ИАЭ-2898

A14

SU 78/1857

X

4

В. М. Кулыгин, А. А. Панасенков,

Н. Н. Семашко, И. А. Чухин

Ионный источник без внешнего магнитного поля ИБМ - 5

Москва 1977

ОРДЕНА ЛЕНИНА

ИНСТИТУТ АТОМНОЙ ЭНЕРГИИ ИМ. И.В.КУРЧАТОВА

ł

В. М. Кулыгнн, А.А. Панасенков, Н.Н. Семашко, И. А. Чухин

ионный источник

БЕЗ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ

ИБМ-5

Ключевые слова. монный источник, инжектор, газовый разряд, плазма, потох частии.

В настоящей работе описан нонный источник без внешнего магнитного поля ИБМ-5 (ионный безмагнитный модуль), обеспечивающий получение пучков нонов водорода с энергиями до 25 квВ, током более 30 А и длятельностью импульса 20 мс. При использования его в инжекторе токамака Т-11 в установку может быть введен поток атомов мощностью до 320 кВт ' при энергии частиц 20 квВ и до 500 кВт при 25 квВ.

1. ВВЕДЕНИЕ

Инжехция мощных потоков быстрых атомов водорода является одним из основных методов создания и нагрева плазмы в магнитных ловушках в программе исследований, связанных с проблемой управляемого термоядерного синтеза (УТС) [1-6].

Возможности создания эффективных инжекторов, способных вводить в магнитные повушки потоки атомов интенсивностью в сотни ампер при энергии в десятки и сотни кэВ, определяются возможностью создания модулей сильноточных источников ионов. Прогресс, который был достигнут в этом направлении в последние годы, связан как с развитием новой техники и технологии, так и с более глубоким пониманием физики явлений, лежащих в основе получения интенсивных ионных пучков [7-9].

К основным проблемам относятся:

а) Создание плазменных эмиттеров нонов с большой (сотни см²) поверхностью, обеспечивающих поставку ионов на эмиссионную границу плазмы с плотностью тока порядка 0,5 А/см². При этом для обеспечения оптимальной фокусировки пучка на всей плошади ионно-олтической системы источника однородность плазмы на эмиссионной поверхности должна быть высокой (допускается неоднородность до 10%) и не должно быть колебаний величины ионного тока с частотами десятки и сотни килогерц, так как они могут приводить к ухудшению фокусировки пучка.

б) Формирование интенсивных слаборасходящихся ионных пучков с помощью многоапертурных ионно-оптических систем (ИОС).

В настоящей работе описана конкретная реализация плаэменного эмиттера большой плошади с помощью низковольтного диффузнонного разряда, горяшего в разрядной камере с распределенным катодом без наложения внешнего магнитного поля. Отбор ионов и формирование лучка производятся с помощью трехэлектродной многощелевой ИОС.

Описание конструкции ионного источника ИБМ-5 (ионный безмагнитный модуль), предназначенного для работы в инжекторе токамака Т-11, дается в разд. 2; разд. 3 посвящен разряду, а разд. 4 - ионно-оптической системе. В разд. 5 приведены основные характеристики источника.

2. КОНСТРУКЦИЯ ИСТОЧНИКА ИБМ-5

Ионный источник ИБМ-5 конструктивно состоит из двух блоков: газоразрядной камеры и ионно-оптической системы (рис. 1).

2.1. Газоразрядная камера

В состав блока газоразрядной камеры Входят: катодный узел, система напуска газа, корпус и анодный фланец. Внутреняие размеры газоразрядной камеры 220х120 мм, высота 60 мм. Внутри камеры по периметру располагаются 22 катода высотой 45 мм, изготовленные из вольфрамовой проволоки диаметром 0,7 мм в виде "дамских шпилек". Все элементы, составляющие разрядную камеру, электрически изолированы друг от друга. Токоподводы накальной и разрядной целей распределены по периметру. Предусмотрено водяное охлаждение всех элементов конструкции.

