



correct in a l l cases. 

Once the linearized system has been analyzed, there remains to prove that 

each solution of the linearized system gives rise to a true solution, in a neigh-

bourhood of û« . This requires the use of the in f in i te dimensicial impl ic i t function 

theorem OP top of 

? T : 

in the f i r s t version, 

cJirv. l<er V j = 0 
+ 

! n the second version [25] where the question is to study the deformation of the 
complex (33).. 

The last question [ l l j connected with this has to do with the solutions 
of the massless Dirac equation Eqs. (20, 21). J?" is an e l l i p t i c operator from 
positive "-'.lirality fields to negative chiral i ty f ie lds , and coincides with i ts 

o 
adjoint, the two spaces being interchanged. The index of J?* . t X + - P l_ » 
( n.. a j^r positive chi ra l i ty of fermion zero modes) can be computed again using 

negative 
topological data [22] , [ l l ] ,[13J .T9J . On the other hand, i t is related to the 
Adler Bardeen anomaly, as remarked by S. Coleman [ lo j : i t can be computed by 
investigating the corresponding Laplacian and diffusion operator [25] [27J [30] : 

« o f f )[fcv Y^e 
b3L 

(39a) 

(39b) 

where the symbol O l e J means : selecting the zeroth order term in tiie asymptotic 
expansion [28j of the indicated quantity for fc-*0+ , from which the negative 
powers of fc involved in each term of (39a) drop out. This method of calculation 
turns out to be quite close to the physicist's version [9 ] based on the evaluation 
•f Feynman graphs, to which i t provides a firm foundation. The result can also be 
jbtained by the purely algebraic methods involving the relevant representations of 
S02. XSU2. x Ĉ  .The coefficient of n comes out a half of what i t w»3 in 
the Vang Ki l ls case, but the coefficient of dim Q changes signif icant ly, in 
particular the term proportional to XC.S'1) is missing : in non f l a t space 
the reliiticr.ship between the Dirac and Vang Mills problems is unclear, since here 
again posit iv i ty and the i r reducibi l i ty of the connection take care of the absence 
of solutions of the adjoint system. 



4. The manifold of connections minimizing the Euclidean action, global aspects. 
Progress has recently been made [_3lJ [32J towards a global study of self 

or-antiself duality equations (Eq. 1) 

So far, only G - S U 2 » has been dealt with. Since this is a quasi linear elliptic 
system, one expects solutions to possess analyticity properties. These analyticity 
properties have been found [3l] and restrict the differential geometry framework. 
to the algebraic geometry framework. Most of the geometry involved is related to 
general views put forward by R. Penrose (_33J , which ought to apply to a general 
class of conformai Invariant euclidean field theories. 

It may be of interest, for the purpose of orientation to review a simpler 
problem which bears some resemblance to the Yang Hills problem, namely the nan 
linear Of model in two dimensions [34] . 

One looks for minima of 

s - J" 9r5c«).^?c*)a** 
with the constraint 

eft*)-i- <£(*>«•* 
and the boundary condition 

' «PGO.-T* % MT=-» 
Thus . . . 

. "R^ao 3 x —* <p(x) S S * 

(40) 

(41) 

(42) 

defines a mapping fron o o to S whose degree is giver, by 

Given . tX. , S reaches an absolute minimum for 

^ Y = ± <p X <^, lp (44) 



1 3 

as stems from the posit ivi ty condition 

I Z (.%$* <P*^?) ^ *<> (45) 
S * ? n . 

! t is convenient to use the variables 

* fi. • * w 

where 5 ^ > § - are the coordinates of the stereographic projection of <û on 

. In terms of these variables 

Sc 

and (44) reads 

IS c-o or $2 

(47) 

(48) 

according to the sign of n . 

The general solution reads 
n. « 

$ 0 0 " Z ^ -b £o (49) 
in the holomorphic case. JJ should be replaced by 'Sf in the antiholomorphic 
case, ' ^ w , 3 u , are arbitrary complex numbers, J 0 , the stereographic 
projection of <P0 

Now, i t has been often argued that the™ are similar i t ies between the 
non linear C model in two dimensions and thr Vang Mills model in four dimensions. 
There is an obvious analogy here in the dérivât T of Eq. 48, to be compared with 
the self-duality condition Eq. 4, from the pos.. ivi ty condition (45) analogous to 
Eq. 7. 

On the other hand, there is a substantial difference between S and S : 
there is a unique complex structure [35] on S> (up to a sign), which ;..akes i t 
an analytic manifold, and is S02 , invariant. I t is associated with the system 
of isotropic lines on the sphere. On S , there is no global complex structure. 
Locally, the analogue of the isotropic generators, of 5 is provided by any 



isotropic 2-plane. Such two planes are parametrized by a point on P c ^ ) . i-e. 

