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ABSTRACT

SU(3)-rules analogous to the Okubo-Zweig-Iizuka rule for strong
decays are given for semileptonic and nonleptonic decays of strange and
charmed mesons. In particular, relations among two- and three-body weak decays
are derived. Tn the case of nonleptonic decays the relations depend on the
colour structure of currents.

AHHOTAUKA

PaccmaTtpuBanTca ST(3)-npapuna onA NOAYNENTOHHHX M HENENTOHMHHX pac-
nazos CTPAHHHX H OYAapOBAHHHX ME30HOB,aHaNOrHYHHe NpaABHAK Oxybo-llBefir-Hayka
OJIA CHJILHEX pacnanop. B YACTHOCTH, BHBOOATCA COOTHOWEHHA Mexny HNBYyX~- H Tpex-
YACTHYHNMK CnaGhtiMK pacnanaMH. B criyyae HeNeNTOHHMEHX PACNAaNnoP 3TH COOTHOWEHHA
3aPHCAT OT UBETOBOR CTPYKTYPH TOKOB,

KIVONAT

. Az erls bomlasokra vonatkozd Okubo-Zweig-Iizuka szab&llyal analé6g
SU,3)-szab&lyokat vezetiink le a ritka és a b&ajos mezonok szemileptonos és
nemleptonos boml&saira. A két- és h&rom-test gyenge bomlisok k8z8tt Bssze-
fuggéseket szlrmaztatunk. A nemleptonos bomlasok esetében az 8sszef'iggések
érzékenyek a: &ramok szin-szerkezetére.




The H(’G) —-properties of semileptonie and

nonleptonic decays ol mesons.

I Montvay
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Abstract: St (3)-rules analogzous to the Okuho-Zweig-

—lizukia rule for strong decays ar: given for semi-
leptonic and nonleptonic decays of strange and charmed
mesons, In particutar, relations among two- and three-
-hady weak decays are derived, In the case of nonleptonic
decays the relavions depend on the colour structure

of currents,
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I, Introduction

After the roceat discovery of charmed D= and F-mesons

D.:} an  incereasing amount of informations is accurnmtated
also opn the weak decays of these particles [?—"3] . The facts
known at present are generally consistent with the Gliashow,

ITiopoulos,

Maiani G;IM) scheme D’ tor the weak curvents.,
From the point eof view of unified gaure theories it is of
great intevest, however, to verily the charm interpretation

in detail.

bue to their large mass the D- and F-mesons have a rather
laree numher of decay channels, The hranching ratios into
the different channels ecan give valuable informations on the
decay mechanism, SU(3)-relations following from the SU(3)
transtformation properties of the currents were derived
previously by Kingsley, Treiman, Wilezek and Zee Bﬂ. More
restrictive relations for nonleptonie decays follow from
20-plet dominance /anaiogous to octet dominance in K-meson
decavs/ [?-Iﬂ . In the present paper 1 shall investigate

the conseyuences of SU(3) symmetry for the weak decays of

D- and F-mesons assuming a generalization of Okubo-Zweig-
-lizuan)ZO rule [12 which can he naturally incorporated

in a large class of guark models, For definitenes<, 1 shall
consider the quark model with phenomenological quark con-
finement described in detail previously [ﬁ?,l@ . The obtained
relations are, however, more generally valid than the model
itself. /Examples of similar quark models are given e.g,

in Refs, [l')—l‘il ./

In Seetion I, the SU(?)-structurn of weak amplitudes is
given in general, The Fiertz-transformation properties of
the current x current effective Hamiltonian for nonleptonic
decays are taken into account emphasizing Lthe role of colour
degrees of freedom., Specifiec relations for the two- and
three=hody decays are considered in Section 111. and 1V.,
respectively, /For details see also the Appendix,/ The
relations are first tested in both cases for the well known

K=meson decays, In Section V, the conelusions are briefly
summarvized,




I11. SU{3)-structure of the weak decay amplitudes of mesons.