Рис. 1. Конструктивная схема источника ИБМ-5: 1, 2 - изоляторы; 3 - анодный фланец; 4 корлус; 5, 8 - катодные фланцы; 6 - газораспределитель; 7 экранирующая плита; 9 - катод; 10, 11, 12 - заземленный, ускоряющий и эмиссионный электроды

2.2. Ионно-оптическая система

ИОС источника выполнена в виде отдельного блока и состоит из эмиссионного, ускоряющего, заземленного электродов и изолирующих элементов.

Эмиссионный электрод составлен из трех эмиссионных решеток по 14 экстракционных щелей в каждой (всего 42 шели). Размер щели 8х0,2 см²; щели расположены на площади 8x18 см² и составляют полную поверхность эмиссии в 67 см². Крепление решеток предусматривает свободу для теплового расширения их в направлении вдоль щелей.

Конструкции ускоряющего и заземленного электродов аналогичны конструкции эмисснонного. Решетки всех электродов делаются из молибдена толщиной 1 мм. Для осуществления фокусировки пучка в направлении вдоль шелей решетки эмиссионного и ускоряющего электродов изогнуты с радиусом кривизны ~ 2 м.

Фокуснровка пучка в направлении, поперечном по отношению к щелям, производится с помощью относительного смещения щелей в ускоряющем и эмиссионном электродах [13]. Охлаждение ИОС производится водой по внешним фланцам эмиссионного и ускоряющего электродов.

3. ГАЗОВЫЙ РАЗРЯД. ФОРМИРОВАНИЕ ПЛАЗМЕННОГО ЭМИТТЕРА ИОНОВ

3.1. Наиболее подробное изучение закономерностей в разряде было проведено на модели разрядной камеры, построенной по той же конструктивной схеме, что и в ИБМ-5, но имеющей несколько иные геометрические размеры.

На рис. 2 приведена схема эксперимента. Разрядная камера имела круглое сечение днаметром 10 см и высоту 5 см. Вдоль боковой стенки на диаметре 9 см располагались 14 прямоканальных катодов из вольфрамовой проволоки диаметром 0,7 мм общей площалью 25 см². Боковая и торцевые стенки разрядной камеры находились под плавающим потенциалом. Разряд работал в импульсном режиме, длительность импульса 20 мс. Мощность накала катода составляла около 4,5 кВт, т.е. температура катодов несколько пре-

Рис. 2. Блок-схема разрядной камеры и электрического питания

Рис. 3. Вольт-амперные характеристики разряда при различных давлениях водорода в разрядной камере

вышала 3100 К. что обеспечивало плотность тока эмиссии электронов около 30 А/см². Для того чтобы магнитное поле тока накала катодов и тока разряда не оказывало влияния на плозму разряда, подключение подводов тока накала и разряда осуществлялось в щести местах, распределенных по окружности разрядной камеры.

Напряжение разряда в зависимости от давления водорода в разрядной камере (ρ_{o}) и тока разряда (\mathbf{I}_{ρ}) менялось в диапазоне 20-40 В (рис. 3). Следует отметить, что для зажигання разряда не требовалось подачи напряжения, большего, чем рабочее.

Распределение параметров плазмы на эмиссионной ловерхности как по радиусу, так и по азимуту определялось с помощью набора лентмюровских зондов, расположенных на торце разрядной камеры. Измерения распределения ионного тока насышения (j_+) на зонды показывают, что для широкого диапазона изменений ρ_0 и I_p распределение j_+ оказывается симметричным относительно оси разрядной камеры и однородным по азимуту даже в тех случаях, когда радиальное распределение j_+ бывает в значительной мере неоднородным.

