A14

Институт атомной энергии

им. И.В. Курчатова

SV 78/18557

В. М. Кулыгин, А. А. Панасенков,

Н. Н. Семашко, И. А. Чухин

Ионный источник без внешнего магнитного поля ИБМ - 5

Москва 1977

ОРДЕНА ЛЕНИНА ИНСТИТУТ АТОМНОЙ ЭНЕРГИИ им. И.В.КУРЧАТОВА

В. М. Кулыгин, А.А. Панасенков, Н. Н. Семашко, И. А. Чухин

ИОННЫЙ ИСТОЧНИК БЕЗ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ ИБМ-5

> Москва 1977

Ключевые слова. монный источник, инжектор, газовый разряд, плазма, поток частии.

В настоямей работе описан нонный источних без внешнего магнитного поля ИБМ-5 (ионный безмагнитный модуль), обеспечивающий получение пучков нонов водорода с энергиями до 25 кзВ, током более 30 А к длятельностью импульса 20 мс. При использования его в инжекторе токамака Т-11 в установку может быть введен поток атомов мощностью до 320 кВт при энергии частиц 20 кзВ и до 500 кВт при 25 кзВ.

1. ВВЕДЕНИЕ

Инжекция мощных потоков быстрых атомов водорода является одним из основных методов создания и нагрева плазмы в магнитных ловушках в программе исследований, связанных с проблемой управляемого термоядерного синтеза (УТС) $\begin{bmatrix} 1-6 \end{bmatrix}$.

Возможности создания эффективных инжекторов, способных вводить в магнитные повушки потоки атомов интенсивностью в сотни ампер при энергии в десятки и сотни кэВ, определяются возможностью создания модулей сильноточных источников ионов. Прогресс, который был достигнут в этом направлении в последние годы, связан как с развитием новой техники и технологии, так и с более глубоким пониманием физики явлений, лежащих в основе получения интенсивных ионных пучков [7-9].

К основным проблемам относятся:

- а) Создание плаэменных эмиттеров нонов с большой (сотни см²) поверхностью, обеспечивающих поставку ионов на эмиссионную границу плазмы с плотностью тока порядка 0,5 А/см². При этом для обеспечения оптимальной фокусировки пучка на всей плошади ионно-оптической системы источника однородность плазмы на эмиссионной поверхности должиа быть высокой (допускается неоднородность до 10%) и не должно быть колебаний величины ионного тока с частотами десятки и сотни килогерц, так как они могут приводить к ухудшению фокусировки пучка.
- б) Формирование интенсивных слаборасходящихся ионных пучков с помощью многоапертурных ионно-оптических систем (ИОС).

В настоящей работе описана конкретная реализация плаэменного эмиттера большой площади с помощью низковольтного диффузионного разряда, горящего в разрядной камере с распределенным катодом без наложения внешнего магнитного поля. Отбор ионов и формирование лучка производятся с помощью трехэлектродной многощелевой ИОС.

Описание конструкции ионного источника ИБМ-5 (ионный безмагнитный модуль), предназначенного для работы в инжекторе токамака Т-11, дается в разд. 2; разд. 3 посвящен разряду, а разд. 4 - ионно-оптической системе. В разд. 5 приведены основные характеристики источника.

2. КОНСТРУКЦИЯ ИСТОЧНИКА ИБМ-5

Ионный источник ИБМ-5 конструктивно состоит из двух блоков: газоразрядной камеры и ионно-оптической системы (рис. 1).

2.1. Газоразрядная камера

В состав блока газоразрядной камеры входят: катодный узел, система напуска газа, корпус и анодный фланец. Внутренние размеры газоразрядной камеры 220х120 мм, высота 60 мм. Внутри камеры по периметру располагаются 22 катода высотой 45 мм, изготовленные из вольфрамовой проволоки диаметром 0,7 мм в виде "дамских шпилек". Все элементы, составляющие разрядную камеру, электрически изопированы друг от друга. Токоподводы накальной и разрядной целей распределены по периметру. Предусмотрено водяное охлаждение всех элементов конструкции.