The charged hadronic weak current in the GIM scheme [ﬁ]
can be written as

b 0= Feore, T (s 00 |

/1/
vhere 'f,..; \P(x) {\‘; (x)} qeuibc

is the quark field operator /colour indices are suppressed
for the moment/, and the 4x4 matrix N, is given by

denotes Dirac-matrices,

O @O w8 O

© (o] (o] o
Wy =
o lo) o (o)

O -wmO w0 ©

/2/

/® is the Cabibbo angle./ The effective current x current
weak interaction Hamiltonian density is

+

lﬂ _ %[& (x)+e (x)J[f\, (")+£)~("’J

/3/



where Gois Lthe Fermi coupling econstant and éwoo g notes
the charged leptonic weak current containing e—)l.\-— and T-

like leptons:

/n/

The effective interaction is the low energy limit of some

gange theory coupling mediated by the charged intermediate
hoson Wi.

In the present paper we shall consider only the leading
charm-changing terms in F.q.('i) proportional to cos©
in the semileptonic case and to cosge in the non-

leptonic case.

Semileptonic decays,

The semileptonic interaction comes from the coupling of the
hadronic and leptonic currents. Graphically the leading
charm-changing piece /proportional to cos © / is represented
by Figure 1. In the quark model of Refs. [1‘5,111] the simplest
quark graph /the so called "direct term"/ contributing to

the semileptonic decays is depicted in Figure 2, /for instance,
in the case of D”-meson decay/ Euﬂ . The Feynman-rules for

the calculation of quark graphs E?,lé} are briefly sum-
marized in Table 1., In what follows J shall only consider

the /Mavour/ SU(3) structure coming from the usual meson
-matrix part of the wave function
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Hiere, for definiteness, the pseudoscalar mesons are taken,

hence P= 15:7,7'. ‘Jf': ‘Y" and the mixing angle @,

belongs to the pseudoscalar nonet. /The mixing of the charmed

quark statety is neglected here./ The momentum dependent part
X(P,q,) of the wave function [1‘5,1'{] will not be

specified here, /It will be assumed, however, that the SU(3)

breaking effects coming from the quark mass matrix M_ are to

a good approximation compensated by the SU(})-breaking in

the meson wave functions like it has been shown for strong

meson decays in Ref, [1’!]./

From Table [I. it follows that the SU (3)—structure of the
amplitude corresponding to the graphs like in Figure 2,

is [’.’(ﬂ:

) T+ M(? M(?
Z-(l-)n Cﬂ,[’c‘ )1 T {M(I) M( ‘x(q)) cos M( x(m)}

/6/



Ilere Z‘K(!)ﬂ. means a summation over the permutations

{ Ty, TR . 11‘(1!)} of the numbers {I ylyeee ,.}

/ M is the number of hadirons in the tinal state/. The
trairce over interpal symmetry indices in Eq. (h) is already
reduced to /fliavour/ SU(?) by the relations following from
Eqs. (‘.3,";)

x = w6 M)+ M(F) +m9[M(K*)—M(D’)];
W

M(D") M(FY) - M(x7),
M (DY M(FY) = MK,

M (£ Fi(e) =M ) -

/8/
From these relations it follows that the matrix M(I)

specifying the "initial" SU(5) quantum numbers of the
n-hadron state is given hy F.q.(')) if

ID°=; K LT < IF*’ 15

/9/
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The factors G, [X(3] in the amplitude (6) depend

on the momenta and spin indices /only the dependence on the
permutation X(-) is explicitly indicated/. SU(3) symmetry
means that C, does not depend on internal symmetry indices.
The matrices Fi(1%) in Eq.(ﬁ) stand for the J'th out-
going psendoscalar meson with SU (3) quantum number 33 . In

the case of resonances in the final state is, of course,
+ ~° re
replaced by U= €10 yeor K /for vector mesons/,
+ ° :
m~ TINN O
= A,_ ) Az Yoo K /for tensor mesons / etc.

As far as the SU(3) coupling scheme - is concerned Eq.(6)

is obviously the generalization of Lhe 0ZI-rule to semileptonic
decays. Graphically it means that it is always possible "to
draw a continuous quark line"” among the mesons /and the
diagram obtained is always connected/. In the quark model

the graph in Figure 2. is, however, only the simplest /"direct”/
one, therefore in principle the cther graphs may spoil the
behaviour given by Eq.(ﬁ). The essential point is that a

large class of graphs have the same SU(})-structure as the
"direct” one and, according to the success of the 0Zl-rule

for hadronic couplings, these graphs dominate, Among the more
complicated graphs belonging to this class there are the
"indirect terms” when one /or more/ ofthe pairs of internal
quark lines makes up a /resonating/ internal hadron line,.