Увеличением или уменьшением ρ_0 можно изменять характер распределения j_+ на эмиссионной поверхности от распределения с провалом в центре при больших давлениях ($\rho_0 = 3,5.10^{-2}$ торр) до распределения с максимумом в центре при давлениях, близких к минимальному давлению, требующемуся для зажигания разряда ($\sim 3.10^{-3}$ торр) (рис. 4). При некотором "оптимальном" давлении (1-1,5).10⁻² торр разряд обеспечивает поставку ионов на эмиссионную ловерхность с плотностью токе j_+ до 0,5 A/cm² при неоднородности менее $\pm 10\%$ на площади около 40 см². Не наблюдалось колебаний ионного тока на зондах в области частот $10^4 - 10^6$ Гц.

Рис.4. Изменение радиальных распределений j, при изменении давления водорода и I,

Рис. 5. Отношение плотности ионного тока на зонд, расположенный вблизи катода, к току разряда (I_p) в зависимости от I_b . Пунктир – расчет для случая прихода на катод только ионов H_1^+ или ионов H_2^+

Рис. 6. Изменение отношений плотностей ионных токов на центральный и прикатодный зонды с увеличением токе разряда при различных давлениях водорода в камере

Как следует из критерия Ленгмора для двойного прикатодного слоя, в случае работы катода в режиме объемного заряда отношение плотности тока приходящих на катод ионов $(j_{+\kappa})$ к плотности тока электронов с катода должно оставаться постоянным. Следовательно, поскольку в источнике без внешиего магнитного поля ток разряда определяется током электронов с катода, отношение $j_{+\kappa}/I_{p}$ должно оставаться неизменным при изменении параметров разряда. На рис. 5 приведено отношение j_{+}/I_{p} (j_{+} на зонде, расположенном недалеко от катода) в зависимости от I_{p} для различных значений \mathbf{p} . Видно, что экспериментальные точки группируются вблизи величины $j_{+}/I_{p} = 6.10^{-4}$ см⁻² практически для всех значений \mathbf{p}_{0} , кроме больших, при которых наблюдается заметное увеличение j_{+} от центра к катоду. Близость отношения j_{+}/I_{p} к величине, рассчитанной для случая, когда на катод приходят только ионы H_{2}^{+} (6,6.10⁻⁴ см⁻²), может быть объяснена тем, что вблизи катодов имеется наибольшая концентрация быстрых электронов, которые ноиквуют в основном газ с образованием ионов H_{2}^{+} , а также с наличием в разряде ионов H_{p}^{+} .

Изменение степени неоднородности j_{+} с увеличением I_{ρ} при различных ρ представлено на рис. 6.

Температура электронов плазмы определялась по зондовым характеристикам. На рис.7 и 8 представлены распределения j_+ и температуры электронов (\overline{T}_{e}) при изменениях β_o и I_p . Обращает на себя внимание, что хотя распределения $j_+(r)$ сильно различаются, характер распределения $\overline{T}_e(r)$ сохраняется и температура электронов вблизи катодов примерно на 1-1,5 эВ выше, чем в середине. Можно предположить, что увеличение \overline{T}_e вблизи катодов связано с тем, что именно в этой области должна происходить передача энергии от катодных электронов к плазменным вследствие возбуждения пучком быстрых электро-

Рис. 7. Изменение радиальных распределений j_+ и T_e при изменении давления водорода в камере

Рис. 8. Изменение радиальных распределений **j**, и **T**_e чри изменении параметров разряда: 1 – **Г**_р = 270 A, \mathcal{U}_{ρ} = 23 B; 2 – **Г**_p = 500 A, \mathcal{U}_{ρ} = 25 B; 3 – **Г**_p = 880 A, \mathcal{U}_{ρ} = 33 B

Рис.9. Связь температуры электронов плазмы с напряжением разряда. Пунктир – расчет с помощью формулы (1)

Рис. 10. Зависимость эмиссионной плотности ионного тока (),), напряжения разряда () и плавающего потенциала эмиссионного электрода () от тока разряда. Давление водорода в камере ~1.10⁻² торр

Рис. 11. Распределение **ј** вдоль длинной оси разрядной камерн ИБМ-5 при различных ток**ах** разряда

