

ФИЗИКО-ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

SV 78 09943

В. Б. БОГУШ, В. В. ВАХРОМЕЕВА, В. Е. КОЛЕСОВ, Ю. И. ЛИХАЧЕВ

Решение задачи кинетики напряженно-деформированного состояния цилиндрических ТВЭЛов с тонкостенными оболочками ЕИ

Обнинск — 1977

ФЭИ - 741

والمحاجين ويهدعوا الأ

ФИЗИПО-ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ

В.Б.Богуш, В.В.Вахромеева; В.Е.Колесов, Ю.И.Лихачев

РЕШЕНИЕ ЭАДАЧИ КИНЕТИКИ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЦИЛИНДРИЧЕСКИХ ТВЭЛОВ С ТОНКОСТЕННЫМИ ОБОЛОЧКАМИ

Обнинся - 1977

2

УДК 518 : 539.3 И-1?

АННОТАЦИЯ

Описывается алгорити решения задачи книетики напряженнодеформированного соотояния твала, основанный на методе конечных разностей. Нелинейная зависимость между напряжениями в деформациями сводится к системе трансцендентных уравнений для функций, осдержащих эту зависимость. Для улучшения устойчивости разнооткой схемы и сходимости метода прогонок при решении донечно-разностных уравнений вводится некоторый параметр регуляривации.

Рассматриваются цилиндрические осеснимогричные отержневые (сплошние и полые) и кольцевые твели с тонкостенными оболочками. Вичисления проводятся с учетом деформаций пластичности и полвучести, распухания топлива и материала оболочки, давления тепцоносктеля и неравномерности температурного поля. Приводится результаты расчетоя.

(С)- Физико-знергетический институт, 1977 г.

Х. Каучение работоспособности к надежности тепловыделнымих ПЛОМОНТОВ ЯДОРНОГО DOGERCOPE ПРИВОДИТ К НООТХОДИМОСТИ DACCMOTDOHUH запряхоний и деформаний. Возникающих в элементах твэла при его раoore:

Рассиотрим задачу о вапряженно-деформированном состоянии цииндрических стержневых (сплошных и с внутренней полостью) и кольэзвых знаков с металлическим топливом и тонкоотенными оболочками. Э процессе работы твал испытывает воздействие меняющихся во времези внутренних сил. обусловленных распуханием топлива и конструкчионыхх материалов.давления теплоносителя и неравномерного по раакусу кампературного поля. Булем предполагать,что между сболочкой сердечником твеля не возникает осевых и окружных смещений. Ограмачныся олучаем осевой симметрии в плоской деформации. Последнее опущение оправолливо при небольних температурных градиентах по алине твела.

Энстема уравнений. описывающая напряженно-деформированное со -Зтояние твела.включает:

•	Уравнение	равновесия		,				
	$\frac{d0r}{dr}$ +	<u>62-60</u> =	0		પ		·	(I)

🔅 граначными условиями

Se = - Pen (t) при 2 = R₁ S₂ = - P_n (t) при 2 = R₄ для кольцевого или стержневого твела с осевой полостью, (2)

z=0· бг = бе при (3)G₂ = - Р₂ (t) прй Z = R₄ для стержневого (сплошного) твала. Здесь и в дельнейшем R₁, R₂

23, Ry- радиусы, в порядке возрастания, внутренней и наружной оболочек твела; для твела с полостью - R₁=R2; Pen . P. - давления жеплонссителя на внутренною и наружную оболочки, для твеля с осевой полостью Р. - давление газов в полости.

