ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

8854

6 - 11056

И. Драйер, Р. Драйер, Ю.В. Норсеев, В.А. Халкин

получение

НЕКОТОРЫХ НЕОРГАНИЧЕСКИХ ФОРМ АСТАТА И ИЗУЧЕНИЕ ИХ СВОЙСТВ ЭЛЕКТРОФОРЕЗОМ НА БУМАГЕ И БУМАЖНОЙ ХРОМАТОГРАФИЕЙ

B13

1977

И. Драйер, Р. Драйер, Ю.В. Норсеев, В.А. Халкин

получение

НЕКОТОРЫХ НЕОРГАНИЧЕСКИХ ФОРМ АСТАТА И ИЗУЧЕНИЕ ИХ СВОЙСТВ ЭЛЕКТРОФОРЕЗОМ НА БУМАГЕ И БУМАЖНОЙ ХРОМАТОГРАФИЕЙ

Hanpaвлено в "Radiochemical and Radioanalytical Letters"

Драйер И. и др.

6 - 11056

Получение некоторых неорганических форм астата и изучение их свойств электрофорезом на бумате и бумажной хроматографией

Найдены условия окисления астата до пятн- и семивалентного состояния. Приводится спавиение поведения астата и перастата с иодатом и периодатом при электрофорезе на бумаге и при бумажной хроматографии.

Показано, что перастатат стабилен в шелочных и нейтральных средах, но при подхислении растворов перастатата последний восстанавливается до астатата.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Преприит Объединенного виститута ядерных исследований. Дубва 1977

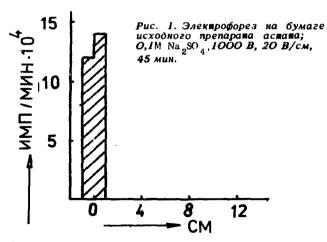
^{© 1977} Объединенный инсиштув лдерных исследований Дубна

Кислородсодержащие анноны астата были идентифицированы по аналогии их поведения с периодатом и исдатом при электрофорезе на бумаге в нейтральных электролитах /1,2/ Соединение, идентифицированное как перастатат, подобно периодату, оставалось на месте нанесения. Изоморфная сокристаллизация этого аниона с периодатами калия и цезия подтверждала правильность его идентификации. Анион, определенный как астатат. мигрировал вдвое медлениее астатида. Примерно такое же отношение скоростей миграции наблюдалось для пары JO3/J . Основной задачей нашей работы был анализ продуктов окисления астата различными реагентами. Очевидно, что электрофорез на бумаге, позволяющий определять известные соединения и, вероятно, наблюдать новые /если бы они образовались в условиях эксперимента/ - наиболее удобный для этой цели метод. Нами также была изучена хроматография валентных форм астата на бумаге в нескольких элюнрующих системах. которые ранее использовались для разделения аннонов йола ^{/3/}

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Астат выделяли газотермохроматографически 6 из тория, облученного протонами с энергией 680 МэВ. Адсорбированный на платине или серебре астат возгоняли при 500°С и пары элемента поглощали в воде. Нейтральный раствор астата служил исходным при приготовлении препаратов различных валентных форм астата. Для этого к 0,2 мл исходного раствора добавляли указанные ниже количества окислителей и 15-20 мин нагревали до 90°С.

Астат окисляли:


 2M KOCl – 1M KOH/O,O3 мл/; 2O % раствором хлорамина $^{1S-C_6}$ 1I_5 SO $_2$ NaNCl/O,O3 мл/; 2N XeF $_2$ /1-2 мл/ в нейтральных и щелочных /O,5 м NaOH/ растворах; $^{3\cdot 1O^{-2}}$ M/O,1 мл/ КЈО $_4$; O,1 м КМпО $_4$ /O,1 мл/ в щелочном растворе /O,2 м NaOH/, с последующим восстановлением перманганата до 1M O $_2$ 3 танолом /O,O3 мл/. Астат до 1S 6 восстанавливали 1S NoH.

Электрофорез соединений астата проводили при 1000-1200 В в нейтральных или слабощелочных электролитах: O,1M Na SO или диметилформамид /ДМФ/-3M NH OH, при объемном соотношении компонентов смеси 1:2.

Для эффективного теплоотвода полоски бумаги ватман 1 закрывались тефлоновыми пленками и зажимались между металлическими пластинами, охлаждаемыми волой.

Хроматографию соединений астата проводили на бумаге ватман 1 или FNH / ГДР, VEB Niederschlag / со следующими элюентами: ДМФ - 3M NH₄OH /от 1:2 до 8:1/, ацетон-вода /4:1/, бутанол - 3M NH₄OH/5:1/.

Распределение астата на бумаге после электрофореза или хроматографии определялось сцинтилляционными счетчиками.