иов лентмюровских колебаний плазмы. Оценка длины релаксации энергии пучка, сделанная на основе работы [10], дает величину $\lambda_{pen} = 3-5$ см. Эксперименты показывают, что в зависимости от условий величина T_e может составлять 5-10 эВ, причем ее изменение хорошо согласуется с изменением напряжения разряда (U_p). Расчет баланса частиц и энергии в описываемом разряде дает выражение для связи T_e и U_p :

$$T_{e} \approx e \mathcal{U}_{p} \left(1 - 2 \frac{\dot{J}_{*}}{\dot{J}_{e\kappa}} \frac{S}{S_{\kappa}} \right) - e \phi \frac{\dot{J}_{*}}{\dot{J}_{e\kappa}} \frac{S}{S_{\kappa}} , \qquad (1)$$

где j_{ex} - плотность тока эмиссии электронов с катода; S и S_x - площади стенок разрядной камеры и катодов: $e\phi$ - средняя энергия, требуемая для образования одного иона. На рис. 9 построены расчетные зависимости T_e от U_p для значений $\phi = 25$ и 35 В и приведены значения T_e , полученные в различных режимах горения разряда. Видно, что расчетные и экспериментальные данные хорошо согласуются.

3.2. Закономерности, отмеченные в модельном разряде, проявляются в полной мере и в полномасштабном разряде, зажигаемом в камере, размеры которой приведены в разд. 2. Суммарная площадь катодов составила в этом случее 40 см², полная мощность накала – около 8 кВт (10 В х 800 А). Вследствие того, что относительная площадь катодов (S_{κ}/S) стала меньше, разряд горит при больших разрядных напряжениях (рис. 10), как это и требуется из условия баланса энергии для обеспечения требуемой величины T_{e} . При оптимальном давлении в разрядной камере $P_{o} = (1-1,5).10^{-2}$ торр иеоднородность j_{+} на эмиссионной поверхности плазмы составляет около 5% вдоль длинной оси разрядной камеры (рис. 11) и менее 5% вдоль короткой оси. Таким образом, в описанной геометрии разряд обеспечивает поставку ионов с плотностью тока до 0,5 А/см² на площади около 140 см² при неоднородности менее 5%.

4 ЭЛЕКТРОСТАТИЧЕСКАЯ ИОННАЯ ОПТИКА ИСТОЧНИКА. ФОРМИРОВАНИЕ ПУЧКА

Извлечение и сормирование интенсивного ионного пучка производилось с помощью трехэлектровной многощелевой ИОС [11]. Измерения производились на стенде инжектора (рис. 12), костоящего из вакуумной камеры, ионного источника, камеры перезарядки и приемника, на котором калориметрически измерялась мощность пучка. Система коллекторов, мнежщаяся в приемнике пучка, расположенном на расстоянии ~ 1,75 м от источника, позволяла измерять распределение плотности тока в пучке по вторичной эмиссии. Следует отметить, что перезарядная камера, расположенная непосредственно за заземленным электролом источника, обеспечивает примерно 80%-ную перезарядку ионов пучка в атомы (при элергии 20-25 кэВ), а образующаяся в мишени плотная вторичная плазма [12] - хорошую компенсацию объемного заряда ионов сразу по выходе их из ИОС. Таким образом, расходимость пучка целиком определяется углами, с которыми ноны вылетают из ИОС.

4.1. Свойства отдельной ячейки ИОС

Предварительно проводилось изучение фокусирующих свойств однощелевой трехэлектродной ячейки. Оптимизированная по результатам численного счета и экспериментального исследования форма электродов ячейки ИОС источника ИБМ-5 представлена на рис.13.

Расходимость лучка в направлении поперек щели зависит от положения и формы границы плазмы и в зависимостн от эмиссионной плотности нонного тока (j_+) имеет V образный характер (рис. 14). Слециальный профиль шели в эмиссионном электроде обеспечивает получение пучка с минимальным углом расходимости около $1,3^{\circ}$ при высокой "оптимальной" плотности $j_+^{\circ nT}$. Экспериментально угол расходимости пучка определялся по полуширине профиля пучка на уровне 1/2 от амплитуды в центре распределения. Расходимость пучка в направлении вдоль шели определялась по профилю пучка с учетом размера эмиттера. Угол расходимости пучка вдоль шели практически не зависит от величины j_+ (он определяется главным образом наличием у извлекаемых ионов разброса по поперечным энергиям).