Рис. 1. Конструктивная схема источника ИБМ-5: 1, 2 - изоля-торы; 3 - анодный фланец; 4 - корлус; 5, 8 - катодные фланцы; 6 - газораспределитель; 7 - экранирующая плита; 9 - катод; 10, 11, 12 - заземленный, ускоряющий и эмиссионный электроды

2.2. Ионно-оптическая система

ИОС источника выполнена в виде отдельного блока и состоит из эмиссионного, ускоряющего, заземленного электродов и изолирующих элементов.

Эмиссионный электрод составлен из трех эмиссионных решеток по 14 экстракционных щелей в каждой (всего 42 шели). Размер щели 8 x 0,2 см²; щели расположены

на площади 8 x 18 см² и составляют полную поверхность эмиссии в 67 см². Крепленне решеток предусматривает свободу для теплового расширения их в направлении вдоль щелей.

Конструкции ускоряющего и заземленного электродов аналогичны конструкции эмисснонного. Решетки всех электродов делаются из молибдена толщиной 1 мм. Для осуществления фокусировки пучка в направлении вдоль шелей решетки эмиссионного и ускоряюшего электродов изогнуты с радиусом кривизны ~ 2 м.

фокусировка пучка в направлении, поперечном по отношению к щелям, производится с помощью относительного смещения щелей в ускоряющем и эмиссионном электродах [13]. Охлаждение ИОС производится водой по внешним фланцам эмиссионного и ускоряющего электродов.

3. ГАЗОВЫЙ РАЗРЯД. ФОРМИРОВАНИЕ ПЛАЗМЕННОГО ЭМИТТЕРА ИОНОВ

3.1. Наиболее подробное изучение закономерностей в разряде было проведено на модели разрядной камеры, построенной по той же конструктивной схеме, что и в ИБМ-5, но имеющей несколько иные геометрические размеры.

На рис. 2 приведена схема эксперимента. Разрядная камера имела круглое сечение диаметром 10 см и высоту 5 см. Вдоль боковой стенки на диаметре 9 см располагались 14 прямоканальных катодов из вольфрамовой проволоки днаметром 0,7 мм общей площадью 25 см². Боковая и торцевые стенки разрядной камеры находились под плавающим потенциалом. Разряд работал в импульсном режиме, длительность импульса 20 мс. Мощность накала катода составляла около 4,5 кВт, т.е. температура катодов несколько пре-

Рис. 2. Блок-схема разрядной камеры и электрического питания

Рис. 3. Вольт-амперные характеристики разряда при различных давлениях водорода в разрядной камере

вышала 3100 К. что обеспечивало плотность тока эмиссии электронов около 30 А/см². Для того чтобы магнитное поле тока накала катодов и тока разряда не оказывало влияния на плозму разряда, подключение подводов тока накала и разряда осуществлялось в щести местах, распределенных по окружности разрядной камеры.

Напряжение разряда в зависимости от давления водорода в разрядной камере (ρ_{o}) и тока разряда (I_{ρ}) менялось в диапазоне 20—40 В (рис. 3). Следует отметить, что для зажигання разряда не требовалось подачи напряжения, большего, чем рабочее.

Распределение параметров плаэмы на эмиссионной лозерхиости как по радиусу, так и по азимуту определялось с помощью набора лентмюровских зондов, расположенных на торце разрядной камеры. Измерения распределения ионного тока насыщения (i_+) на зонды показывают, что для широкого диапазона изменений ρ_c и I_ρ распределение i_+ оказывается симметричным относительно оси разрядной камеры и однородным по азимуту даже в тех случаях, когда радиальное распределение i_+ бывает в эначительной мере неоднородным.