Т.2. Уравнение совместности деформаций

$$\frac{d\mathcal{E}_{\theta}}{dz} + \frac{\mathcal{E}_{\theta} - \mathcal{E}_{z}}{z} = 0. \tag{4}$$

1.3. ФИЗИЧЕСКИЕ ЗАВИСИМОСТИ МЕЖДУ НАПОЯЖЕНИЯМИ И ДЕФОРМациями, которые вапишем в виде /1,2/

 $\mathcal{E}_{z_j} = \frac{1}{F} \left[\mathcal{O}_{z_j} - M(\mathcal{O}_{\theta_j} + \mathcal{O}_{z_j}) \right] + \alpha_r T + \mathcal{E}_{z_j}^z + \Delta \mathcal{E}_{z_j}^z,$ $\mathcal{E}_{\theta_j} = \frac{1}{F} \left[\vec{G}_{\theta_j} - \mu \left(\vec{G}_{z_j} + \vec{G}_{z_j} \right) \right] + \alpha_r T + \mathcal{E}_{\theta_{j-1}}^{\mathbf{x}} + \Delta \mathcal{E}_{\theta_j}^{\mathbf{x}}, \quad (5)$ $\mathcal{E}_{z_j} = \frac{1}{E} \left[\mathcal{O}_{z_j} - \mu(\mathcal{O}_{z_j} + \mathcal{O}_{\theta_j}) \right] + \alpha_{\tau} T + \mathcal{E}_{z_{j-1}}^{z} + \Delta \mathcal{E}_{z_j}^{z},$ гдө

Ссотновения, аналогичные (6), (7), справоднивы также для величин $\mathcal{E}_{a,c}^{\mathcal{I}}$ н $\Delta \mathcal{E}_{a,c}^{\mathcal{I}}$. Здесь $\mathcal{E}', \mathcal{E}', \mathcal{E}'-$ компсиенты пластической, вязной и "осъемной", вызванной распуханием топлива или оболочки, деформаций; $\mathcal{L}_{a}T$ - температурная деформация.

Компоненти пластической, вязкой и "объемной" деформаций будем определять как сумму их приращений на отдельных этапах нагружения $\Delta t = t_{-} - t_{-}$. Эти приращения находятся на соответствующих физических соотношений.

I.4. Для случая пластической деформации согласно /3/ имеен

$$l \mathcal{E}_{2}^{\prime} = \frac{3}{2} \frac{\mathcal{G}_{2} - \mathcal{G}_{0}}{\mathcal{G}_{1}} d\alpha', d\mathcal{E}_{0}^{\prime} = \frac{3}{2} \frac{\mathcal{G}_{0} - \mathcal{G}_{0}}{\mathcal{G}_{1}} d\alpha', d\mathcal{E}_{0}^{\prime} = \frac{3}{2} \frac{\mathcal{G}_{2} - \mathcal{G}_{0}}{\mathcal{G}_{1}} d\alpha', (8)$$

.

гдо

$$G_0 = \frac{1}{3} (G_z + G_0 + G_z),$$
 (9)

$$G_{2} = \frac{1}{12} \sqrt{(G_{2} - G_{0})^{2} + (G_{0} - G_{2})^{2} + (G_{2} - G_{2})^{2}} .$$
(10)

Кривая пластического деформкрования представляется в виде

53 = 57 + Еу (2° + 2°)[«] (II) и приращение накопленной пластической деформации 2° определяется следущим образом

$$d\mathscr{X}^{\ell} = 0 \qquad \text{npm} \quad \mathcal{O}_{ij} \leq \mathcal{O}_{sj}, \\ d\mathscr{X}^{\ell} = \frac{1}{F} (\mathcal{O}_{ij} - \mathcal{O}_{sj}) \quad \text{npm} \quad \mathcal{O}_{ij} > \mathcal{O}_{sj}. \qquad (12)$$

1.5. Для определения деформений полвучести используем зависимсоти /3/

<u>dE: 3 6. 6. de de de 3 6. 6. de de 15. 3 6. 6. de</u> (13)

где скорость накопленной деформации ползучести сумму "тепловой" и "радиационной" составляющих процесса ползучеств,

$$\frac{d\mathscr{L}}{dt} = \frac{d\mathscr{L}}{dt} + \frac{d\mathscr{L}}{dt} \cdot (14)$$

По теории течения эти составляющие запишем в виде

$$\frac{d\mathfrak{R}_{r}}{dt} = \mathcal{B}(T,t) \mathcal{O}_{t}^{m_{r}}$$
(15)

- "тепловая" составляющая,

$$\frac{d\mathcal{Z}\varphi}{dt} = A(T, t, \varphi_n) (\mathcal{O}_i + \mathcal{B}_{\varphi} \mathcal{O}_i^{m_{\varphi}})$$
(16)

- прадиационная" составляющая скорости полвучести. Вдесь У - плотность потока нейтронов с энергией $E > E_o$.