Эксперименты показывают, что каждой комбинации величин ускоряющего наприжения (\mathcal{U}) и ускоряющего промежутка (d_1) соответствует своя оптимальная плотность тока эмиссни ионов (\int_{+}^{OIT}) , при которой угол расходимости пучка поперек щели (ϑ_0) минимален, причем значение ϑ_0^{min} оказывается приблизительно одинаковым для довольно широкого диалазона изменений $d_1(2-4 \text{ мм})$ и \mathcal{U}_0 (15-35 кВ). При заданной величине d_1 отношение оптимальных токов пучка оказывается с хорошей степенью точности, пропорциональным $\mathcal{U}_0^{3/2}$. Экспериментальные данные показывают, что величина j_+^{OITT} может быть рассчитана с помощью выражения

$$\dot{J}_{+}^{0\pi7}(A/cm^2) \simeq 4.10 \frac{s[U_0(B)]^{3/2}}{[d(cm)]^2},$$
 (2)

Рис. 12. Схема экспериментального стенда

Рис. 13. Формы электродов ячейки ИОС

Рис. 14. Угол расходимости пучка в зависимости от эмиссионной плотности тока ионов, приведенной к величине ускоряющего напряжения в степени 3/2: сплошная кривая - расчет на ЭВМ, экспериментальные точки: о - 15 кВ; х - 20 кВ

Рис. 15. Зависимость тока пучка ($I_{\mu+}$) и тока нагрузки ускоряющего электрода (I_{y}) от тока разряда при различных значениях ускоряющего напряжения U_{o} : 1 - 15 кВ; 2 - 20 кВ; 3 - 25 кВ

где в качестве эффективной длины услоряющего промежутка берется $d \simeq t_1 + d_1 + \delta_2$ ($t_1 - толщина эмиссионного электрода, \delta_2 - полуширина щели в ускоряющем электроде).$

4.2. Многощелевая ионно-оптическая система

На этом же стенде проводились измерения пучка, сформированного многощелевой ИОС, описанной в разд. 2. Профили электродов при этом были такими же, как и у однощелевой системы.

Параметры пучка в зависимости от тока разряда и извлекаемого тока ионов представлены на рис. 15 и 16. При ускоряющем напряжения 25 кВ и $d_1 \sim 3,35$ мм из источника получается пучок с током до 35 А. Эмиссионная плотность ионного тока 0,5 А/см² достигается при токе разряда около 1,3 кА, что хорошо согласуется с результатами сондовых измерений в плазме разряда. Для каждого значения ускоряющего намряжения имеется своя величина $I_{H^*}^{ont}$ (рис. 16), хорошо определяемая с помощью выражения (2).

Изгиб решеток в направлении вдоль шелей приводит к фокусировке пучка. Измерения профиля пучка в этом направлении показывают, что его ширина оказывается заметно меньше, чем начальный размер (длина щели 8 см), и составляет 3-3,6 см, уменьшаясь с увеличением энергин (рис. 17). Поскольку радиус кривизны решеток составляет около 2 м, можно считать, что фокус пучка находится в районе приемника и ширина пучка в этом месте определяется расходимостью ионной струйки, выходящей из любого элемента щели. Тогда, зная эту ширину Δ_{μ} , мс. э определить угол расходимости элементарной струйки в направлении вдоль шели Θ_{μ} и, следовательно, среднюю поперечную энергию ионов (E_{\pm}), характеризующую разброс вытягиваемых из газоразрядной плазмы ионов по поперечным съсростям ("поперечную температуру"), поскольку граница плазмы мало искривлена вдоль шели и Θ_{μ} определяется главным образом наличием у ионов энергии E_{\pm} .

