ЕОЗБУЖДЕННЫЕ СОСТОЯНИЯ 163 Ег ПРИ РАСПАДЕ 163 Тги (1 Т_{1/2} = 1,8 час.)

И.Адам, М.Гонусек, К.Громов, И.Ржиковска, Х.Штрусный

Продолжень /1,27 исследования схемы распада 163 Tm. Радиоактивные источники получались при облучении танталовой мишени
протонами с энергией 660 МэВ на синхроциклотроне ОИЯИ. С помощью

В -спектрографов (R = 0,03 - 0,05%) изучен спектр конверсионных электронов; с использованием Ge (Li)-детекторов исследованы
успектр и спектры у-у-совпадений. Для исследований с Ge (Li)-детекторами применялись масс-сепарированные источники 163 Tm.

В таблице перечислены уровни 163 Er, надежно установленные на
оскове у-у-совпадений. Из тридцати пяти возбужденных состояний,
введенных в /1,27, подтверждается девятнадцать и вводятся новые
уровни с энергией 735,3; 1514,2; 1569,7 и 1539,0 квВ. В схему
распада включено 74 из 235 наблюденных у-переходов. Остальные
у-переходы, по-видимому возникают при разрядке многих слабозаселяемых при распаде

Проанализирована структура уровней 163 дг.

Литература

- I. В.Гнатович и др. Изв. АН СССР, сер. физ., 31, 587 (1967).
- 2. А.Асдуразаков и др. Препринт ОИЯИ, Р6-5132, Дубна, 1970.

Таблица. Уровни $^{163}{\rm Er}$ при распаде $^{163}{\rm Tm}$

Эне ргия уровня (Веж)	J*	logft	J K [≈] /NnzA/
0	5/2-		5/2 5/2" / 523 /
69,2	5/2 ⁺		5/2 5/2 ⁺ / 642 /
84,0	7/2		7/2 5/2" / 523 /
9 1, 5	7/2+		7/2 5/2 ⁺ / 642 /
IO4,3	3/2	6,4	3/2 3/2 ⁻ / 52I /
(120,3)	(9 / 2 ⁺)		9/2 5/2 ⁺ / 642 /
I64,4	5 / 2	7,5	5/2 3/2 / 52 I /
249,5	7/2		7/2 3/2 ⁻ / 52 I /
345,7	I/2 ⁻	6,8	I/2 I/2 / 52I /
(360,6)	(9/2 ⁻)		9/2 3/2 / 52 I /
404,I	3/2	6,9	3/2 I/2 ⁻ / 52I /
439,6	5/2	6,9	5/2 I/2 ⁻ / 52I /
462,5	3/2 ⁺	7,I	3/2 3/2 ⁺ / 402 / + / 65 I /
540,5	I/2 ⁺	6,9	I/2 I/2 ⁺ / 400 / + / 660 /
619,4	3/2 ⁺	7,I	3/2 I/2 ⁺ / 400 / + / 660 /
(683,8)	I/2 ⁻	7,I	_
735,3	3/2+	7,0	3/2 3/2 ⁺ / 402 / + / 65I /
1369,2	3/2 ⁺	6 ,I	
I5I4,2	3/2+	6.7	
1538,6	3/2 ⁺	5,6	3/2 3/2 ⁺ { 7/2 ⁻ / 523 / 1/2 ⁺
			/ 4II / 5/2 ⁻ / 523 /}
I 569,7	3/2 [†]	6,0	
1593,0	3/2+	6 ,6	
1722,4	3/2+	6,3	
1801,5	I/2,3/2 ⁺	5,5	I/2 I/2 ⁺ {7/2 ⁻ / 523 / I/2 ⁺ / 4II / 5/2 ⁻ / 523 /}