Увеличением или уменьшением ρ_0 можно изменять характер распределения j_+ на эмиссионной поверхности от распределения с провалом в центре при больших давлениях ($\rho_0 = 3.5.10^{-2}$ торр) до распределения с максимумом в центре при давлениях, близких к минимальному давлению, требующемуся для зажигания разряда ($\sim 3.10^{-3}$ торр) (рис. 4). При некотором "оптимальном" давлении $(1-1.5).10^{-2}$ торр разряд обеспечивает поставку ионов на эмиссионную ловерхность с плотностью тока j_+ до $0.5 \, \text{A/cm}^2$ при неоднородности менее $\pm 10\%$ на площади около $40 \, \text{cm}^2$. Не наблюделось колебаний ионного тока на зондах в области частот $10^4-10^6 \, \text{Гц}$.

Рис.4. Изменение радиальных распределений j_{+} при изменении давления водорода и I_{\bullet}

Рис. 5. Отношение плотности ионного тожа на зонд, расположенный вблизи катода, к току разряда (I_p) в зависимости от I_p . Пунктир — расчет для случая прихода на катод только ионов H_p^+ или ионов H_p^+ или ионов H_p^+

Рис. 6. Изменение отношений плотностей ионных токов на центральный и прикатодный зонды с увеличением тока разряда при различных давлениях водорода в камере

Как следует из критерия Ленгмюра для двойного прикатодного слов, в случае работы катода в режиме объемного заряда отношение плотности тока приходящих на катод нонов (,) к плотности тока электронов с катода должно оставаться постоянным. Следовательно, поскольку в источнике без внешнего магнитного поля ток разряда определяется током электронов с катода, отношение , / I должно оставаться неизменным при изменении параметров разряда. На рис. 5 приведено отношение , / I для различных значений в . Видно, что экспериментальные точки группируются вблизи величины , / I для различеных значений в . Видно, что экспериментальные точки группируются вблизи величины , / I для различения , кроме больших, при которых наблюдается заметное увеличение , от центра к катоду. Близость отношения , / I дря к величине, рассчитанной для случая, когда на катод приходят только наибольшая концентрация быстрых электронов, которые иоиизуют в основном газ с образованием ионов Н , а также с наличием в разряде ионов Н .

Изменение степени неоднородности i_+ с увеличением T_ρ при различных ρ представлено на рис. 6.

Температура электронов плазмы определялась по зондовым характеристикам. На рис.7 и 8 представлены распределения \mathbf{j}_+ и температуры электронов (\mathbf{I}_e) при изменениях \mathbf{p}_o и \mathbf{I}_p . Обращает на себя внимание, что хотя распределения $\mathbf{j}_+(\mathbf{r})$ сильно различаются, характер распределения $\mathbf{T}_e(\mathbf{r})$ сохраняется и температура электронов вблизи катодов примерно на 1-1,5 эВ выше, чем в середине. Можно предположить, что увеличение \mathbf{T}_e вблизи катодов связано с тем, что именно в этой области должна происходить передача энергии от катодных электронов к плазменным вследствие возбуждения пучком быстрых электро-

Рис. 7. Изменение радиальных распределений j_+ и $T_{m e}$ при изменении давления водорода в камере

Рис. 8. Изменение радиальных распределений $\mathbf{j_+}$ и $\mathbf{T_e}$ три изменении параметров разряда: 1 — $\mathbf{I_p}$ = 270 A, $\mathbf{U_p}$ = 23 B; 2 — $\mathbf{I_p}$ = 500 A, $\mathbf{U_p}$ = 25 B; 3 — $\mathbf{I_p}$ = 880 A, $\mathbf{U_p}$ = 33 B

Рис.9. Связь температуры электронов плаэмы с напряжением разряда. Пунктир – расчет с помощью формулы (1)

Рис. 10. Зависимость эмиссионной плотности ионного тока (),), напряжения разряда (Up) и плавающего потенциала эмиссионного электрода (Wp) от тока разряда. Давление водорода в камере ~1.10⁻² торр

Рис. 11. Распределение д вдоль длинной оси разрядной камеры ИБМ-5 при различных токах разряда