Результаты проведенных измерения:

Ускоряющее напряжение, кВ	15	20	25
Ширина пучка (на уровне 1/е) вдоль щели, см	3,6	3,4	3,0
Угол расходимости вдоль щели, град.	<u>+</u> 0,6	±0,55	<u>+</u> 0,5
Средняя поперечная энергия ионов, эВ	1,65	1,83	1,9

Если щели в эмиссионном и ускоряющем электродах не смещены друг относительно друга, то профиль пучка на приемнике в направлении поперек щелей имеет ширину (уровень 1/е), превышающую начальный размер пучка в ИОС. Оценка среднего угла расходимости пучка по его профилю (с учетом начального размера пучка) дает величину ±2-2,5°. Такое увеличение угла по сравнению с данными для однощелевой ячейки объяс-

Рис. 16. Ширина пучка (уровень 1/е) в направлении поперек щелей ИОС в зависимости от тока пучка (L = 1,75 м)

Рис. 17. Профиль пучка в направлении вдоль щелей ИОС (L == 1,75 м): 1 - U_o =15 кВ; Δ_{μ} =3,6 см; 2 - U_o = 25 кВ, Δ_{μ} =3,0 см

няется главным образом неточностью изготовления и взаимной установки решеток электродов.

Для фокусировки пучка в направлении поперек щелей был использован эффект отклонекия элементарного пучка, выходящего из ячейки ИОС, при смещении щели в ускоряюшем электроде относительно щели в эмиссионном электроде (см., например, [13]). В источнике ИБМ-5 крайние решетки в ускоряющем электроде были раздвинуты приблизительно на 0,15 мм, что по оценкам должио в выбранной геометрии ИОС обеспечивать для пучков из крайних решеток сходимость к оси с углом 1-1,5°.

Измерения профиля лучка показали, что смещение решеток привело к уменьшению ширины пучка на приемнике: минимальная ширина лучка в направлении поперек шелей оказывается несколько меньшей начального размера пучка в ИОС, равного 18 см (рис. 16 и 18).

4.3. Токи нагрузки на ускоряющий электрод

 \sim

Обсудим теперь вопрос о составляющих тока нагрузки ускоряющего электрода. Как видно из рис. 15, отношение его величины к току ионного пучка, извлекаемого нз источника, достигает $\mathcal{Z}_{y} \simeq 25\%$. Можно показать, что даже в случае "идеальной ИОС", т.е. когда ток нагрузки ускоряющего электрода, обусловленный ускоренными ионами пучка, равен нулю, высокое значение коэффициента \mathcal{Z}_{y} может быть объяснено потоком на ускоряюлий электрод вторичных ионов как родившихся при ионизации и перезарядке в самой ИОС, так и приходящих из вторичной плазмы, обрасующейся в перезарядной мищени, а также вызываемым этими ионами потоком электронов вторичной эмиссии с ускоряющего электрода. По оценкам, концентрация молекулярного водорода (*n*_o) в ИОС составляет около 2.10¹⁴ см⁻³, в неятрализаторе вблизи ИОС ~1.10¹⁴ см⁻³.