I.6. "Объемные" деформации определяем из соотношений

$$\frac{d\mathcal{E}_{z}}{dt} = \int_{2} \frac{dS}{dt}, \frac{d\mathcal{E}_{\theta}}{dt} = \int_{2} \frac{dS}{dt}, \frac{d\mathcal{E}_{z}}{dt} = \int_{z} \frac{dS}{dt}, \quad (17)$$

где S - функция распухания топлива (оболочки), $\mathcal{J}_z, \mathcal{J}_{\varphi}, \mathcal{J}_z$ - коаффициенть, характеризующие направленность процесса распухания.

Распухание топлива S определяется по модели "сферических газовых пор" /2/. Скорооть распухания представии в виде

$$\frac{dS}{dt} = \frac{1+S}{1+S_{T}} \frac{dS_{T}}{dt} + \frac{3}{2} \left(\frac{3}{2m^{*}}\right)^{m} B(T) \mathcal{I} / \mathcal{I} / \frac{m^{*}-1}{2}, \quad (18)$$

FAB S == K. (+) Br(+) / 1-E

$$J = \frac{P_{e} - P_{e} - \frac{2\delta}{a_{o}} \left(\frac{\varepsilon}{S + \varepsilon + \varepsilon S_{T} - S_{T}}\right)^{\frac{1}{3}}}{\left(\frac{1 + S}{S + \varepsilon + \varepsilon S_{T} - S_{T}}\right)^{\frac{1}{m}} - 1}$$

Здесь Е - пористость топлива, В (t) - выгорание топлива. Ра - давление газов деления в порах -определяется вак

$$P_{a} = \frac{0.09 T B_{6}(\epsilon) \varphi}{S + 6 - B_{6}(\epsilon) F_{6}(\epsilon)}$$
(19)

где φ - доля газов деления, собирающихся в порах ,

$$P_{e} = -\frac{1}{3} \left(\vec{6}_{z} + \vec{6}_{\theta} + \vec{6}_{z} \right) . \tag{20}$$

Согласно /2/, /4/ скорость распухания материала оболочки представим в виде

$$\frac{dS_{6}}{dt} = \frac{dS_{k}(T, \Phi)}{dt} + f_{\varphi}^{*}(T, \varphi_{n}, t, 6, S_{k}^{*3}, S_{6}^{*3}), \quad (21)$$

где $dS_x(T, \Phi)/dt$ - окоресть овободного распухания материала всладствие образования пор, зависящая от температуры и дозы облучения Φ , $f_{\varphi}^{*}(T, \varphi_{n}, t, \sigma, S_{e}^{3}, S_{\sigma}^{3})$ - скорость роста пор под действием гидростатического напряжения σ_{e}^{*} .

онкротный вид зависимостой dS_{*}(7,\$)/dt и fy (7,%,t, 5,S_{*}, 3, 3) ввиду их громоэдкости здесь не приводится, ом. работы /2/, /4/.

I.7. Приводенные уравнения необходимо дополнить условием равновесия вдоль оск твеле

$$\int_{R_{1}}^{R_{4}} \sigma_{z} r dr = \frac{1}{2} \left(\rho_{s_{H}} R_{1}^{2} - \rho_{H} R_{H}^{2} \right) + \frac{P_{z}}{2\pi}$$
(22)

Для расчета тонкостенных оболочек можно принять, что Сс и Се не зависят от координат по радиусу. В этом случае уравнения (I)-(4) заменяются на условия равновесия

$$\int_{R_{3}}^{R_{3}} \overline{G}_{0} dr + \overline{G}_{2}^{*}(R_{3})R_{3} + \rho_{H}R_{H} = 0, \qquad (23)$$

$$\int_{R_{3}}^{R_{2}} \overline{G}_{0} dr - \overline{G}_{2}^{*}(R_{2})R_{2} - \rho_{e_{H}}R_{4} = 0$$

и условия

 $\mathcal{E}_{\theta_{H}} = \mathcal{E}_{\theta}^{*}(R_{s}) , \mathcal{E}_{\theta_{\theta_{H}}} = \mathcal{E}_{\theta}^{*}(R_{s}) .$

Индекс (*) показывает, что соответствующие деформации и напряжения отвосятся к топливному сердечнику.