нов лентмюровских колебаний плазмы. Оценка плины релаксации энергии пучка, сделанная на основе работы [10], дает величину $\lambda_{pen} = 3-5$ см. Эксперименты показывают, что в зависимости от условий величина T_e может составлять 5-10 эВ, причем ее изменение хорошо согласуется с изменением напряжения разряда (U_e). Расчет баланса частиц и энергии в описываемом разряде дает выражение для связи T_e и U_e :

$$T_{\rm e} \approx e U_{\rm p} \left(1 - 2 \frac{\dot{j}_{\star}}{\dot{j}_{\rm ex}} \frac{S}{S_{\rm g}}\right) - e \phi \frac{\dot{j}_{\star}}{\dot{j}_{\rm ex}} \frac{S}{S_{\rm g}} , \qquad (1)$$

где $J_{e\kappa}$ - плотность тока эмиссии электронов с катода; S и S_{κ} - площади стенок разрядной камеры и катодов: $e\,\phi$ - средняя энергия, требуемая для образования одного иона. На рис. 9 построены расчетные зависимости T_e от U_e для значений ϕ = 25 и 35 B и приведены значения T_e , полученные в различных режимах горения разряда. Видно, что расчетные и экспериментальные данные хорошо согласуются.

3.2. Закономерности, отмеченные в модельном разряде, проявляются в полной мере и в полномасштабном разряде, зажигаемом в камере, размеры которой приведены в разд. 2. Суммарная площадь катодов составила в этом случее 40 см², полная мощность накала – около 8 кВт (10 В х 800 А). Вследствие того, что относительная площадь катода (S_{κ}/S) стала меньше, разряд горит при больших разрядных напряжениях (рис. 10), как это и требуется из условия баланса энергии для обеспечения требуемой величины T_{e} . При оптимальном давлении в разрядной камере P_{o} = (1-1,5).10⁻² торр иеоднородность J_{+} на эмиссионной поверхности плаэмы составляет около 5% вдоль длинной оси разрядной камеры (рис. 11) и менее 5% вдоль короткой оси. Таким образом, в описанной геометрии разряд обеспечивает поставку ионов с плотностью тока до 0,5 A/cm^2 на площади около 140 см² при неоднородности менее 5%.

4 ЭЛЕКТРОСТАТИЧЕСКАЯ ИОННАЯ ОПТИКА ИСТОЧНИКА. ФОРМИРОВАНИЕ ПУЧКА

Извлечение и формирование интенсивного почного пучка производилось с помощью трехэлектровной многощелевой ИОС [11]. Измерения производились на стенде инжектора (рис. 12), тостоящего из вакуумной камеры, ионного источника, камеры перезарядки и приемника, на котором калориметрически измерялась мощность пучка. Система коллекторов, ммежещаяся в приемнике пучка, расположенном на расстоянии ~ 1,75 м от источника, позволяла измерять распределение плотности тока в пучке по вторичной эмиссии. Следует отметить, что перезарядная камера, расположенная непосредственно за заземленным электролом источника, обеспечивает примерно 80%-ную перезарядку ионов пучка в атомы (при элергии 20-25 квВ), а образующаяся в мишени плотная вторичная плазма [12] - хорошую компенсацию объемного заряда ионов сразу по выходе их из ИОС. Таким образом, расходимость пучка целиком определяется углами, с которыми ноны вылетают из ИОС.

4.1. Свойства отдельной ячейки ИОС

Предварительно проводилось изучение фокусирующих свойств однощелевой трехэлектродной ячейки. Оптимизированная по результатам численного счета и экспериментального исследования форма электродов ячейки ИОС источника ИБМ-5 представлена на рис.13.

