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Some advantages of using matrix methods in optical model are pointed out in connection with eva-
luntion problems and microscopic aspects,

1. Introduction

Conventionel optical rodel codes generally use numerical integration'methods to solve the
Schrddinger equation describing neutron scattering from a complex potentizl. In principle any po-
tential shape can be dealt with. Hovever, from a practical viewpoint, such metheds are not very
suitable for treating directly non local potentials because iteretien procedures involwing tabu-
lations of approxirzate wave functions have to be used to solve integro-differentisl eguaticas -'.
Moreover almost ell the caleulaetion is usue)ly verformed again when any parameter or the neutron
energy change. In viev of evaluation purposes, coherent end accurate enough calculations of va-
rious neutron cross-sections for & given target over a wide energy range gensrally inwvolve 2
gpecific cptimization of optical parameters ), given to start either some standard or adepted
to reighbouring nuclei parametrisation. Thus computer tirme problems arise. It may also be desi-
rable to try and limit the number of free parameters or'understand physical aspects by using po-
tentials, generally non local, suggested by microscopic models of nuclear structure. In this
study we point out some advanteges brought by matrix methods, instead of numerical one's, for
treeting gencralized spherical neutron cptical potentials.

2. Summary of the fcrralism .

In the frame of the so-called "calculabli R-matrix” method 3), variational forms of wave func-
tions and phase-shifts can be obtained that involve the inversion, at a c¢. of m. energy &, of
the A matrix whose elezents are : Agc = <CalT+ U+ -Ejc) (1)

T, U and 4 are, respectively, the c. of m. kinetic energy, the nuclear potential, and the bound-
ary condition operator =7 Bloch %,3) making the matrix 7T +& syrmmetric and here chosen as
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(m = reduced me»s). In (1), space-coordinate integrations ere to be performed within a sphere cf

radius R RMAX. In this internal region, the "a" -orojected radial weve finctiers Ill.. can be

connected to treir usual asymptotic forms [Il’ .5.‘0(] , that define the curresponding S-matrix
elements, as it follows : 4
V(0 =R () [ £2(1048.0)], (r¢r) (2

vhere R, (x;8) « 22 Y. Ao m (3)

In (3) ¢¢ is the one-column matrix consisting of the N € NMAX independent radial basis functions
¢,,¢ (nel,2,--,N) chesen to calculate the A matrix (1). The only quantity S.MIr{zi{,) necessary
to odtain any required observable st energy E is deduced from (2) when written at the matching

redius R, that is, letting R s R (R;E): . , ,
uE R (R E) [1p+ 5,0)  « R, [(:]))+ 5, :0,)] (4)

Practical constraints of such a matrix method consist of :

v

i/ carrying out easy procedures to calculate the matrix elements (1), especially for every term
of U, As in matrix Hartree-Fock methods, the basis states are chosen to be the spherical harwo-

nic oscillator functions : ¢ t +ve
. A e p L
because of their remarkable properties,

ii/ obtaining quick enough convergence of the quantities of interest as a function of successive
values of the order NMAX of the A matrix,

3. Some spplications

3.1. Concerning the calculation of the matrix elements of T, < ,» £ or any local potential U(r)
in (1), recurrence formulas for Laguerre polymomials are uceful. For example <n,,C|V(2) [mes €
can dbe easily deduced from the only quantities of the form <4,0|V(s)ln,e).

3.2, Matrix method lends itself to the treatment of non local folding potentials derived from
the following local form 2} consisting of the usual real (R), surface derivative absorption (D)
and spin-orbit (So) terzs : AU .
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KHere, the different functions \9‘(1.) are of 'the folding form :
| [ »
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¥hen o nor-aelized gaussinn function ()~ exp(-z'/r‘) and the nonlocalisation procedure of
Perey et al. 1) ure used, the method descrived in ref. leads to prustical expressions for the
matrix elements of the different terms in (5). For example we obtain the following factorized
form of the real term : .
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vhere A is the nonlocality range,Mi: Mot h ¢ €-% ,f a geometrical factor, and :
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For each term in (5) the "density” functions p and the "diffuseness” paremeters g ere only in e
limited number of these Wy coéfficients. When p is constant inside a sphere of radius R;rt A"
(4=R,D,5¢ ) and zero outside, all tzi dependence on R; is included in the Mg whose very
simple exprecsions are given in ref, . Fig. 1 illustrates what sort of convergence can te ex-
pected from the use of such a realistic folding gotential as a function of A and RMAX. Calcula-
ted quantities, ascsocisted to the lov energy n-93iib interaction are : s and p-vave strength func-
tions (55,51), elastic scattering radius (R'), elastic scattering ( gez) reaction ( op) and total
(og) cross sections at 10 keV and 1 MeV. Convergence is obteined at X = 8 for R = 10 fm and

'8 = 0,123 fm"2, For the same B or 8 = 0.175 fm™< and R = 11 fm, calculations performed for 208py,
have shown that N = 9 is sufficient.