2. Для реализации численного элгорития преобразуец (5) и следующему виду:

$$\begin{split} & \mathcal{E}_{z_{j}} = \mathcal{Q}_{j} \, \mathcal{G}_{z_{j}} - \mathcal{E}_{j} \left(\mathcal{G}_{\theta_{j}} + \mathcal{G}_{z_{j}} \right) + \mathcal{Y}_{z_{j-1}} + \delta_{z} \, \mathcal{S}_{j} \,, \\ & \mathcal{E}_{\theta_{j}} = \mathcal{Q}_{j} \, \mathcal{G}_{\theta_{j}} - \mathcal{E}_{j} \left(\mathcal{G}_{z_{j}} + \mathcal{G}_{z_{j}} \right) + \mathcal{Y}_{\theta_{j-1}} + \delta_{\theta} \, \mathcal{S}_{j} \,, \\ & \mathcal{E}_{z_{j}} = \mathcal{Q}_{j} \, \mathcal{G}_{z_{j}} - \mathcal{E}_{j} \left(\mathcal{G}_{z_{j}} + \mathcal{G}_{\theta_{j}} \right) + \mathcal{Y}_{z_{j-1}} + \delta_{z} \, \mathcal{S}_{j} \,, \end{split}$$

где были использованы следущие обозначения

$$\Psi_{2j,q} = \Psi_{2j,q} + \frac{\Delta t_{j-1}}{2} \left(2G_{z_{j,q}} - G_{0_{j,q}} - G_{2_{j,q}} \right) \left\{ \Psi_{1j,q} \left(1 + B_{\Psi} G_{i_{j,q}} \right) + \frac{\Psi_{2j,q}}{2} \left(G_{i_{j,q}} - 1 \right) \right\} + \Delta \mathcal{E}_{z_{j,q}}, \qquad (25)$$

 $\begin{aligned} & \mathcal{Y}_{z_{o}} = \alpha_{\tau} T + \frac{\Delta t_{o}}{4} (2G_{z_{o}} - G_{o} - G_{z_{o}}) \{ \mathcal{Y}_{v_{o}} (1 + B_{\psi} G_{i_{o}}^{*}) + \mathcal{Y}_{z_{o}} G_{i_{o}}^{*} \} \} (26) \\ & \mathcal{Y}_{v_{j+1}}, \mathcal{Y}_{v_{o}}, \mathcal{Y}_{z_{o}}^{*} - \text{получаются циклической перестановкой индексов;} \end{aligned}$

$$\begin{aligned} \Psi_{1j} &= A(T_{j}t_{j}, \Psi_{n}), \quad \Psi_{2j} = B(T_{j}t_{j}), \\ \alpha_{j} &= \frac{1}{E} + \frac{\Delta t_{j}}{2} \left[\Psi_{ij} \left(1 + B_{\psi} \, \mathcal{O}_{ij}^{m_{\varphi} - 1} + \Psi_{2j} \, \mathcal{O}_{ij}^{m_{\varphi} - 1} \right], \quad (27) \\ b_{j} &= \int_{E}^{\mathcal{H}} + \frac{\Delta t_{j}}{4} \left[\Psi_{ij} \left(1 + B_{\psi} \, \mathcal{O}_{ij}^{m_{\varphi} - 1} \right) + \Psi_{2j} \, \mathcal{O}_{ij}^{m_{\varphi} - 1} \right]. \end{aligned}$$