/The pole terms coming from such indirect graphs seem, in
fact, to dominate in the form facturs for Kl3 or W‘3
decays/, Examples of such indirect terms are depicted in
Figure 3. Other kinds of terms having the same SU(3) structure
like Eq.(b) are the ones with internal gluon lines, because
the /coloured/ gluons are flavour singlets. In what follows

we take Eq.(ﬁ) with some unspecified momentum and spin

dependent part C, to he Lhe SU(%)—property of semileptonic
decays,
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Nonleptonic decavs,

The nonleptonic decays are given by the product of two
hadronic curvents in the effective Hamiltonian in Eq. (')) .
For later purposes it is convenient to intreduce a graphical
notation also for the Fiertz-transformed Ffour-quark couplings,
In the case of the leading (l:. €. M"e) charm changing

nonleptonic interaction the notatien is explained by Fig.h.

For the nonleptonic decays the set of /direct/ quark graphs
can he devided into two essentially different classes [‘._’()].
The"exchange-type” graph is illustrated in the case of p”
decay in Figure 5. The special case 'Vl‘-‘—o is possible only
ror p° decay, 1t can be called "exchange annihilation™ as the
quarks (ca) in D” are anihilating by the exchange of a w
hoson. The "emission-type" graph is shown in the case of Ft
decay in Figure 6, The case 414-=0 /"emission annihilation"/
is possible only for F* when the quarks (Cs) in F* annihilate

each other by the emission of a W',

From the Feynman-rules in Table 1 it follows that the SU(3)-
-structure of the amplitude corresponding to the sum of
emission and exchange graphs is [20}:

p-a Z—— { qﬂ‘ﬂ"[-x(.)}_ﬁ'[ﬂ (I) M_ (?-xm)-'- H (?‘x(’u‘)ﬁ

'Jt(‘,)ﬂ, MAnEm
T [M (x)M (?‘K(w m)\"' M (?T(ﬂqfﬂl\\;] + &n‘ﬂ‘[’m)]

— — — 0/
'T4' [M (’Pt(ﬂ)"' M (?ﬂﬂ,\)M(:) ’M—(?R(ﬂqﬂ))"' M (?x(n‘m,\\M (Jr]}/l

The SU(3)- matrix M(1) is the same here as in kq,(6) and it

is given hy Eqs. (‘P,')) . The amplitudes 0,“ n /for the
178
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emission graph/ and lkuﬂl /for the exchange graph/

depend on the momentia and spins.

The generalization of the 0ZI-rule for nonleptonic decays

is given bylh;.ﬁ(?. The "indirect” terms and gluon exchange
terms have the same SU(3) -structure as Eq. @(9 , only the
momentum and spin dependenti parts are different.

Fiertz tronsformation.

It can be seen from Figures 4-6, that the exchange and
emission graphs for nonleptonic decays are connected by a
Fiertz-transformation, After Fiertz-transformation the graph

in Figure 5, for instance, goes over inte Figure 7.
Let us first forget about tihe colour of quarks. In this case

the Fiertz-transformation of the leading charm-changing
piece of the current x current llamiltonian in Eq. (3) is:

& 0[BTty el Fyor g0 -
-S 2] §,0 w(4.5g)%(,)][{\7‘(x) 7 lgs) g

It can be seen from here that the structure of the Fiertz-
-transformed exchange graph is exactly the same as the
emission graph the only difference being in the sU(3)

/11/

gquantum numbers of quarks participating in the weak interaction.

That is, in the SU(3) ~symmetric 1imit the momentum and spin
dependent part of the exchange graph is the same as that of
the emission graph:

b T IR ME ™ M (27}

- Q_“qﬂ"—\:” {M (5’) ™ ’“4} Te { M (E°) 'ﬂ”‘.}

/1

2/
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Nere the SU(3) transformation corresponding to Eq. (11)
wias performed on the right hand side, hence :nstead of
Fq. (‘)) we have

3 =, F =x' 3+=\<+
7 ) /13/

From the explicit form of the SU (h) -matrices in Eq.(‘i) and
Eqss (9413) it follows

