JULY 1978 PPPL-1458

Uc-20g

AN TLUCG ALGORITHM WHICH MINIMIZES
IN THE EUCLIDEAN NORM

BY

M. PETRAVIC AND G. KUO-PETRAVIC

PLASMA PHYSICS
LABORATORY

\\\%“‘“

DISTRIBUTION OF THIS DICUMENT 13 UNLIMITRD

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

This work was supported by the U, S. Department of Energy
Contract No. EY-76-C~02-3073. Reproductiom, translation,
publication, use and disposal, in whole or in part, by or
for the United States Government is permitted.




An ILUCG Algorithm Which Minimizes

in the Euclidean Norm

M. Petravicd® and G. Kuo-Petravic *

Plasma Physics Laboratory, Princeton Un. ersity

Princeton, New Jersey 08540 UsA

This work i
was supported by United States Devartment of Energ
= Y

Contract No. EY-76-C-02-3073.

Also iv A
Lawrence Livermore Laborator Yo Livermore, CA 94559
[

Contract No. W-7405-ENG-48.

— NOTICE ————— —
Thi rept was prepned a3 aconmt o) wark |
e he |

| cpunsored by the Umteit Sries Grnemredt Nesth

Tated States non the Erned States [epattment ot

Faergy. non any o sher emplavees net am o dhea
cantractiny. sabcontras s, or e emplrvees makes |
o Wy, exgress it imphird, o swumes any 1egal
habilify or 1eypongminy or the accuracy  complesencyy k
ot wsealness ul any nhormanon. apparates, prodiet g

process dinchoed, or represents hat s e »
intrmge gresateh nuned nghts

SR ENRINUSTING

4

v



LA

Abstract

This paper presents an algorithm which solves sparse systems
of linear equations of the form Ax =y , where A is non-symmetric,
by the Incomplete LU Decomposition-Conjugate Gradient (ILUCG) method.
The algorithm minimizes the error in the Euclidean norm i}gi = xil, .
where X, is the solution vector after the ith iteration and X the
exact solution vector. The results of a test on one real problem

indicate that the algorithm is likely to be competitive with the best

existing algorithms of its type.



As 1s well known, the Incomplete Cholesky--Conjugate Gra-
dient method (ICCG) has been found to be very effective in the
solution of sparse systems of linear equations of the form
At o=y {1] with A symmetric. This method is a much improved
version of the conjugate gradient method developed by Hestennes
and sStiefel2}, for instead of iterating with the original ma-
trix A, the approximate inverse of A is used. 1In the ICCG method,
the approximate inverse 1s obtained by incomplete Cholesky LLT
Jdecomposition where a pre-selected sparsity pattern, usually that
~f A, is forced upon the L and LT matrices. Kershaw [3] furthor
generalized the ICCG method to treat non-symmetric systems by
using a general LU decomposition of matrix A, and this is known
as the Incomplete LU decomposition--Conjugate Gradient (ILUCG)
method.

In the derivation of the algorithm for treating non-symmetric

matrices, Kershaw [3] transforms the system

AX = VY (1)

into
1 1

Mx = vy (2)

where
-— — t

M =1 lAU l; X = Uf
and

1 —

gy =Lty (3)

He then constructs a version of the Conjugate Gradient algorithm

1

Al
for the system (2) which minimizes x g T % in the Buclidean norm:



- >§', (’f'i - g_c’));i

'y = xlly = x5

where x . is the solution vector after i iterations. As a result,
< i

X, - X of system (1) is minimized in the N norm

Il %,

R AT,

where N = U'U, as is clear from the transformation 5' = Ux.

It is however guite easy to construct a conjugate gradient
algorithm with incomplele LU decomposition which minimizes
l =, - x|l, instead of || 5'1 - g'Hz. We have constructed and
tested such an algorithm and have found its properties suffi-
ciently interesting to merit further investigations.

In order to compare the two algorithms formally we find
it best to use the nomenclature of Hestennes [4] . Hestennes
provides a scheme for constructing various conjugate gradient
algorithms for non-symmetric matrices:

To solve a system AX = y where A is a square

non-sinqular matrix, choose a pair of positive

Hermitian matrices H and K and define another posi-

tive Hermitian matrix N through N = A*HA, where A*

is complex conjugate of A. Then a conjugate gr- .ient

algorithm which minimizes || X - X i g For all i among

the algorithms of the form

X, =R _+P
~0

R i-1 (r)r (E - 50)  where P is & polynomial

in T=KN of degree i-1, is given by:
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#
~
H
1

~0 ~0
_ *
g, = A'H
Po = K9y (4.1)

and the following recursive relationships:

( K ( * *

9ir Xgy) (gy. HOAKAH gy)

Ny T ———— = (4.2)
(@i Ny) Ry Ngj)

¥iey = Bp toggy (4.3)

Bivl T EiT R By (4.4)

*
Sie1 TRAHI (4.3)

* *
Givy, Xa1) Eyyy, HARRH ;)
. = = (4.6)

1 * *
(gi, Kgi) i H AKA H Ei)
Pivy = K gy + B By (4.7)
or
* (4.8
Bypp = KR HL * 8 By -8

Here x is the initial guess for x.