Как показано в работе [14], из всех вторичных ионов, родившихся в ИОС, на ускорекошни электрол попалают воны из области вблизи ускоряющего электрода и из облести торможения пучка, т.е. образованные пучком, имеющим практически полную энергию. При энергии нонов 20 каВ суммарное сечение образования вторичных нонов (в основном H_2^+) при нодизации и перезарядке составляет ~7,5.10⁻¹⁶ см² [15]. Длина облеств в ИОС, из которой вторичные исны попадают на ускоряющий электрод, равна $I'_{+} \simeq 4,5.10^{-2} I_{H^+}$. Нетрудно примерно 0,3 см, таким образом ток этих нонов показать, что поток вторичных конов из нейтрализатора при сечении трубы 12 x 25 см² составляет примерно $I''_{+ Y \in K} \simeq 7,5.10^{-2} I_{K^+}$. Таким образом, поток вторичных ионов на ускоряющий электрод, по нашим оценкам, не менее 12% от тока пучка из источника. Стедняя энергия этих ионов около 2 кэВ. Электроны, образующиеся в результате ионэлектронной эмиссии, покидают ускоряющий электрод, также давая вилад в ток нагрузки. Как следует из работы [18], коэффициент ион-электронной эмиссии У сильно зависит от состояния поверхности и равен для молибдена ~1 при нормальном падении иснов водорода с энергией ~2 кэВ. Реально 🍸 может быть больше 1 из-за падения вторичных конов на поверхность электрода под различными углами. Таким образом, вторичные ноны в электроны, эмиттируемые под действием бомбардировки поверхности этими ионама, могут дебеть ток нагрузки ускоряющего электрода до 25% тока ионного пучка. Выделяющаяся при этом на ускоряющем электроде мощность определяется потоком вторичных конов и составляет всего 12%.2 кВ/20 кВ = 1,2% от мощности пучка. В реальных условиях к ней может добавляться мощность быстрых нонов, попадающих на электрод.

5. ПРИМЕНЕНИЕ ИСТОЧНИКА ИБМ-5 ДЛЯ ИНЖЕКЦИИ В Т-11

Важным является вопрос о том, какая доля лучка, формируемого в источнике, пройдет через входной патрубок токамака Т-11 и какая мошность может быть инжектирована в эту установку.

5.1. Перезарядка

В рабочих режимах источника ИБМ-5 толщина перезарядной мишени (линейная плотность $n.\ell$) составляет ~?,5.10¹⁵ см⁻², что обеспечивает выход быстрых атомов от 0,85 до 0,74 при изменения энергии инжекции от 15 до 25 кэВ. При энергии 25 кэВ оптимальная мощность пучка ионов из источника ($\Delta_{\perp} \rightarrow mln$) составляет примерно 800 кВт, т.е. мощность пучка быстрых атомов на выходе из камеры перезарядки достигает 590 кВт (рис. 19).

Рис. 18. Профиль пучка в направлении поперек шелей, $\Delta_1 = 2y_0$; пунктир – кривая Гаусса: $x - U_0 = 15 \times B$, $\Delta_1 = 17 \text{см}$; $- U_0 = 20 \times B$, $\Delta_1 = 16 \text{ см}$; $+ - U_0 = 25 \times B$, $\Delta_1 = 15$, 5 см.

Рис. 19. Зависимость от величины ускоряющего напряжения мощности пучка: 1 - нонов из источника; 2 - атомов на выходе из камеры перезарядки; 3 - атомов, которые должны пройти через входной патрубок токамака T-11; 3' - для дейтерия

5.2. Геометрические факторы

Вкодной натрубок токамака T-11 сечением $A \times B = 9 \times 26$ см² расположен на расстояния около 2 м от источника. На рис. 18 приведен профиль распределения пучка в направлении поперек шелей и его сравнение с распределением Гаусса. Как видно из ресунка, реальное распределение более острое, чем гауссово, и имеет более широкие крылья. В размере, равном ширине Δ_{1} , заключено ~73% пучка, а в размер B = 26 см=1,5 Δ_{1} попадает сколо 87% пучка. С учетом расходимости вдоль щелей ($A = (2,5-3)\Delta_{11}$) можно ожидать, что в T-11 войдет около 85% пучка, т.е. поток атомов водорода мощностью около 320 кВт при 20 квВ и до 500 кВт при 25 квВ.

6. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ИОННОГО ИСТОЧНИКА ИБМ-5

Таким образом, разработанный источник ИБМ-5 обеспечивает получение пучков водородных нонов с током более 30 А при достаточно хорошей сформированности пучка: угол расходимости пучка составляет вдоль щелей $\leq 0.6^{\circ}$ и поперек ~2.5°, начальное сечение пучка $8 \times 18 \text{ см}^2$. Ниже приведены основные характеристики, полученные при измерениях на стенде.

