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Abstract 

This paper presents an algorithm which solves sparse systems 
of linear equations of the form Ax = y , where A is non-symmetric i 
by the Incomplete LU Decomposition-Conjugate Gradient (ILUCG) method. 
The algorithm minimizes the error in the Euclidean norm ]j x. - xj| _ , 
where x. is the solution vector after the i1-^ iteration and x the 
exact solution vector. The results of a test on one real problem 
indicate that the algorithm is likely to be competitive with the best 
existing algorithms of its type. 
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As is well known, the Incomplete Cholesky—Conjugate Gra
dient method (ICCG) has been found to be very effective in the 
solution of sparse systems of linear equations of the form 
Ax = y [1] with A symmetric. This method is a much improved 
version of the conjugate gradient method developed by Hestennes 
.md Stie±el[2] , for instead of iterating with the original ma
trix A, the approximate inverse of A is used. In the ICCG method, 
the approximate inverse is obtained by incomplete Cholesky L.L 
loeoraposition where a pre-selected sparsity pattern, usually that 

T t̂ A, is forced upon the L and L matrices. Kershaw (3] further 
generalized the ICCG method to treat non-symmetric systems by 
using a general LU decomposition of matrix A, and this is known 
as the Incomplete LU decomposition—Conjugate Gradient (ILUCG) 
method. 

In the derivation of the algorithm for treating non-symmetric 
matrices, Kershaw [3] transforms the system 

Ax = y (1) 
into 

Mx = y (2) 
where 

-1 -1 ' M = L AU ; X = Ox 
and 

y' = L _ 1y (3) 

He then constructs a version of the Conjugate Gradient algorithm 
for the system (2) which minimizes x . - x in the Euclidean norm: 
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H ?'i ~ *' H2 = (?'i " ?' ' (^'i " ? ) ) h 

where x . is the solution vector after i iterations. As a result, - 1 
x. - x of system (1) is minimized in the N norm 

H xi ~ * H N = (5i " ?'N(?i " x ) ) k 

where N = U U, as is clear from the transformation x = Ux. 
It is however quite easy to construct a conjugate gradient 

algorithm with incomplete LU decomposition which minimizes 
1 t 

|| x. - x||2 instead of || x - x ||p • We have constructed and 
tested such an algorithm and have found its properties suffi
ciently interesting to merit further investigations. 

In order to compare the two algorithms formally we find 
it best to use the nomenclature of Hestennes [4] . Hestennes 
provides a scheme for constructing various conjugate gradient 
algorithms for non-symmetric matrices: 

To solve a system Ax = y where A is a square 
non-singular matrix, choose a pair of positive 
Hermitian matrices H and K and define another posi-
tive Hermitian matrix N through N = A HA, where A 
is complex conjugate of A. Then a conjugate gr- ,ient 
algorithm which minimizes ]| x. - x || for all i among 
the algorithms of the form 

x i = X Q + P i_ 1 (T)T (x - X Q ) , where P is P. polynomial 
in T=KN of degree i-1, is given by: 

*>r 
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r = y - AK 
~0 i ~0 

% = A H 

go = K?o t 4- 1) 

and the following recursive relationships: 
(§i' K?i> ^i' H*AKA*H r i 

(Pir Np^) (p t, Npi) 

Si = 

(4.2) 

£ i + l = ? i " a i A ? i < 4 - 4 > 

? i + i = A * H £ i + i < 4 - 5 > 

( ? i + i , K S i + i > t r . i + i F

H * M a , B r - i + i 1 

(4.6) 
(Si' KIi) (£i' H A K A H ^i' 

?i+l = K ?i+l + Si ?i ( 4- 7> 

or 
p. + 1 = KA*H r 1 + 1 + B. 5 i (4-8) 

Here x is the initial guess for x. 
In view of (4.5), the following identity holds: 

(?i' K ? i } = ( r.i' H * A K A * H V ( 4- 9> 
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For our choices of H and K F it will not be possible to use (4.5), 
so (4.8) will be used instead of (4.5) and (4.7) and (4.9) will 
be substituted into (4.2) and ;-'.6). We choo.3d also A to be real 

* * T T 
so that A and H will be replaced by A and H , the transposes 
of A and H respectively. We shall also make use of the lower 
and upper triangular matrices L and U where it is impli--J; that 
their product LU is a reasonable approximation of A. 