Расходимость лучка в направлении полерек щели зависит от положения и формы границы плазмы и в зависимости от эмиссионной плотности нонного тока (j_+) имеет V - образный характер (рис. 14). Слециальный профиль шели в эмиссионном электроде обеспечивает получение пучка с минимальным углом расходимости около 1,3° при высокой "оптимальной" плотности j_+^{ORT} . Экспериментально угол расходимости пучка определялся по полуширине профиля пучка на уровне 1/2 от амплитуды в центре распределения. Расходимость лучка в направлении вдоль шели определялась по профилю пучка с учетом размера эмиттера. Угол расходимости пучка вдоль шели практически не зависит от величины j_+ (он определяется главным образом наличием у извлекаемых ионов разброса по поперечным энергиям).

Эксперименты показывают, что каждой комбинации величин ускоряющего наприжения (\mathcal{U}_{\bullet}) и ускоряющего промежутка (d_{\bullet}) соответствует своя оптимальная плотность тока эмисски ионов (f_{\bullet}^{OIT}), при которой угол расходимости пучка поперек щели (θ_{\bullet}) минимален, причем эначение θ_{\bullet}^{min} оказывается приблизительно одинаковым для довольно широкого диалазона изменений $d_{\bullet}(2-4\text{ мм})$ и $\mathcal{U}_{\bullet}(15-35\text{ кВ})$. При заданной величине d_{\bullet} отношение оптимальных токов пучка оказывается с хорошей степенью точности, пропорциональным $\mathcal{U}_{\bullet}^{3/2}$. Экспериментальные данные показывают, что величина f_{\bullet}^{OIT} может быть рассчитана с помощью выражения

$$\dot{J}_{+}^{ORT} (A/cM^2) \simeq 4.10^{-8} \frac{[U_o(B)]^{3/2}}{[d(cM)]^2}$$
, (2)

Рис. 12. Схема экспериментального стенда

Рис. 13. Формы электродов ячейки ИОС

Рис. 14. Угол расходимости пучка в зависимости от эмиссионной плотности тока ионов, приведенной к величине ускоряющего напряжения в степени 3/2: сплошная кривая – расчет на ЭВМ, экспериментальные точки: о – 15 кВ; х – 20 кВ

Рис. 15. Зависимость тока пучка (I_{μ^+}) и тока нагрузки ускоряющего электрода (I_{y}) от тока разряда при различных значениях ускоряющего напряжения \mathcal{U}_{o} : 1 – 15 кВ; 2 – 20 кВ; 3 – 25 кВ

где в качестве эффективной длины услоряющего промежутка берется $d \approx t_1 + d_1 + \delta_2$ (t_1 — толщина эмиссионного электрода, δ_2 — полуширина щели в ускоряющем электроде).

4.2. Многощелевая ионно-оптическая система

На этом же стенде проводились измерения пучка, сформированного многошелевой ИОС, описанной в разд. 2. Профили электродов при этом были такими же, как и у одношелевой системы.

Параметры пучка в зависимости от тока разряда и извлекаемого тока ионов представлены на рис. 15 и 16. При ускоряющем напряжении 25 кВ и d_4 = 3,35 мм из источника получается пучок с током до 35 А. Эмиссионная плотность ионного тока 0,5 A/cm^2 достигается при токе разряда около 1,3 кА, что херощо согласуется с результатами зондовых измерений в плаэме разряда. Для каждого значения ускоряющего напряжения имеется своя величина $I_{H^*}^{0n7}$ (рис. 16), хорошо определяемая с помощью выражения (2).

Изгиб решеток в направлении вдоль шелей приводит к фокусировке пучка. Из мерения профиля пучка в этом направлении показывают, что его ширина оказывается заметно меньше, чем начальный размер (длина щели 8 см), и составляет 3-3,6 см, уменьшаясь с увеличением энергин (рис. 17). Поскольку радиус кривизны решеток составляет около 2 м, можно считать, что фокус пучка находится в районе приемника и ширина пучка в этом месте определяется расходимостью ионной струйки, выходящей из любого элемента щели. Тогда, зная эту ширину Δ_{ii} , мс. э определить угол расходимости элементарной струйки в направлении вдоль щели θ_{ii} и, следовательно, среднюю поперечную энергию ионов (\mathbf{E}_{\pm}), характеризующую разброс вытягиваемых из газоразрядной плазмы ионов по поперечным скоростям ("поперечную температуру"), поскольку граница плазмы мало искривлена вдоль щели и θ_{ii} определяется главным образом наличием у ионов энергии \mathbf{E}_{i} .