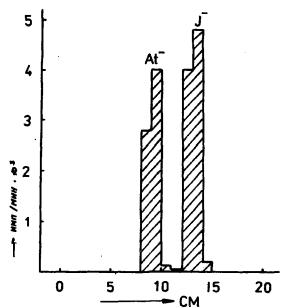


Рис. 2. Электрофорез на бумаге астатида и иодида без носителя. Электролит: $\mathcal{L}M\Phi$ -3M $NH_4OH1:2$; 1000 B; 20 B/cm, 60 мин.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Электрофоретический анализ исходных препаратов астата в нейтральных и слабощелочных электролитах обнаружил только одну, немигрирующую, форму / $puc.\ 1/.$ Подкисление препаратов до 0,5 М $\rm H_2\,SO_4$ свойств астата не меняло. Мы предполагаем, что из-за ультрамалых количеств элемента / $\sim 10^{-9}$ г/ и более низкой, чем для других галогенов, энергин диссоциации $\rm At_2$

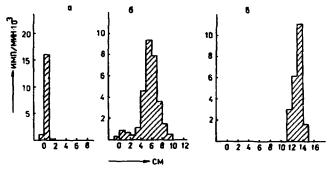


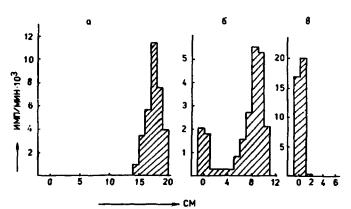
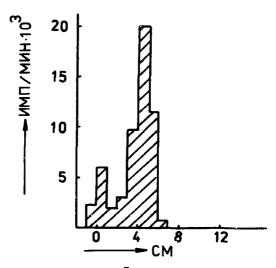
Рис. 3. Электрофорез соединений At в O, IM Na_2 SO_4 ; IOOO B, 2O B/см, 45 мин. a/ At° окислен XeF_2 в щелочном растворе; 6/ At° окислен XeF_2 в нейтральном растворе; a/ At° восстановлен гидразий гидратом.

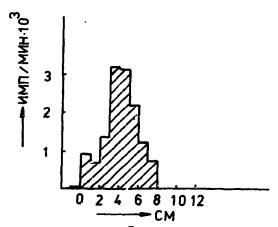
/28 ккал/моль - экстраполяционная оценка/, астат возгонялся с платины или серебра и поглощался в воде в атомарной форме. Следовательно, неходные растворы это, вероятно, растворы атомарного астата: At° . Очевидно, потому, что в растворах не было молекул At_2 , в слабощелочных электролитах не наблюдался At^- , который должен был бы образоваться в результате реакций диспропорционирования At_2 и распада иона гипоастатита. Гидразин-гидрат восстанавливал At° до аниона, скоросты миграции которого при электрофоре составляла 0.72-0.76 от скорости нодида / рис. 2/. Анион идентифицирован нами как астатид.

Окисление астата в нейтральных растворах XeF_2 /рис. 36/, $3\cdot 10^{-4}$ м KJO_4 /рис. 46/, хлорамином B/рис. 5/ и KOCl в щелочном растворе, приводило к образованию аниона, скорость миграции которого составляла O,53-O,57 от скорости астатида. Для иодата и иодида это отношение было O,54. Такое совпадение отношений скоростей миграции дало нам основание идентифицировать окисленную форму астата как астатат. Из одинаковых отношений скоростей миграции астатата и астатида, нодата и подида следует, что отношение скоростей AtO_3 и

 JO_3 , такое же, как у пары At^- и J^- : O,72-O,76. По аналогия с йодом мы пытались окислить At° до AtO_3^- перманганатом в щелочной среде. Однако исследовать полученную форму астата не удалось, так как, в отличие от водата, он полностью сорбировался на MnO_2 , которая выпадала при восстановлении перманганата этанолом.

Окисление астата XeF₂ в O,5 M NaOH, в соответствии с ранее полученными результатами ⁷²⁷, приводило к образованию перастатата - неподвижной при электрофорезе форме / рис. За/. Перастатат, подобно перходату ⁷⁸⁻⁵, оказался неустойчивым в кислых растворах: при рH < 1, после непродолжительного нагревания раствора /5-10 мин, 90° C/ он переходил в астатат / рис. 6/. Неустойчивостью перастатата в кислых растворах, очевидно, объясняются различия в результатах окисления At° дифторидом ксенона в нейтральных и щелочных средах: в первом случае, из-за подкисления раствора образующейся в процессе разложения дифторида ксенона 11F, конечным продуктом окисления оказывался AtO₂. Восста-

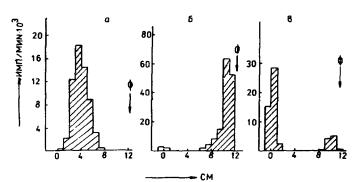

Рис. 4. Электрофорез соединений At в ДМФ-3М NH₄OH1:2; 1000 В, 33 В/см; 60 мин. q/At^- , $6/AtO_3$ / At_2^o окислен $1\cdot 10^{-4}$ М КЈО $_4$ /; $6/AtO_4$ / At^o окислен $^31\cdot 10^{-2}$ М КЈО $_4$ /.