Tn view of (4.5), the following identity holds:

%* *
(gi, Kgi) = (c;, H AKA H r,) (4.9)



For our choices ol H and X, it will not be possible to use (4.5),
so (4.8) will be used instead of (4.5) and (4.7) and (4.9) will
be substituted into (4.2) and ['.6). We choose also A tc be real
so that A* and H* will be replaced by AT and HT, the transposes
of A and H respectively. We shall also make use of the lower
and upper triangular matrices L and U where it is impli-: that
their product LU is a reasonable approximation of A.

The algorithm of Kershaw, equations (9%a) - (9e) of [ 3] ,

now results from the choice of

g = a"Tutua™t
and

K = (UTU)—l AT (LLT)_l A (UTU)—l {(5.1)
From which follows:

N = aTha = vy
and

T=rn= (Wt AT @whHl A (5.2)
and the subsidiary relationships:

kaThy = (uTm =1 AT (LLT)—l (5.3)

and
utakaTy = (L) 7!
to be used in (4.8) and (4.9).
With the assumption LU = A, it follows from (5.2) that T=1,
where T is the unit matrix.
We now try to construct another algorithm which maintains
the T = I relationship but which also results in N = I. This

can be achieved with the choice:



H = (aaTy~ 1
and
k= AT @ty l 7t oa (6.1)
resulting in:
N =AHA = I; T = KN = K (6.2)
®aTH = AT ()T uyl, wTakath = (ny) "Tiwu) !
where (LU)-'T =[{LU)_l]T
The algorithm (4) then becomes:
o . T -7 -1
r,=y - Ax;op, = AT (LU I r (7.1)
T _l -l
L) ™ r,, (L) © z,]
. = (7-2)
1
(pyr Pyl
- . 7.
Xigy T Xyt ogpy (7.3
= X - R 7.4
Tipl T %5 T %4 PPy (7.4)
-1 -1 1
[(nu) 41, W™ ;!
B, = (7.5)
L
-1 -1
[(zo) ™" g (20) r,]
= At T -1 7.6
Piy = A (1U) (LU) "7 . 0 ¥ Bi 1 (7.6)
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This algorithm contains the same amount of computational work
as that of equacions (9') of Kershaw [3] so in this sense, the two
strictly comparable. As for the rate of convergence, we have
compared the two algorithms on one problem only: a calculation
of 2-dimensional transport of Tokamak plasmas using a dynamical
grid method [5]) . In this calculation a * »ving non-orthogonal
grid system produced a simple 9 diagonal matrix A with varia-
tions in magnitude of not more than 104 among the matrix coef-
ficienls aud the immediate sub and super diagonals having values
around 0.5 after the diagonal elements have been normalized to
1.0. The dimension of the matrix A was 15 X 40. Both Kershaw's

algorithm (k) and ours (P) were generatec by an ILUCG generator

program [6] and the values of ¢ = I'%i TX ”2 compared.
[l =
- 2
Here x is the 'exact' solution ubtained after a large number of
- J .
iterations when £ < 10 20 is satisfied, [[x {|= ( ¢ x;)g
z =1

where J is the dimension of the matriv A and

N - %))
x5 being the 'solution' vector after i iterations.

Figures (la) and (lb) show examples of two comparisons:
<he initial guess for ¥ being much less accurate in (la). 1In
both cases, or: algorithm (P) appears to give more accurate
solutions down to € = 5 X lO—5 beyond which the two are equally
good. Furthermore, while the P-algorithm gives a monotonically

decreasing €, the K-algorithm does not.

Aare



Figure (2) gives a comparison of the maximum (infinity) norm
given Dby:

{max ]gi - g]) x T

max

i >§|l2

In conclusion, we would like to emphasize that these results
have only been tested on one problem only, hence it may or may
ot represent a typical behavior. The main purpose of this let-
tor is to draw attention to our algorithm (7) and invite further

comparisons.



Figure (1).

Figure (2).

Figure Captions

Convergence curves using the Euclidean norm €.
Both the Kershaw algorithm (K) and our algorithm
(P) (equs 7.1 - 7.6) are shown. Figure (la) ap-
plies to a case where the initial quess for the
snlution vector is less accurate than that of
Fig. (1b)

Convergence curves using the maximum (infinitv)} norm

(max |§i -x]) *g

max
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