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Abstract 

This paper presents an algorithm which solves sparse systems 
of linear equations of the form Ax = y , where A is non-symmetric i 
by the Incomplete LU Decomposition-Conjugate Gradient (ILUCG) method. 
The algorithm minimizes the error in the Euclidean norm ]j x. - xj| _ , 
where x. is the solution vector after the i1-^ iteration and x the 
exact solution vector. The results of a test on one real problem 
indicate that the algorithm is likely to be competitive with the best 
existing algorithms of its type. 
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As is well known, the Incomplete Cholesky—Conjugate Gra­
dient method (ICCG) has been found to be very effective in the 
solution of sparse systems of linear equations of the form 
Ax = y [1] with A symmetric. This method is a much improved 
version of the conjugate gradient method developed by Hestennes 
.md Stie±el[2] , for instead of iterating with the original ma­
trix A, the approximate inverse of A is used. In the ICCG method, 
the approximate inverse is obtained by incomplete Cholesky L.L 
loeoraposition where a pre-selected sparsity pattern, usually that 

T t̂ A, is forced upon the L and L matrices. Kershaw (3] further 
generalized the ICCG method to treat non-symmetric systems by 
using a general LU decomposition of matrix A, and this is known 
as the Incomplete LU decomposition—Conjugate Gradient (ILUCG) 
method. 

In the derivation of the algorithm for treating non-symmetric 
matrices, Kershaw [3] transforms the system 

Ax = y (1) 
into 

Mx = y (2) 
where 

-1 -1 ' M = L AU ; X = Ox 
and 

y' = L _ 1y (3) 

He then constructs a version of the Conjugate Gradient algorithm 
for the system (2) which minimizes x . - x in the Euclidean norm: 
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H ?'i ~ *' H2 = (?'i " ?' ' (^'i " ? ) ) h 

where x . is the solution vector after i iterations. As a result, - 1 
x. - x of system (1) is minimized in the N norm 

H xi ~ * H N = (5i " ?'N(?i " x ) ) k 

where N = U U, as is clear from the transformation x = Ux. 
It is however quite easy to construct a conjugate gradient 

algorithm with incomplete LU decomposition which minimizes 
1 t 

|| x. - x||2 instead of || x - x ||p • We have constructed and 
tested such an algorithm and have found its properties suffi­
ciently interesting to merit further investigations. 

In order to compare the two algorithms formally we find 
it best to use the nomenclature of Hestennes [4] . Hestennes 
provides a scheme for constructing various conjugate gradient 
algorithms for non-symmetric matrices: 

To solve a system Ax = y where A is a square 
non-singular matrix, choose a pair of positive 
Hermitian matrices H and K and define another posi-
tive Hermitian matrix N through N = A HA, where A 
is complex conjugate of A. Then a conjugate gr- ,ient 
algorithm which minimizes ]| x. - x || for all i among 
the algorithms of the form 

x i = X Q + P i_ 1 (T)T (x - X Q ) , where P is P. polynomial 
in T=KN of degree i-1, is given by: 

*>r 
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r = y - AK 
~0 i ~0 

% = A H 

go = K?o t 4- 1) 

and the following recursive relationships: 
(§i' K?i> ^i' H*AKA*H r i 

(Pir Np^) (p t, Npi) 

Si = 

(4.2) 

£ i + l = ? i " a i A ? i < 4 - 4 > 

? i + i = A * H £ i + i < 4 - 5 > 

( ? i + i , K S i + i > t r . i + i F

H * M a , B r - i + i 1 

(4.6) 
(Si' KIi) (£i' H A K A H ^i' 

?i+l = K ?i+l + Si ?i ( 4- 7> 

or 
p. + 1 = KA*H r 1 + 1 + B. 5 i (4-8) 

Here x is the initial guess for x. 
In view of (4.5), the following identity holds: 

(?i' K ? i } = ( r.i' H * A K A * H V ( 4- 9> 
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For our choices of H and K F it will not be possible to use (4.5), 
so (4.8) will be used instead of (4.5) and (4.7) and (4.9) will 
be substituted into (4.2) and ;-'.6). We choo.3d also A to be real 

* * T T 
so that A and H will be replaced by A and H , the transposes 
of A and H respectively. We shall also make use of the lower 
and upper triangular matrices L and U where it is impli--J; that 
their product LU is a reasonable approximation of A. 

