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ABSTRACT:

The discrepancy between the measured
most probable mass split and calculation
including shell effects is discussed .
It is suggested that during the descent
from saddle to scission a number of
nucleons tunnel from the light to the
heavy fragment because of pairing effects.
This process could explain the discrepancy.
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I) INTRODUCTION AND SUMMARY

Despite the recent progress in the theoretical des-

cription of the fission process of a heavy nucleus there are

still many questions that are still waiting for answers. Most

of the work that has been done in the last few years has

centered mainly on the first part of the evolution of a

fissioning nucleus namely the transition up to the last saddle

point. The region between the saddle and the final stage, the

scission point, has had but a little attention. This benevolance

stems from the uncertainly inherent in the dynamics of the

nuclear system in the last stage of fission as a consequence of

the not-so-well understood issue of nuclear dissipation

(viscosity). Another important hindering factor in developing a

dynaminal theory for the post last-saddle point stage is the

limitation inherent in the theory used to describe the pre-last

saddle point stage which is based on the quantal penetration of

a one-dimens?.onal multi-humped barrier.

Of the many facets of fission is the predominance of asymmetric

fission in the transuranic region. The macro-micro theory

predicts for U an asymmetric mass split centered around two

peaks corresponding to the most probable heavy and light mass

fragments of AH"136 and AL* 100 respectively. Experiment however,

indicaces different values for these masses; 140 and 96

respectively. The shift in the values of Aj, and A, from theory

could not be accounted for unless one assumes an entirely

divergent view of the nuclear configuration at the scission point.

Whereas th* liquid-drop model gives a scission configuration of

two non-interacting fragments, what one 3hould deal with is two
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interacting fragments i.e. a kind of molecular state as was

demonstrated by Ntfrenberg. As a consequence of the molecular

configuration is the presence of a scission barrier. Ntfrenberg

treatment, however-theless, has the same shortcomings as other

works as no explicit reference is made for the saddle to

scission dynamics.

In the present work we construct a new model for the

redistribution of the mass in the two fragments so that the

correct Au and A, are obtained. The mechanism for this

redistribution is considered to be an effective tunneling of

particles from the light to the heavy fragment. We consider

the nuclear system at the saddle and follow it until it scissions.

We asõume adiabatic motion. What suggests our model 15 the fact

that a critical elongation of the compound nucleus is reached

at which necking-in becomes favoured. We simulate the necking

in by the introduction of a time-dependent barrier inside the

potential well that represents the compound systems. After the

elapse of a sufficient time the barrier will have developed

into such a height the compound system becomes effectively two

fragments with a weak force acting between them. This "Josephson

junction" serves to complete the final distribution of the mass

in the two fragments. One should stress that the tunneling of

particles through the junction can not, by itself, account for

asyiretric fission. The tendency toward asymetric fission is

assumed to be a propeity of the system at the last saddle. This

we simulate by placing the barrier off the center of the

potential well. The idea that a Josephson type effect might

account for the shift in A e x - Au1*1 has for some time, been

Hoating around in different seminars, coloquia etr.T-'The aim of

this work is to develop this idea to the point where it could
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be checked numerically. Besides predicting the right-trend of

the tunneling of neutrons from the light to the heavy fragment

we propose that the saae effect could also account for the fact

that increasing the mass of the fissioning compound nucleus will

result in roughly the same A^ and only the light fragment

will be affected.

If one assumes that the transfer occurs in the scission

valley then one gets, using a simple model, the right trend

namely the transfer proceeds froa the light to the heavy

fragment. Of course such a model assumes, apriori, the existance

of two well-defined masses at the scission valley. One could

use classical statistical averaging through density matrices to

account for the mass unpolaris a bility of the fragments.

A parametrized form of p(M) cculd be constructed from the

observed mass yield shape p(M). One needs to estimate the time

that it takes the nuclear system to go from the saddle point

to and through the scission barrier until it scissions.

In order to get an appreciable transfer, this time should be

larger than the time characteristic of the transfer of a pair of

nucleons from one fragment to the other. This transfer time can

be estimated to be roughly 5.6xlO~ sec (using the semi-empirical

mass formula). The fact that the time correponding to saddle-

scission transition is almost ten times greater than the above

supports our contention that at least few nucleons would be

tranferred even if the transfer staTts in the scission valley.