Результаты проведенных измерений:

Ускоряющее напряжение, кВ	15	20	25
Ширина пучка (на уровне 1/е) вдоль щели, см	3,6	3,4	3,0
Угол расходимости вдоль щели, град.	<u>±</u> 0,6	±0,55	<u>+</u> 0,5
Средняя поперечная энергия ионов, эВ	1,65	1.83	1.9

Если щели в эмиссионном и ускоряющем электродах не смещены друг относнтельно друга, то профиль пучка на приемнике в направлении поперек щелей имеет ширину (уровень 1/e), превышающую начальный размер пучка в ИОС. Оценка среднего угла расходимости пучка по его профилю (с учетом начального размера пучка) дает величину $\pm 2 - 2.5^{\circ}$. Такое увеличение угла по сравнению с данными для однощелевой ячейки объяс-

Рис. 18. Ширина пучка (уровень 1/2) в направлении поперек щелей ИОС в зависимости от тока пучка (L = 1,75 м)

няется главным образом неточностью изготовления и взаимной установки решеток электродов.

Для фокусировки пучка в направлении поперек щелей был использован эффект отклонения элементарного пучка, выходящего из ячейки ИОС, при смещении щели в ускоряющем электроде относительно щели в эмиссионном электроде (см., например, [13]). В источнике ИБМ-5 крайние решетки в ускоряющем электроде были раздвинуты приблизительно на 0,15 мм, что по оценкам должио в выбранной геометрии ИОС обеспечивать для пучков из крайних решеток сходимость к оси с углом 1-1,5°.

Измерения профиля лучка показали, что смещение решеток привело к уменьшению ширины пучка на приемнике: минимальная ширина лучка в направлении поперек шелей оказывается несколько меньшей начального размера пучка в ИОС, равного 18 см (рис. 16 и 18).

4.3. Токи нагрузки на ускоряющий электрод

Обсудим теперь вопрос о составляющих тока нагрузки ускоряющего электрода. Как видно из рис. 15, отношение его величины к току ионного пучка, извлекаемого на источника, достигает $2 \times 25\%$. Можно показать, что даже в случае "идеальной ИОС", т.е. когда ток нагрузки ускоряющего электрода, обусловленный ускоренными ионами пучка, равен нулю, высокое значение коэффициента $2 \times 25\%$ может быть объяснено потоком на ускоряюлий электрод вторичных ионов как родившихся при ионизации и перезарядке в самой ИОС, так и приходящих из вторичной плазмы, образующейся в перезарядной мишени, а также вызываемым этими ионами потоком электронов вторичной эмиссии с уско-

ряющего электрода. По оценкам, концентрация молекулярного водорода (r_{c_0}) в ИОС составляет около 2.10^{14} см⁻³. В неятрализаторе вблизи ИОС $\sim 1.10^{14}$ см⁻³.