Ускоряющее напряжение, кВ	15	20	25
Оптимальный ток разряда, кА	0,83	1,02	1,25
Напряжение разряда, В	38	44	50
Длительность импульса, мс	20	20	20
Ток нонов из источника в оптимальном режиме, А	15,5	23,5	32
Мошность нонного пучка, кВт	230	470	800

Выход быстрых атомов (при толщине мишени 3,5.10 ¹⁵ см ²), %	85	80	74
Мощность пучка атомов, кВт	195	375	59 0
Размеры пучка (уровень 1/е) на расстоянии 175 см от источника (Δ_и×Δ _⊥), см ²	3,6x17	3, 4x16	3 ,0 x15,5
Средняя плотность мощности дотока автомов внутри ($\Delta_{II} \times \Delta_{L}$), кВт/см ²	1,7	3,65	6,7
Мошность потока атомов, который должен пройти через входной патрубок T-11, кВт	165	320	500

Предварительные измерения компонентного состава ионного пучка, извлекаемого из источника, показывают, что содержание в пучке протонной компоненты зависит от тока разряда и в оптимальных режимах составляет около 65%.

Опыты, проведенные с дейтерием, подтвердили все закономерности, найденные при работе с водородом. Оптимальный ток пучка уменьшился в 1,4 раза, что соответствует корню квадратному из отношения масс дейтерия и водорода. Мощность потока атомов дейтерия, который должен пройти через входной патрубок T-11 при ускорнющем напряжении на источнике 25 кВ, составила 350 кВт (см. рис. 19).

ЛИТЕРАТУРА

- 1. Cordey J.G. e.a. Nuclear Fusion, 1974, v. 14.
- 2. Berry L.A. Bull. An. Phys. Soc., 1975, v. 20, p. 1332.
- 3. Bubank H.P. e.a. Bull. Am. Phys. Soc., 1975, v. 20, p. 1346.
- 4. TFR Group. Bull. Az. Phys. Soc., 1975, v. 20.
- Vlasenkov V.S. e.a. Proc. of 6th International Conf. on Plasma Phys. and Controlled Nucl. Fusion Research, Berchtesgaden, 1976.
- Coensgen F. e.a. Proc. of 7th European Conf. on Contr. Fusion and Plasma Phys., Lausanne, 1974, LLL Rep. UCRL-77255.
- 7. Stirling W.L. e.a. Paper VI-10, Proc. 2nd Symp. on Ion Sources, Berkeley, 1974.
- 8. Ehlers K.W. e.a. 1-5, 1bid.
- Кулыгин В.М., Панасенков А.А., Семанко Н.Н. Доклад на В Всесоканой конференции по плазменным ускорителям. Минск, 1976, тезисы, с. 293.

- 10. MBANCE A.A., PYRANOS I.M. X3T9, 1966, T. 51, C. 1522.
- Cooper W.S. e.a. Faper D-5, Proc. 204 Int. Conf. on Ion Sources, Vienna, 1972; Rulygin V.M. e.a. Paper II-10, Proc. 205 Symp. on Ion Sources and formation of Ion Beams, IBL 3399, Berkeley, Supplement, 1974.
- 12. Eulygin V.M., Panassenkov A.A. Paper II-11, ibid.
- 13. Poeschel R.L., King H.T. Paper II-4, ibid.
- Pink J.H., McDowell C.E. Rep. in Proc. of 6th Symp. on Mng. Probl. of Fusion Research, San Diego, Calif., 1975.
- 15. Appocanos B.B. # Ap. ASTe, 1958, T. 34, C. 1398.
- 16. Дорожини А.А. Физическая эксктроника. Труды ЛПИ и 277, 105, 1966.

Редактор Л. И. Кирожна Корректор В. П. Горичева

T-06512. 5.08.1977 г. Формат 60 x 90/8. Уч.- ная. 1 я. Тираж 200 акз. Заказ 1081. Цела 10 кол. ОНТИ.ИАЭ