This presupposes that fr':tion is not so drastic as to
really destroy the pairing "field" in the fragments.
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Numerically one needs to solve 4-6 coupled equations. However

one could still get an idea of The number of transferred pairs

by analytically solving a schematized form of these coupled

equations. The Josephson current can also be calculated this

way although it does not contain extra information.

THE MODEL:

In order to build a more realistic model one has to

start at caddie. By using time-dependent Schrodinger equation one

can then construct a system o * coupled equations for the transfer

amplitude. The single particle energies are time-dependent and

thus one has to use an expansion of the wave function of the
4)

system in terms of asymptotic basis (i.e. in terms of states

corresponding to the after-scission nuclear configuration). A

time-dependent pairing strength acts between particles in different

fragments ( \Zf4)-~» •£ ) and supplies the weak contact that

results in nuclear tunneling (Josephson effect). The above time

dependence of \J (t) is only partially true as this form was

obtained assuming symmetrical fission whereas the final result

is asymmetrical fission. Thus one has to correct for the time

dependence (this is quite involved). Mutual internal exitation

of the two prescission fragments can be simulted by introducing

temperature into the BCS quantities that are needed to construct

the nuclear wave function during the descent from saddle to

scission. Of course the temperature dependence of the wave

function could account, to a limited degree, for the presence of

viscosity since viscous propagation is a nonequilibrium process

and the introduction of temperature implies equilibrium. However,

this approximation suffices for our purpose namely to estimate



-6-

the amount of reduction in nuclear superconductivity due to

internal excitation in the path fro» saddle to scission. The

dissipation is thought net to be great .

lie Hamiltonian of the system at saddle may be represented as

follows:

H. =
«AM

U(t) is a time-dependent barrier that represents the necking-

in degree of freedom where the nuclear system reaches a critical

elongation f. To follow the evolution of the
c

system one has to solve the time-dependent Schrodinger

equation

H (2)

One way of solving (2) is by expanding "j£ (t) in the adiabatic

basis: ,

it) â> It) =: E(t> <£>Ct)

The result is

a,

Assuming a linear time dependence of U(t)-ct and

performing the integration one then gets

" ' ft'

At'
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It is assumed that at t»0 the system is in its gTound

state i.e. ^ (0) = Ç - It order to solve (4) one needs

(U) as well as the time-dependent "energies" E (t). A

convenient way of performing the above calculation is to use

esentation.

i Z

the asymptotic representation
V

Thus

C, it) - Çcua- qiu)-h
lyn II '2.2. It H

Where

(2 (Ü) —" G - pairing force in well 1
n '

^7 (-U) = GL = pairing force in well 2

<C (u) ̂  & ((j) * pairing force between particles

in well 1 and those in well 2

Thus the Hamiltonian of the system becomes:
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Where we are neglecting terms in G that break pairs i-e- w e

retain only the usual pairing term. The Hamiltonian (6) is a

complicated one due to its explicit time-dependence both in

the single particle energies as well as the pairing force

strength. We shall use the simpler Hamiltonian

Where now H ^ ^ I O refers to particles in well 1(2) and the

term that contains V(t) is a tunneling Hamiltonian responsible

for the coupling between the particles in well 1 to those in

well 2. Naturally H.(t) and H,(t) are both time-dependent due

to the time dependence of the single-particle energies through

their dependence on V(t). In order to proceed in the solution

of the dynamics governed by the Hamiltonian one has to find

the time dependence of the effective tunneling potential V(.t).

THE TUNNELING POTENTIAL V(t):

Fran definition V(t) is given by:

( )Ç >u)4

Where G is the usual constant pairing force strength in either

nucleus 1 or 2 and a delta potential form for the coupling

Hamiltonian is assumed. In order to evaluate (8) one has to

first solve for the single particle wave functions that are

locaiyzed in wells 1 and 2 as a function of U and thus of t
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To solve for the single particle wave functions that are

localized in well 1 and 2 one has to first divide the set of

different wave functions into a gerade (g) and ungerade(u) ones '

Then by appropriate linear combination of the g and u functions

one could achieve localization. However if the barrier is

situated at a point which divides the nuclear potential well

asymmetrically, as needed in fission, then the above prescription

is not useful. As a natter of fact there is no known,

nonperturbative, method that could be employed here save numerical

calculation. Thus we shall make a very crude approximation and

treat the asymmetric fission with a V(t) calculated for the

symmetric fission case. Correction for the derived time-

dependence due to the asymmetrically placednecking-in potential

barrier can be estimated easily.