Как показано в работе [14], из всех вторичных ионов, родившихся в ИОС, на ускореноший электрод попадают ионы из области вблизи ускоряющего электрода и из области торможения пучка, т.е. образованные пучком, имеющим практически полную энергию. При энергии новов 20 каВ суммарное сечение образования вторичных новов (в основном H_2^+) при номизации и перезарядке составляет $\sim 7.5 \cdot 10^{-18} \ {\rm cm}^2$ [15]. Длина облести в ИОС, из которой вторичные ионы попадают на ускоряющий электрод, равна $I'_{\mu\nu\kappa} \simeq 4.5.10^{-2} I_{\mu\nu}$. Нетрудно примерно 0,3 см, таким образом ток этих нонов показать, что поток вторичных нонов из нейтрализатора при сечении трубы $12 \times 25 \text{ см}^2$ составляет примерно $I''_{+\nu c \kappa} \simeq 7,5.10^{-2} I_{\kappa +}$. Таким образом, поток вторичных ионов на ускоряющий электрод, по нашим оценкам, не менее 12% от тока пучка из источника. стедняя энергия этих ионов около 2 кэВ. Электроны, образующиеся в результате ионэлектронной эмиссии, покидают ускоряющий электрод, также давая вклад в ток нагрузки. Как следует из работы [18], коэффициент ион-электронной эмиссии 😮 сильно зависит от состояния поверхности и равен для молибдена ~ 1 при нормальном падении ионов водорода с энергией ~2 кэВ. Реально 🌱 может быть больше 1 из-за падения вторичных иснов на поверхность электрода под различными углами. Таким образом, вторжчные воны в электроны, эмиттируемые под действием бомбардировки поверхности этими ионами, могут давать ток нагрузки ускоряющего электрода до 25% тока ионного пучка. Выделяющаяся при этом на ускоряющем электроде мощность определяется потоком вторичных монов и составляет всего 12%. 2 кВ/20 кВ = 1,2% от мощности пучка. В реальных условиях к ней может добавляться мощность быстрых нонов, попадающих на электрод.

5. ПРИМЕНЕНИЕ ИСТОЧНИКА ИБМ-5 ДЛЯ ИНЖЕКЦИИ В Т-11

Важным является вопрос о том, какая доля пучка, формируемого в источнике, пройдет через входной патрубок токамака T-11 и какая мощность может быть инжектирована в эту установку.

5.1. Перезарядка

В рабочих режимах источника ИБМ-5 толщина перезарядной мишени (линейная плотность $n\ell$) составляет \sim ?,5.10¹⁵ см⁻², что обеспечивает выход быстрых атомов от 0,85 до 0,74 при изменении энергии инжекции от 15 до 25 кэВ. При энергии 25 кэВ оптимальная мощность пучка ионов из источника ($\Delta_{\perp} \rightarrow mln$) составляет примерно 800 кВт, т.е. мощность пучка быстрых атомов на выходе из камеры перезарядки достигает 590 кВт (рис. 19).

Рис. 18. Профиль пучка в направлении поперек щелей, $\Delta_1 = 2y_0$; пунктер — кривая Гаусса: $x - U_0 = 15 \text{ kB}, \Delta_1 = 17 \text{ cm};$ $- U_0 = 20 \text{ kB}, \Delta_1 = 16 \text{ cm};$ $+ - U_0 = 25 \text{ kB}, \Delta_2 = 15,5 \text{ cm}.$

Рис. 19. Зависимость от величины ускоряющего напряжения мощности пучка: 1 — нонов на выходе из камеры перезарядки; 3 — атомов, которые должны пройти через входиой патрубок токамака T-11; 3' — для дейтерия

5.2. Геометрические факторы

Входной патрубок токамака T-11 сечением $A \times B = 9 \times 28 \text{ см}^2$ расположен на расстоянии около 2 м от источника. На рис. 18 приведен профиль распределения пучка в направлении поперек шелей и его сравнение с распределением Гаусса. Как видно из рисунка, реальное распределение более острое, чем гауссово, и имеет более широкие крылья. В размере, равном ширине Δ_{\perp} , заключено ~73% пучка, а в размер $B = 26 \text{ см} = 1,5 \Delta_{\perp}$ попадает сколо 87% пучка. С учетом расходимости вдоль шелей ($A = (2,5-3)\Delta_{\parallel}$) можно ожидать, что в T-11 войдет около 85% пучка, т.е. поток атомов водорода мощностью около 320 кВт при 20 квВ и до 500 кВт при 25 квВ.

6. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ИОННОГО ИСТОЧНИКА ИБМ-5

Таким образом, разработанный источник ИБМ-5 обеспечивает получение пучков водородных ионов с током более 30 A при достаточно хорошей сформированности пучка: угол расходимости пучка составляет вдоль щелей $\leq 0.6^{\circ}$ и поперек $\sim 2.5^{\circ}$, начальное сечение пучка $8 \times 18 \, \text{cm}^2$. Ниже приведены основные характеристики, полученные при измерениях на стенде.