S > and so are, locally, the complex structures of : working with 

r C H ) , for convenience, an isotropic two pl'.ne is parametrized by 

T C ^ C H ) ) 3 5( = U® A (resf> 3®a { 5 0 ) 

with, U. fixed spinor up to scaling, X variable spinor : 

. (X,X) = deb X = 0 (51) 

Thus the direction of this two plane is parametrized by r (<L) . Simi lar ly, 
a compie:: structure compatible with S C i 

can be parametrized by 

X - • ucar) x Wo} 

U C ï ) , vCT) < £ S U 2 , 

Now, all possible J's are of the form [35J 

(52) 

(53) 

where 3J, is a special solution. 
So, choosing Co : 

X _ * To X «= X I'CGL 

we can parametrize 0 by 

. . x _» x vcs) 

VCT) is uniquely determined by i ts eigensubspace pertaining to the eigenvalue + i 

so that the Soi) invariant complex structures are locally labelled by T (<C) . 

Now, " P J L H ) can be fibred by i ts complex structures In toT^ (£) which 
is a complex analytic manifold : 

'!>*(€) Ziâ, .?"CH) («) 



The f ibration can be described as follows. Let 

The involution O* on <C 

CH3 2 = (v) U,i> e€* (55) 
T*CC) «i C V j Z . h , C 3 n * û l 
O- on C * l J 

(;) -(££) 
with square -1 induces an involution \JTJ with square +1 on i{jC) . This 
involution has no fixed point» but fixed lines mages of 

* ( £ ) + *<• G t £ ) ^ . A 6 C <"> 
HTZ) ' «"GO*7*® ^.(«.«u-j 

These lines are 'atelled by " ( H ) since the change 

' , o t q e H (se) 

only corresponds to i different paranotrization. 

The subgroup of Sl-ijuC) , which acts on r C<EJ , and commutes with 
[0"3 is just SL[2,H) which therefore acts-on the real lines images of 

according to 

j 5 Lfc.h) 9 (2S) , X S H J - *A* + B_I - eH (60) 

as expected. 

Another useful description of these real lines is through the introduction 
of their Plucker coordinates. Let 

T . - 2 , A 0 -2 , .(«) 

Then it is easy to check that, up to an overall scale which depends on 1)" alone, 

"F is determined by X and that 



*r f*T (62) 

The components of r are ca l led the Pl'iicker coordinates of X. [ 3 6 ] , [37] and 

Eq. 62 i s the equation of the Pl'iicker quadric >& , i n r " , which is l e f t 

i n va r i an t by 

, This concludes a b r i e f summary of the euclidean vers ion of the geometrical 

framework introduced by R. Penrose. 

The relevance of i so t r op i c two planes i s the fo l l ow ing [ 3 2 ] . [38] , [3SJ : 

i f one assumes tha t the so lu t ions t o our problem can be a n a l y t i c a l l y continued i n 

some neighbourhood of X , the s*. l f dua l i t y condi t ion Eq. 4 means tha t the curva­

ture vanishes on a l l i so t r op i c two-planes. One thus i n f e r s tha t the connect ion, 

r e s t r i c t e d to such a two plane is a gauge. I f t t i s the p ro jec t i ve spinor de f in ing 

the d i r e c t i o n of an i so t r op i c twr -p lane , and Ct the quaternion associated to Q. , 

a a = trV.u.) u- lv H(x,u3 (63) 

The fundamental theorem of the theory , due to At iyah and Ward [ 3 l ] ac tua l l y shows 

how the gauge f u n c t i o n ' H { X , U j can be found, i n p r i n c i p l e : 

To each p r i n c i p a l SU2> bundle, and connection w i th ( a n t i ) s e l f dual 
curvature , there corresponds i n a unique way a holonorphic (a lgebra ic ) (C bundle 
over r (Ç) . The complex s t ruc tu re is defined uniquely by the connect ion. 

The const ruct ion i s summarized by the fo l low ing diagram [<o] 

? aCC) "* 

(64) 

(8 (sua) 

where 

& ( S ( / a ) i s the p r i n c i p a l S U 2 . bundle over T ^ H ) , Q . the connection 
: de f in ing hor izon ta l subspaces. 

02(SLa,C) i s the unique SL2.C extension of QtSQZ) , Q . the extension 
. o f '' 



. -86'îOa-) . ^ S L S . Ç ) are the inverse images of C3(SU2.) . B(SL2,Cj 

by the projection V : T 3 C C J J ^ 7\H) previously described ; [T*Ct . 

"TJ*Û.C : the inverse images of Q. , O. respectively. 