If the necking-in potential barrier (n.p.b.) is placed in

the center of the total nuclear potential well then previous

work on heavy ion reactions indicates that the time dependence

Since U(t)»ct i.e. assuming a constant velocity in the

construction of the n.p.b., one obtains a time dependence

A ' , 'A
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The Quantities appearing in (10) are the parameters of the

potential well of the total nuclear system. The only parameter

remaining is the velocity parameter c One could estimate this

by realizing that after the elapse of a time tf the system

fissions thus the barrier U(t_) becomes roughly equal to the

depth of the potential well.

Thus

C - — ^ ixio i/Uc ) Me*

An estimate for a can thus be made

ot d 10

Where i-c is the critical elongation of the compound nucleus

and Rj and R2 are the radii of the two fragments respectively.

Thus a' is of the order 1011 sec"1.

THE TUNNELING PROBLEM

As has been shown above the Josephson tunneling amounts

to solving the following time-dependent Schrodinger equation:

\H
In the absence of V(t) the solution of (11) is that of two non-

interacting BCS fluids affected by the time dependence of the

single-particle energies in the two well. Thus
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where n refers to a certain splitting of the mass of the
—0) ft)

fissioning nucleus i.e. n= A, - A, and En(t) = c **) "^ Sj *&

Here we are assuming that throughout the descent from saddle to

scission until the final mass and volume splitting the pairing

correlation in the two fragments is strong enough to warrant a

BCS treatment.

The wave function of the system is the sum of all the

different possible mass splitting of the system weighted by the

"^ fusual energy factor f ^

Zf(t> erf-jfk***'! frtJ (13)
The Schrodinger equation (11) thus becomes:

(14)

where we have made the approximation that ( <p (t)j ^ (t) )-o

This approximation is valid as long as the single particle levels

in the two wells do not change very much in a time interval of

the order of the characteristic two particle transfer time.

The matrix element ( ̂ > ; // y> ) can be calculated

using the following observations ;

L
Bcs.

where (15)
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(A^-n) system exhibits pairing rotational behaviour whereas the

(A,+n) system exhibits a pairing vibrational behaviour i.e. the

nuclear state may be considered to be composed of a few pairing

phonons. Thus L < j.

where B is the pairing boson creation operator i.e. it

merely adds two paired neutrons when acting on the "vacuum"

10> i.e. the closed neutron shell.

Thus:

+ /„,„„ £
Where the integral over the gauge angle is performed giving

just the cronicker delta functions ^im - n + 1) and </(m-n-l)

respectively. One should realize that the factor A/G which is

the effective degeneracy is a function of time.

; r t, =ift

If we expand the energies in n (assuming n is small compared

to Aj and/^r A,)

e
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where X? (*') *s t n e Q~vaiue for the transfer of a pair.

It should now be clear that, to within the approximation one

may set the energy differences independent of time. The energies

themselves are obviously time-dependent. Equation (18) is the

desired tunneling equation which may be solved for fn(t) to get

the probability of transffering 2n neutrons after the elapse of

a long enough time namely t=tf

Pn " |fn |

The average number of neutrons transferred during this time,

2 < n> (t), reduces to a value equal*to the argument of f if

t, is infinite.

One can also construct the Josephson current associated with the

transfer J(t) = ^
dt

or

All of the above quantities can be obtained easily and directly

from equation (18).