Ускоряющее напряжение, кВ	15	20	25
Оптимельный ток разряда, кА	0,83	1,02	1,25
Напряжение разряда, В	38	44	50
Длительность импульса, мс	20	20	20
Ток нонов из источника в оптимальном режиме, А	15,5	23,5	32
Мошность ионного пучка, кВт	230	470	800

Выход быстрых атомов (при толщине мишени $3,5.10^{15}~{ m cm}^2$), %	85	80	74
Мощность пучка атомов, кВт	195	375	59 0
Размеры пучка (уровень $1/e$) на расстоянии 175 см от источника ($\Delta_{B} \times \Delta_{\bot}$), см ²	3,6x17	3, 4x16	3,0x15,5
Средняя плотность мощности потока автомов внутри ($\Delta_{ii} \times \Delta_{\perp}$), кВт/см ²	1,7	3,65	6,7
Мошность потока атомов, который должен пройти через входной патрубок T-11, кВт	1 6 5	320	500

Предварительные измерения компонентного состава ионного пучка, извлекаемого из источника, показывают, что содержание в пучке протонной компоненты зависит от тока разряда и в оптимальных режимах составляет около 65%.

Опыты, проведенные с дейтерием, подтвердили все закономерности, найденные при работе с водородом. Оптимальный ток пучка уменьшился в 1,4 раза, что соответствует корню квадратному из отношения масс дейтерия и водорода. Мощность потока атомов дейтерия, который должен пройти через входной патрубок T-11 при ускоряющем напряжении на источнике 25 кВ, составила 350 кВт (см. рис. 19).

ЛИТЕРАТУРА

- 1. Cordey J.G. e.a. Nuclear Fusion, 1974, v. 14.
- 2. Berry L.A. Bull. Am. Phys. Soc., 1975, v. 20, p. 1332.
- 3. Eubank H.P. e.a. Bull. Am. Phys. Soc., 1975, v. 20, p. 1346.
- 4. TFR Group. Bull. Am. Phys. Soc., 1975, v. 20.
- Vlasenkov V.S. e.a. Proc. of 6th International Conf. on Plasma Phys. and Controlled Nucl. Fusion Research, Berchtesgaden, 1976.
- Coensgen F. e.a. Proc. of 7th European Conf. on Contr. Fusion and Plasma Phys., Lausanne, 1974, LLL Rep. UCRL-77255.
- 7. Stirling W.L. e.a. Paper VI-10, Proc. 2nd Symp. on Ion Sources, Berkeley, 1974.
- 8. Ehlers E.W. e.a. 1-5. ibid.
- Кулмгин В.М., Панасенков А.А., Семанко Н.Н. Доклад на В Всесованой конференции по плазменным ускорителям. Минси, 1976, тезисы, с. 293.

- 10. MBAKOB A.A., PYZAKOB I.M. X0T9, 1966, T. 51, C. 1522.
- 11. Cooper W.S. e.a. Paper D-5, Proc. 204 Int. Conf. on Ion Sources, Vienna, 1972; Eulygin V.M. é.a. Paper II-10, Proc. 204 Symp. on Ion Sources and formation of Ion Beans, IBL 5399; Berkeley, Supplement, 1974.
- 12. Rulygin V.M., Panassenkov A.A. Paper II-11, ibid.
- 13. Posschel R.L., King H.T. Paper II-4, ibid.
- Pink J.H., McDowell C.E. Rep. in Proc. of 6th Symp. on Eng. Probl. of Pusion Research, San Diego, Calif., 1975.
- 15. Афросинов В.В. и др. ДУТФ, 1958, т. 34, с. 1398.
- 16. Дорожин А.А. Физическая электромика. Труды ліш і 277, 105, 1966.

Редактор Л. И. Кырожина Корректор В. П. Горичева