The algorithm of Kershaw, equations (9a) - (9e) of [ 3 ] , 
now results from the choice of -T T -1 H = A U DA 
and 

K = (U U) A (LL ) A (U U) l ' 
From which follows: 

T T N = A HA = U U 
and 

T = KN = (t^U)" 1 A T (LL T) - 1 A (5.2) 
and the subsidiary relationships: 

KA TH = (U T n ) - 1 A T ( L L T ) _ 1 ( 5 - 3 ! 

and 
T T T -1 H 1AKA 1H = (LIT) x 

to be used in (4.8) and (4.9). 

With the assumption LU = A, it follows from (5.2) that T - I, 
where I is the unit matrix. 

We now try to construct another algorithm which maintains 
the T = I relationship but which also results in N = I. This 
can be achieved with the choice: 



and 

T -1 
H = (AA ) X 

K = A (U L ) (LU) A (6.1) 

resulting in: 

N = A THA = I; T = KN = K (6.2) 

KATH = A T (LU)" T (I.U)"1; H TAKA TH = (LU) ~ T (LU) _ 1 (6.3) 

where (LU)~ T =[(LU) X ] T 

The algorithm (4) then becomes: 

r = y - Ax ; p = A T (LU)~ T ILU)" 1 r (7.1) 
~o ~ ~o ~o ~o 

(LU) 1 r i , (LU)" 1 rL] 

( ? i ' €i» 

* i + l x . + a . p . 

l + l ~ i i * i 

: ( L U > _ 1 * i + l , ( L U ) _ 1 I i + 1 ' 

[ ( L U ) - 1 r 1 , (LU)" 1 r i ] 

(7 .2 ) 

( 7 . 3 j 

r . - a . Ap. (7.4) 

(7 .5 ) 

p = A T (LU)" T (LU)" 1 r . + 1 4 - 3 . p . (7 .6) 



This algorithm contains the same amount of computational work 
as that of equacions O') of Kershaw [3] so in this sense, the two are 
strictly comparable. As for the rate of convergence, we have 
compared the two algorithms on one problem only: a calculation 
of 2-dimensional transport of Tokamak plasmas using a dynamical 
grid method 15] . In this calculation a • iving non-orthogonal 
grid system produced a simple 9 diagonal matrix A with varia-

4 
tions in magnitude of not more than 10 among the matrix coef­
ficients ciad the immediate sub and super diagonals having values 
around 0.5 after the diagonal element^ have been normalized to 
1.0. The dimension of the matrix A was 15 x 40. Both Kershaw's 
algorithm (k) and ours (P) were generatec by an ILUCG generator 
program [6] and the values of e = '' ~i ~ ^2 compared. 

II x II 2 
Here x is the 'exact 1 solution obtained after a large number of 

— 20 '? ]-
iterations when e <; 10 is satisfied, |( x |! = ( £ x.) * 

where J is the dimension of the matrix A and 

|| x, - x || = (x, - x, (x, - x))h 

~i ~ 2 ~i - ~i 

x. being the 'solution' vector after i iterations. 
Figures (la) and (lb) show examples of two comparisons: 

che initial guess for x being much less accurate in (la). In 
both cases, on: algorithm (P) appears to give more accurate 
solutions down to e = 5 x 10~ beyond which the two are equally 
good. Furthermore, while the P-algorithm gives a monotonically 
decreasing E , the K-algorithm does not. 



Figure (2) gives a comparison of the maximum (infinity) norm 
given by. 

(max |x. - x| ) * J 
e = 
max 

II x || 2 
In conclusion, we would like to emphasize that these results 

have only been tested on one problem only, hence it may or may 
:.'jt represent a typical behavior. The main purpose of this let-
tor is to draw attention to our algorithm (7) and invito further 
i/omoar isons. 



Figure Captions 

Figure (1). Convergence curves using the Euclidean norm e. 
Both the Kershaw algorithm (K) and our algorithm 
(P) (equs 7.1 - 7.6) are shown. Figure (la) ap­
plies to a case where the initial guess for the 
solution vector is less accurate than that of 
Eig. (lb) 

Figure (2). Convergence curves using the maximum (infinity) norm 
(max |x. - x | ) * J 

e max 
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