3.3. In the frame of systematic search for cptimised parameters, partial matrices in (1)} cen be
calculated once for all and then reused when multiplicative parameters (E,VR,WD,VSO) are changed.
In particular the sensit.ivity to such parameters feof 2y caleulated quantity can te easily ob-
tained, in a single coaputer run, by means of the corresponding derivative of R, . Following {3):

._ Low d P~ L P -
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In order to deduce sensitivities to 4 or to geometry optical parameters, (1() can be used too
vith §5natrices given by (7) where proper jerivatives zre taken. In the case of & cquare densi-
ty funbtion p, the d2rivatives of thefguith respect to p; or R; have very simle expressions. As
illustrative results, a number of so calculated sensitivities are shown in Table 1 for various
physical quantities associated to the interaction n-231b in the energy range 10 keV s Ep ¢ 1 MeV.
A local but energy depondent foiding potential has been employed with the following parameters
(energies in MeV, lengths in fm) :

Vg = 54.51 - 0.3Ep , pg=1.882, rg=1.21 -
Wp=2,118+ 0,3En, up=1.76 , rp=1.26
Vg0 = 6.73 y g0 * 1.3, rgo=1.12 .

In fig.2 the corresponding total cross-section is compared to experimental data 7). Given sensi-
tivities, fitting limitations or improvements can be easily inferred. The rié of lov energy data
is very close to that obtained by Ch. Lagrange from a Saxon-Woods potential ), ig.3 shows how
satisfactory can be the predicticn of elastic scattering angular distributions as compared to
experimental data at 8,05 Mev 9),

3.k, Other general types of potentials, suggested by microscopic models of nuclear structure, cex
be conveniently treated by matrix methods, For example, explicit and simple forms for the differ-
ent local and non local terms of a Hartree-Fock potential can be given 10) in terms of the para-
meters of an effective density-dependent two-body force and of density matrices. Such microscopic
fields cen be easily tested as the main real part of an optical potential by using matrix methods.
We have found it very practical to construct their zatrix elements ig (1) by choosing as 8 velus
§ e one used in the Hartree-Fock procedure, for example 0,175 for 200pb and 0.21h (ef fig.l) for
Nb. In the slready studied cases, convergence is obtained for NMAX = 9,

Another exarple consists of the non local optical potential calculated in the intermediaste struc-
ture model with weak particle-vibration coupling as detailed for exanmple in ref.ll). We have
found that matrix methods are well suited for hendling such a type of potential, In particuler,
its construction is facilitated by the representation (2) of vave functions and by practical pro-
cedures to determine the required continuur resonances.

[

L, In conclusion it appears that much vork remains to be done to explore the possidle advantages
of matrix methods. However the various aspects briefly descrided sbove shov that such techniqucs
may be of practical interest in spplications of the optical model and especially in connection
vith microscopic theories. . ‘ H
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Fig. 1

Fig.1 : Convergence properties of calculated
quantities for n-7°Nb interaction.

Fig.2 : Adjustment theory-expergment 7 for
neutron total cross-section of 73b,

Fig.3 : Comparison theory-experirent 9) for

neutron elastic scattering from I3 at

8.05 Mev.
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exp.val, 0.3620.02al S.JGzo.gﬁ) 1.10{5) 7800 (») 9h30( ) 650(‘) )
cale.val. 0.39 5.01 6.82 8377 905k 6483
a/4E -0.29 9.09 ~b, 74 ~48201 2073 -3005
d/avg -0.019 1.6LS -0.159 -66.61 992.7 599.7
d/dRp -0.328 30.6 -2.2 532 21127 12367
d/dug 0.222 3.635 0.67 2724 k107 1673
a/avp 0.175 1.097 -0.028 881.2 167 -136.1
/4Ry 0.008 1.765 0.016 3710 k74,7 19.6
d/dyp 0.2k | 2.347 0.00b 1320 674.9 33.26
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