Вводя обовначения

$$\begin{split} & \varphi_{z_{j}} = \mathcal{E}_{z_{j}} - \mathcal{Y}_{z_{j-1}} - \delta_{z} \, \mathcal{S}_{j}, \\ & \varphi_{o_{j}} = \mathcal{E}_{o_{j}} - \mathcal{Y}_{o_{j-1}} - \delta_{o} \, \mathcal{S}_{j}, \\ & \varphi_{z_{j}} = \mathcal{E}_{z_{j}} - \mathcal{Y}_{z_{j-1}} - \delta_{z} \, \mathcal{S}_{j} \qquad \text{ и преобразуя (IO)} \\ & \overline{\mathcal{O}_{i, j}} = \frac{1}{\sqrt{2}} \frac{\sqrt{(\phi_{z_{j}} - \phi_{o_{j}})^{2} + (\phi_{o_{j}} - \phi_{z_{j}})^{2} + (\phi_{e_{j}} - \phi_{z_{j}})^{2}}}{a_{j} + b_{j}} \end{split}$$
(28)

получим систему уравнений для определения Q;+ b; с последущим вычислением коэффициентов Q; и b;

$$a_{j}+b_{j} = \frac{1+\mu}{E} + \frac{3}{4} \Delta t_{j} \Psi_{j} + \frac{3}{4} \Delta t_{j} B_{ij} \Psi_{j} \left[\frac{\sqrt{(\phi_{z_{j}}-\phi_{a_{j}})^{2} + (\phi_{a_{j}}-\phi_{a_{j}})^{2} + (\phi_{a_{j}}-\phi_{a_{j}})^{2} + (\phi_{a_{j}}-\phi_{a_{j}})^{2} + (\phi_{a_{j}}-\phi_{a_{j}})^{2} + \frac{3}{\sqrt{2}} \Delta t_{i} \Psi_{j} \left[\frac{\sqrt{(\phi_{z_{j}}-\phi_{a_{j}})^{2} + (\phi_{a_{j}}-\phi_{a_{j}})^{2} + (\phi_{a_{j}}-\phi_{a_{j}})^{2}}{\sqrt{2} (\alpha_{j}+b_{j})} \right]^{R_{T}-1} + \frac{3}{4} \Delta t_{i} \Psi_{j} \left[\frac{\sqrt{(\phi_{z_{j}}-\phi_{a_{j}})^{2} + (\phi_{a_{j}}-\phi_{a_{j}})^{2} + (\phi_{a_{j}}-\phi_{a_{j}})^{2}}{\sqrt{2} (\alpha_{j}+b_{j})} \right]^{R_{T}-1}$$
(29)

Цолученная система граноцендентных уравнений позволяет обойти сложности, связанные с решением систем нелинейных дифференциальных уравнений.

3. Систему уравнений (1)-(4), используя (24), приводим и следующему виду:

$$\frac{d}{dr} \frac{dr \delta c_{i}}{dr} - \frac{d \delta_{i} \delta c_{i}}{dr} + C_{i}(1-\delta) \frac{d \delta c_{i}}{dr} - \tilde{C}_{i} \delta \frac{\delta c_{i}}{r} = \frac{d \delta_{i} \delta c_{i}}{dr} - C_{i} \delta \frac{\delta c_{i}}{r} - \frac{d \delta_{i} \delta c_{i}}{dr} - C_{i} \delta \frac{\delta c_{i}}{r} - \frac{d \delta_{i} \delta c_{i}}{dr} - C_{i} \delta \frac{\delta c_{i}}{r} - \frac{d \delta c_{i}}{dr} + \delta_{\theta} \delta_{i} \delta_{$$

$$\frac{d}{dz}a_{j}G_{0j} - \frac{d\delta_{j}(G_{zj} + G_{zj})}{dz} + \frac{C_{j}(G_{0j} - G_{zj})}{z} - \frac{d}{dz}\left(\frac{\psi}{\theta_{j,j}} + \delta_{0}S_{j}\right), (31)$$

где *С* – параметр регуляризации, который выбирается из решения модельной вадачи таким образом, чтобы аналитическое решение дифференциального уравнения модельной задачи совпадало с аналитическим и численным решениями разностного уравнения, соотретоткущего этому дифференциальному уравнению.