SCHEMATIC STUDY OF THE TUNNELING EQUATION:

In order to gain some insight into the nature of the

solution of equation (18) we shall make a number of simplifying

approximation that would serve to make equation (18) amenable to

analytical solution .
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We shall assume that A is independent of time and so is
G

An(t)-^A2 sX . Thus by writing for *n(t)

fn(t)-e ' fit)
(22)

one arrives at the following:

LnXgU) = i
f, h In

Writing for gn(t) - g(n,t)

approximating V(t) JÇT$ In) = ^(t) which is independent

of n. This last approximation is quite reasonable since in all

cases n ^ A j or A2-

Thus one finally obtains the simple first order partial

differential equation for the Fourier coefficients

* (24)

The approximation involving the derivation of equation (24)

implies that one is neglecting a small arm in the otherwise

exact equation (24). This small term is proportional to

{^J}- A***- <fij which is certainly very small

compared to the other three terms in (24).

We attempted to find an analytical solution for (24) but

we failed. Leaving a numerical study of this tunneling equation

for a future publication we shall indicate in the sequel some
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general features expected of the solution. Thus we shall start

by assuming that G varries very slowly in the time interval of

interested and therefore rendering ^ T - *-* o .One finds

immediately the following approximate solution for the amplitude

gn at t-tf

where Jn is the ordinary Bessel function of order n and the

argument is given by * "« ('/%

The probability for transferring 2n nucleons from the

light to the heavy fragment dur ing the descent from the last

saddle point to the scission point is thus obtained from the

approximate solution (25)

Pnn
J

(26)
Therefore the average number of transferred nucleons

obtains

(27)

Using an estimate value of 2 Ve Ct+~) ^0.86 and taking

in the sum over n in (27) six terms we obtain for / n \ the

value0.8i.e. only two nucleons are transferred. We feel that

this result is encouraging considering the crudeness of the

approximations involved and the simplifying assumptions used to

derive the tunneling equation (24). The fact that one does get

the right trend of the transfer should also be considered an

encouraging factor that warrants further study of the model

suggested in this work.



Although we have been discussing only the transfer of

neutrons in the past-saddle-point stage of the fission process

proton transfer could also contribute. As a matter of f>.ct the

tendency toward even-Z division is a strong indicator of the

importance of proton pairing; The inclusion of the isospin degree

of freedom i? thus important but will necessarily complicate

the simple model considered here. Any attempt for quantitative

discussion of this problem is bound to demand considering the

transfer of both neutrons and protons.

DISCUSSION AND CONCLUSIONS:

Among the points we stressed upon in this paper we cite

the most important :

1. In deriving the tunneling equation (24) the following

simplyfying assumptions were made (we mention these in this section

in order to indicate the points where one could make improvements):

a) In deriving the time dependence of the tunneling

potential V(t) we assumed that the necking-in barrier is formed

in the middle of the well although it should be placed off center

to simulate asymmetric fission. We feel, however, that this

approximation does not change the qualitative aspects oi the

problem.

b) single-particle aspects (shell effects) were not taken

into account explicitly except for their effect on the pairing

correlations. Considering single particle energies and wave

functions in a deformed well (Nilsson orbital ) will certainly

modify quantitatively the results

c) We have assumed adiabaticity through ont this way we were

able to expand the total wave function in an adiabatic basis

Implicit in this approximation is the neglect of all viscous effects.
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The general view these days, which we share, is that viscosity

in the nuclear collective motion associated with the fission

process is not so great and thus its effects, although important

from the point of view of numerical comparison with experimental

data on the conclusion of this work is mild. Of course the mere

fact that pairing correlations among nucleons play an important

role in determining the details of the final mass and charge

division of the fissiong nucleus is an obvious indication of the

less-than-drastic effect of viscosity.

2, Changing the mass of the fissioning nucleus would result

in a final mass split when only the mass of the most probable

light fragment is affected by this increase. This is so since

the pairing correlation among the nucleons would not be affected

so much thus inducing tunneling in exactly the same manner

except that the light fragment is heavier. Thus during a time

interval corresponding to the saddle-scission transition (this

time we believe is also not affected by the increase in the mass

of the fissioning nucleus)

roughly the same number of nucleon pairs will tunnel from the

light to the heavy fragment (which has a most probable mass of
2 ̂ 6

A-132 at the saddle point in the case of U compound system).

Therefore we believe that our simple tunneling model could

qualitatively explain this second feature of the mass split which

is observed experimentally namely that only the peak in the

mass spectrum corresponding to the light fragment isshifted to a

position corresponding to a heavier mass, by an amount corresponding

roughly to the increase in the mass of the fissioning nucleus

itself.
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