The algorithm of Kershaw, equations (9a) - (9e) of [ 3 ] , 
now results from the choice of -T T -1 H = A U DA 
and 

K = (U U) A (LL ) A (U U) l ' 
From which follows: 

T T N = A HA = U U 
and 

T = KN = (t^U)" 1 A T (LL T) - 1 A (5.2) 
and the subsidiary relationships: 

KA TH = (U T n ) - 1 A T ( L L T ) _ 1 ( 5 - 3 ! 

and 
T T T -1 H 1AKA 1H = (LIT) x 

to be used in (4.8) and (4.9). 

With the assumption LU = A, it follows from (5.2) that T - I, 
where I is the unit matrix. 

We now try to construct another algorithm which maintains 
the T = I relationship but which also results in N = I. This 
can be achieved with the choice: 



and 

T -1 
H = (AA ) X 

K = A (U L ) (LU) A (6.1) 

resulting in: 

N = A THA = I; T = KN = K (6.2) 

KATH = A T (LU)" T (I.U)"1; H TAKA TH = (LU) ~ T (LU) _ 1 (6.3) 

where (LU)~ T =[(LU) X ] T 

The algorithm (4) then becomes: 

r = y - Ax ; p = A T (LU)~ T ILU)" 1 r (7.1) 
~o ~ ~o ~o ~o 

(LU) 1 r i , (LU)" 1 rL] 

( ? i ' €i» 

* i + l x . + a . p . 

l + l ~ i i * i 

: ( L U > _ 1 * i + l , ( L U ) _ 1 I i + 1 ' 

[ ( L U ) - 1 r 1 , (LU)" 1 r i ] 

(7 .2 ) 

( 7 . 3 j 

r . - a . Ap. (7.4) 

(7 .5 ) 

p = A T (LU)" T (LU)" 1 r . + 1 4 - 3 . p . (7 .6) 



This algorithm contains the same amount of computational work 
as that of equacions O') of Kershaw [3] so in this sense, the two are 
strictly comparable. As for the rate of convergence, we have 
compared the two algorithms on one problem only: a calculation 
of 2-dimensional transport of Tokamak plasmas using a dynamical 
grid method 15] . In this calculation a • iving non-orthogonal 
grid system produced a simple 9 diagonal matrix A with varia-

4 
tions in magnitude of not more than 10 among the matrix coef
ficients ciad the immediate sub and super diagonals having values 
around 0.5 after the diagonal element^ have been normalized to 
1.0. The dimension of the matrix A was 15 x 40. Both Kershaw's 
algorithm (k) and ours (P) were generatec by an ILUCG generator 
program [6] and the values of e = '' ~i ~ ^2 compared. 

II x II 2 
Here x is the 'exact 1 solution obtained after a large number of 

— 20 '? ]-
iterations when e <; 10 is satisfied, |( x |! = ( £ x.) * 

where J is the dimension of the matrix A and 

|| x, - x || = (x, - x, (x, - x))h 

~i ~ 2 ~i - ~i 

x. being the 'solution' vector after i iterations. 
Figures (la) and (lb) show examples of two comparisons: 

che initial guess for x being much less accurate in (la). In 
both cases, on: algorithm (P) appears to give more accurate 
solutions down to e = 5 x 10~ beyond which the two are equally 
good. Furthermore, while the P-algorithm gives a monotonically 
decreasing E , the K-algorithm does not. 



Figure (2) gives a comparison of the maximum (infinity) norm 
given by. 

(max |x. - x| ) * J 
e = 
max 

II x || 2 
In conclusion, we would like to emphasize that these results 

have only been tested on one problem only, hence it may or may 
:.'jt represent a typical behavior. The main purpose of this let-
tor is to draw attention to our algorithm (7) and invito further 
i/omoar isons. 



Figure Captions 

Figure (1). Convergence curves using the Euclidean norm e. 
Both the Kershaw algorithm (K) and our algorithm 
(P) (equs 7.1 - 7.6) are shown. Figure (la) ap
plies to a case where the initial guess for the 
solution vector is less accurate than that of 
Eig. (lb) 

Figure (2). Convergence curves using the maximum (infinity) norm 
(max |x. - x | ) * J 

e max 
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