Coorbergran pashogrhan oncrema huser Bud

$$\sigma_{zj \ k+z} - B_{j \ k+1}^{(u)} \sigma_{zj \ k+1} + C_{j \ k+1}^{(u)} \sigma_{zj \ k} = f_{j \ k+1}^{(u)} , \qquad (32)$$

(35) $\mathcal{O}_{\theta_{jk+1}} \stackrel{=}{\longrightarrow} \frac{C_{jk}}{B_{ik}} \mathcal{O}_{\theta_{jk}} + \frac{J_{jk}}{B_{jk}}$

Конечные уравнения для решения системы (32) методом прогонки /5/ напишем в следукщем виде

$$X_{k+1} = \frac{1}{B_{k+1}^{(0)} - C_{k+1}^{(0)} X_{k}}, \quad y_{k+1} = C_{k+1}^{(0)} X_{k+1} y_{k}, \quad z_{k+1} = X_{k+1} \left[C_{k+1}^{(0)} z_{k}^{(1)} + f_{k+1}^{(0)} \right] (35)$$

с начальными условиями:

$$X_0 = 0$$
, $Y_0 = 1$, $Z_0 = 0$, $G_{ZN} = Y_1$,
которые соотнетствуют условию, что рассматривается топливный сер-
дечник с полостью и внешней тонкостенной оболочкой, $z = R_1 = R_2$
 $G_{ZO} = -P_r$ (девление газа в полости), $z = R_3$, $G_{ZN} = Y_1$,
где $Y_1 = -\frac{1}{R_3} \left(\int_{R_3}^{R_3} G_0 dz + P_N R_4 \right)$;
 $X_0 = 0$, $Y_0 = 1,0$, $Z_0 = 0$, $G_{ZN} = Y_1$,
ноторые соответствуют условию нто рассматривается топливный сер-

которые соответствуют условию,что рассматривается топливный сердечник с внутренней и наружной гонкостенными оболочками.

гдө

الم المانية منها التي الم المحرب بالإلحاق المأدلا

$$\begin{aligned} & \mathcal{L} = \mathcal{K}_{2} \quad \mathcal{O}_{20} = \mathcal{G}_{2} \quad ; \quad \mathcal{L} = \mathcal{R}_{3} \quad \mathcal{O}_{2N} = \mathcal{G}_{4} \\ & \mathcal{G}_{2} = -\frac{1}{R_{2}} \left(\int \mathcal{O}_{9} \, dr \, + \, p_{6H} \, \mathcal{R}_{4} \right) \; ; \end{aligned}$$

$$X_{o}=1$$
, $Y_{o}=0$, $Z_{o}=0$, $G_{ZN}=Y_{T}$,

которые соответствуют условию,что рассматривается оплошной топливный сердечник с наружной тонкостенной оболочной,

2=0 бго=бво, 2= R3 бгл=Ул. Граничное условие для разностного уравнения (33) имеет вид:

. (2)

- для оплошного топливного сердечника

$$z_{o} = R_{2}, G_{00} = \frac{\left(1 + \frac{\Lambda^{2}_{1}}{2Z_{1/2}}\right)G_{21} - \left(1 - \frac{\Lambda^{2}_{1}}{2Z_{1/2}}\right)G_{20}}{\frac{\Lambda^{2}_{2}}{2Z_{1/2}}\left(1 + \frac{C_{1}^{(2)}}{B_{1}^{(2)}}\right)} + \frac{1 + \frac{C_{1}^{(2)}}{B_{1}^{(2)}}}{1 + \frac{C_{1}^{(2)}}{B_{1}^{(2)}}}$$

- для кольцевого топливного сердечныка.

4. Для вычисления радиальной и тангенциальной составляющих деформаций и соевого напряжения в топливном сердечнике используютоя уравнения (24), осевая деформация определяется из условия равенства нуло главного вектора осевых усилий. Функцию распухания топдива будем вычислять из её разложения в ряд Тейлора, ограничивалов тремя членами ряда

ge er er emplanet

 $S_{j+1} = S_j + \frac{dS}{dt_{int}} \Delta t_j + \frac{d^2S}{dt_{int}^2} \cdot \frac{\Delta t_j^2}{2}$

где производные вычислнются с помощью исходного уравнения распухания.