Ar> almost ccr.plex structure J is defined on by .the complex 
structure of S!-(?|C) . along the f ibres, and by l i f t i ng the complex structure 
of -?3C€) to the horizontal subspaces defined by H*Q. 
The integrabil i ty condition [35] 

^( [X.Y] -0*,;rY3)=£rx,Yj ^[x.srvj '(6sj 

where X , Y are arbitrary vector f ie lds, which insures that the Lie bracket of 
two holcmorphic vector f ields X+i '3"X • Y + I « Y is again holomorphic, i .e. 
of the form "SL-*-!* T ^ is known to be sufficient for J to define a complex 
structure. I t can be checked here by choosing for X , and Y either horizontal 
or vertical f ields. The self-duality condition is part of the integrabil i ty condi­
tion (63), for X , Y horizontal, f X . Y T vert ical , the other parts being 
t r i v ia l l y checked. This shows that ~i(SLZ,c) is holomorphic. ^ (SUî iC) has 
two further properties : a real i ty property related to i ts construction from (2>(?Mty 
of which i t is a kind of complexification, and a t r i v i a l i t y property : the restr ict ion 
of -ê£SL2,C) to real lines of P Ch) is t r i v i a l . This leads to the construction 
of the gauge function r l (X |U . ) in Eq. 63 as indicated by Ward [32*1 and also used 
by other authors [38], [39], as follows. Cover "P^CCj by the two open sets Q^ ,Q*>: 

n : . - î«-t ï) , **t } (66) 

The restrict ion of €(SL2.C) to a real l ine X is defined by a transi­
tion function "FfXiU.) holomorphic in £ i 0 O A i c * a , with value in S l ^ i i C j . 
On the other hand Y(X\U) is not arbitrary : 

T7x , iO = C ( v , u) I (67) 
£ - £ r-\2 

where (j is the transition function of •ê(suae) in £ 1 0 n £&> , where -i*-o 
denotes a neighbourhood of • * ^ i in r CP) • Thus, I is invariant under the 

translation X - • X+ ÀButO^ and thus f u l f i l l s the differential equation 

3Du. "F" - O . (68) 

where 

•Due U __ ( 6 9 ) 

• • 2X. • •• 



is the operator appearing in Eq. 63. Of course Q is homogeneous of degree O 
in U , V • a n d s 0 F 1 s homogeneous of degree O in CI • Triviality ne 
that one may split r according to 

ans 

(70) 

r â i n SLU2iC) , holomorphic i n S2,o 

I t fo l lows that 

T / D U F , T ^ D , F ( 7 1 ) 

both sides continue each other in and because they are homo­
geneous of degree 1 in U , they are linear in U- , so that one may write 

u .a = T0" D U F = T ^ T ^ T ^ (72) 
where Q depends only on JC and i s i d e n t i f i e d w i th Iho connect ion; furthermore 
the ide i t i t y 

T)u CFc-'vvr)--nv(Fo's^) -EK^UF.F/VJ-- 0

 ( 7 3 ) 

y ie lds th t s e l f dua l i t y condi t ion on the curvature. This essent ia l l y summarizes 

Ward's argiment [32J-

Now the s t ruc tu re of contains lo ts of informat ion i n t o which 

the author cannot go by mere lack of competence. For instance, the l ines X . on 
which t r i v i a l i t y breaks down are represented by i n te rsec t i ng the Pli ickor quadric 
w i t h an a lgebraic surface o f degree n 

T,tF)=o T= ̂ homogeneous (74) 
polynomial 
of degree n 

Such l ines are cal led jumping l i n e s , and w i l l appear as s i n g u l a r i t i e s o f CX , 
since (72) w i l l break down. 
In p a r t i c u l a r , the n=l instanton is associated w i t h a hypcola. io sect ion of Çà^ . 
The set of n=l instantons is parametrized by such hyperplanes (5 parameters) and 
transformed i n t o one another by SOS" , - I \SOS* , 305 being the s t a b i l i z e r of 
one rea l hyperplane. The corresponding model fo r the associated <C bundle, the 
so-ca l led nu l l co r re la t i on bundle [ 3 6 1 , [ l l j i s e x p l i c i t enough so that one may 
reconstruct the known so lu t i on [ l8 j , f o r which now uniqueness is proved. 

Whereas the informat ion on the manifold o f s i n g u l a r i t i e s of Q, is f a r 
from complete, nothing i s known about t h e i r nature. On the other hand, the problem 
can be l i near ized i n p r i n c i p l e through a sequence o f nested Ansatz [31J, ' j l2J which 
generalize the " t Hooft Ansatz through the i n t roduc t i on of mass less . f ree f i e l d s 



with higher spins. However the gauge freedom 

"K, - * ^ o ^ • . _ - _ - . - • < 

where G?o belongs to S L ( 2 , C ) , is holomorphic in and fulfills 
GO CO 

£>UQ0 =o (76) 
CO 

does not seem to have lead so far to very tractable formulae. The occurrence of 
[lossless fields is a consequence of £q. 6S together with detailed properties of 
*ts ^ S L 2 . , C ) according to which r can be gauged into a triangular form 

characterized by its non diagonal element. 
This concludes a rather imperfect description of the subject. Many omissions, 

in particular in this last part, are due to the author's puor understanding of the 
already published results for which written proofs are yet to come but it is hoped 
that the bibliography will help the puzzled reader to obtain information at the 
right source. . . . . 
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