Puc. 5. Электрофорез_ AtO_3 в O,1 M Na_2SO_4 ; 1000 B, 20 B/см, 45 мин. AtO_3 получен окислением At^o хлорамином G или KOCl в щелочном растворе.

новление перастатата в кислых растворах позволяло отличать высшую окисленную форму от нейтрального астата, на электрофоретические свойства которого подкисление не влияло.

В работе ⁷⁷ очень коротко, в подстрочном примечание, без указаний каких-либо условий опыта упоминалось об окислении астата до перастатата парой ${\rm JO}_3^{-}/{\rm JO}_4^{-}$. Эти данные подтвердились в наших экспериментах: при концентрации периодата порядка 10^{-2} М, окисление Ato быстро проходило до перастатата / рис. 46 в 7е/ в нейтральных и щелочных средах. Подкисление растворов, например, до 0.5 М ${\rm H}_2{\rm SO}_4$, приводило к восстановлению семивалентного астата до пятивалентного, несмотря на относительно высокую концентрацию периодата.

Puc. 6. Электрофорез $_{AtO_3}^-$ в O,1M $\mathrm{Na_2SO_4}$; 1000 B, 20 B/см, 45 мин. $\mathrm{AtO_3}^-$ был получен после подкисления $\mathrm{AtO_4}^-$ O,5 M $\mathrm{H_2SO_4}$.


Tаблица Значення R_f астата в йода при хроматографии на бумаге ватман I с элюентами: I/ ацетон-вода /4:1/, II/ ДМФ-3М NH_4 OH /2:1/, III/ H-бутанол - 3M NH_4 OH /5:1/.

элювнт	At°	At ⁻	7	At03	۱0 <u>3</u>	Al O	JO ₄
1	0	0,9-0,95	Q9 0,95	Q9 Q95	0	0	0
1	D	Q9~0,88	¢9 0,88	0,85	0,42	0	0
£	0	0,3	Q3	0,9 0,95	0	0	0

Окисление At^o периодатом, вероятно, наиболее простой и надежный путь получения препаратов астатата и перастатата, удобных для изучения свойств анионов различными методами, в том числе и бумажной хроматографией.

Полученные значения R_1 для различных валентных состояний астата и йода в нескольких элюентах приведены в жаблице.

Для всех элюентов наблюдалось резкое различие в поведении AtO_3^- и JO_3^- при хроматографии на бумаге: зона астатата всегда находилась вблизи фронта растворителя. Благодаря этому были возможны разделения астатида $/R_1^-$ =0,3/и астатата $/R_1^-$ =0,9-0,95/с бутаноламмиачным элюентом /puc. 7/ и не годились для этой цели растворы ДМФ-3М NH_4^- OH, с которыми очень хорошо разделялись соединения йода /M. Результаты анализов методом хроматографии на бумаге с бутанол-аммиачным элюентом, при идентификации кислородсодержащих анионов астата, полученных в различных условиях, всегда совпадали с результатами электрофореза. В частности,

Puc. 7. Хроматография на бумаге в распворе H-бутанол- 3M NII $_4^{OH}/5$: $_1/_4$ $_4/_4$, $_4/_4$, $_4/_4$, $_4/_4$ окислен $_1^3$ $_10^{-2}$ M KJO $_4/_4$.

бумажной хроматографией было подтверждено образование астатата при восстановлении перастатата в кислых средах.

ЛИТЕРАТУРА

- 1. Nagy G.A., Khalkin V.A., Norseev Yu.V. Mag. Kemiai Foly, 1967, 73, p. 191.
- 2. Халкин В.А. и ор. ДАН СССР, 1970, 195, с. 623. 3. Драйер И. и ор. ОИЯЙ, 12-11055, Дубна, 1977.
- 4. Das M., Heyn A.H.N. Agarwal R.P. Talanta.
- 1970, 17, p. 925. 5. Galliford O.J., Nuttal R.H., Ottaway J.M. Talanta, , p. 871. 1972,
- 6. Вахмель В.М. и др. ОНЯИ, Р12-8896, Дубна, 1975.
- 7. Samson G. Organic Compounds of Astatine Dissertation, 1971, Amsterdam.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс

Тематика

- 1. Экспериментальная физика высоких энергий
- 2. Теоретическая физика высоких энергий
- 3. Экспериментальная нейтронная физика
- 4. Теоретическая физика низких энергий
- 5. Математика
- 6. Ядерная спектроскопия и радиохимия
- 7. Физика тяжелых ионов
- 8. Криогеника
- 9. Ускорители
- Автоматизация обработки экспериментальных данных
- 11. Вычислительная математика и техника
- 12. Химия
- 13. Техника физического эксперимента
- Исследования твердых тел и жидкостей ядерными методеми
- Экспериментальная физика идерных реакций при ниэких энергиях
- 16. Дозиметрия и физика защиты
- 17. Теория конденсированного состояния

Издательский отдел Объединенного института ядерных исследований. Заказ 24028. Тираж 320. Уч.-изд. листов 0,58. Редактор Б.Б. Колесова. Подписано к печати 25.11.77 г. Корректор Р.Д. Фомина.