• Из рассмотренной разностной системы уралиений с помощью по следовательных приближений вычисляются функции распухения, непражения и деформации в топливном сердечнике и оболочках. Для улучшения оходимости последовательных приближений при решении уравнений методом прогонок использовался параметр ретулиризации.

5. В качестве примера приведёх некоторые результаты расчётов 3-х типов твэлов (стержневого со сплошным и полим топливным сердечником и кольцевого). Материал оболочни - нержавещая сталь ($\alpha_{\tau} = 18 \cdot 10^{-6}$ Г/град), изтериал сердечника - металлический уран ($\alpha_{\tau} = 21 \cdot 10^{-6}$ Г/град).

Учитывногся распухание топлива и давление теплоносителя. Распухание оболочек не учитывается. Для описания плестических деформаций оболочки используется диаграмма деформирования с линейным упрочнением. Сердечних - идеально упругий.

При выходе на мощность (±≈0) за счёт разницы тэмпературных деформаций сердечных деформируется упруго, а обслочка испытивает упруго-пластическое нагружение.

. На рис. I и 2 приведено распределение напряжений и дебориаций ползучести по сечению сплошного сердечника стерхневого твэла для ревных моментов времени. Респределение напряхений б. и б. (бz=0) по толщине оболочки (но приводится) имеет линемний характер в соответствии с заланным законом изменения температуры. В течение первых нескольких часов работы происходит сильная релаксация наполжений как в серлечнике. Так и в оболечке. Поэтому в таких случаях при опенках работоспособности твэлов с большим ресурсом поврежлаемостью от кратковременного действия высоких начальных напряжений можно пренебречь. Напряжения в твеле снижаются до 2200 часов. после чего начинают возрастать. Это объясняется действием распухариего топлива, которое нечиная с этого момента постоянно напружает оболочку. Распределение распухания по сечению сердечни-RA HORABARO HA DRC.3. B RODBNG WACH DAGOTH DACHYARNO B RONTE серлечника огрицательно, так как величина гидростатического скатия превосходит давление газов деления в порах топлива. Последущее онихение воличины гидростетического скатия и постеленный рост

давления газов приводят к постепсиному росту распухания, причём распухание в центре сердечника идёт быстрее вследствие более высокой температуры.

На рис.4 и 5 дано распределение капряжений, соответственно, для полого сердечника и сердечника кольцевого твэла. Твэл с полым сердечником нагружен изнутри давлением газа IOC аг. Распухание топлива учитывается и в этих случаях, но ва указанный период времени не успело "проработать", как в I-м случае.

На рис.6 показано, как изменяются окружные напряжения в оболочке (для одной точки на внешней поверхности) в завысимости от времени. Видно, что для стержневого сплошного твела напряжения снижаются (релаксируют) до 3000 часов, после чего под действием распухающего топлива начинают постеленно возрастать.

Разработанная программа расчеты напряжений и деформаций повволяет уточнить границы применения упроценных методов расчёта, нопользуемых на практике для многочисленных инженерных расчетов твелов различных реакторов.

Литература

I. Yalch J.P., McConnelee J.E., Plane strain creep and plastic deformation analysis of a composite tube, Nucl. Eng. and Design, vol. 5, No. 1, 1967. 2. Ю.И.Лихачев, В.Я.Пупко. Прочность тепловыделяющих элементов

ядерных реакторов. Атомиздат, М., 1975.

 Н.Н.Малинин, Прикладная теория пластичности и ползучести. "Машиностроение", М., 1968.

4. Boltox A. et al, Mixed-oxide fuel pin performance analysis using the OLYMPUS computer code, Proceedings of the conference Fast reactor fuel element technology, Hew-Orleans, 1971.

5. С.К.Годунов, В.С.Рябенький, Введение в теорию разностных схем. ТИ ФИЛ, И., 1962. - II.-

à.

ź

- I2 -

ФЭИ-741 Т-07341 от 20/1У-1977 г. Объем 0,5 уч.-изд.л. Тираж 122 экз. Цена 5 кол. Заказ № 386

Отпечатано из ротаприите ФЭИ; ири 1977 г.

وري المعلية وال