TIM@PA™M}BIME)FA™] - U~‘4°“)4€ (M ‘)“
TE{AMM @A™ o= T {MERME T IMR)M™-

= (\—MM)«L (ﬁMl)bd . /1n/

The index i is equal to u for »’, d for »* and 4 for
[ decay, Comparing the sccond relation in Eq.(lh) with
Eq.(l‘.!) we obtain:

b= Qp, -

14" 1_“. 12

/15/

If the quarks would ohey Bose-statisties instead of Fermj-
-etatistics [15,21--.’5] there would be an additional negntive
sign in Eq. [11'\] ,therefore instead of |»:«,.(|',) it wonld give

by = A

1M e

4

J16/

Up to now the quarks were assuemd to he  eolouriess . /ftor
# recont vreview on eolur see Hef, [_'-"J . In QCH with coloured




o

- Ju -

quarks the Fiertz-transtormation in B~ Ol) is replaced by

A0 2 [ $ua 07 (- fs) 'lki‘(x))[’q;'*(x)l'rn-dsﬂieﬁ(lee

&
(53

- & wto 2, [ TR ARSI 0y I

' ’ ~ ]
13, 25 Lo, g Oy, T'a-,,>,;¢,.c;g}
17

)

The colour indices are denoted here by greek letters and }\i
stands for the Gell-Mann SU (3)- matrices. EQ. (17) shows

that the colour "spoils” the simple relations following from
the similarity of the Fiertz-transformed interaction to the
original one. 1t seems hard to imagine that a relation like
Eq.(lS) can be derived in generality unless some specific
dynamical assumptions are made,

An example of dynamical assumptions in the connection with

colour is made in the geometrodynamics approach of Preparata

Djﬂ » namely that colour contributions are unimportant /or simply
n~t there/. In this case the :econd term of the Fiertz -
trensformed expression /containing ;\L / cannot contribute

as the colour trace over the quark loops gives zero, Therefore,
the form in Eq.(lo is essentially restored, only with an

extra factor }é . This leads to

/18/

In the following Sections we shall investigate also the
experimental consequences of Fqs, (15,16,18).

v r————



1. Two=-bhody decays,

symmetry breaking kinematices.,

The SU(',) is in general a pood symmetlry for Lke amplibwdes
/e.z. Tor the coupling constants in the ease ol strong
decavs of resonaners/ but substantial symmetryv breaking
effects come from the kinematics of the decay due to Lhe
large mass splittings among pseadoscalar mesons., The us |
procedure for the verification of SU (’;) - relations is
thercfore to take the symmelry hreaking phase space Jand

centrifugal barrier/ effects into account by the physical
vilues of masser,

In the case of two-hody decays ol a psendoscalar meson into
two pseudoscalar mesons (P>PP)  ine decay width is given

by the dimensionless coupling constant 3” like

2
W
LA i~

/19/
where w o is the value of the ¢.m, momentum, If 4 is the
mass of the decaying particlte anl m, ,'m,_ are the
masses of the decay products, respectively, then
K
b 4 2 (s
W= i—- zm fm" +ml - 2%,‘771 —-Qm’mz-,?mz,ml}
Rm
/e0/

For the decay ol a pscudoscalar into o veetor and a

psendosealar (’P, 'D’T) the corresponding expression is:

- en—————— e



[ a 1gyel ——
L 44 3\!? gxm}

There is, of course, some ambiguity here in choosing m,
in the denominator instead of some other mass. This choice

corresponds to the simplest form of the transition amplitude.
Finally, for the decay into two vectors (TL717U7 we have
1 5
M= 19wl 5=
Frcm

ﬂ 4mz

/Similar formulae can be writtcn down also for other kinds

of decays containing, for instance, tensor mesons etc./

In what follows I shall assume the SU(3) relations for the
dimensionless coupling constants like 3 , ?\/P and 3’VV'

For two-bhody /nonleptunic/ decay amplitudes into two pseudoscalars
Chq ) 4‘)qnband 6;1 in Eq.(lo) can not depgnd on the permu-
tation () as the only variables are the masses which

are degenerate (i.e, "“4""4,) in the symmetric case /assumed

for the amplitudes/., Below, the notations 0.”, ‘6‘,' , E,P

and pp Will be used for O.“,‘;ﬂ Qoq and o2 )
respectively, For quasi two-body decays into two_vector mesons
the same quanmtities are a.w, &;/v) avv and ZVV . In the
case of quasi two-body decays into a pseudoscalar and a

vector meson the amplitudes belonging to the two permutations

may he different /as M‘+ M4 even in the symmetric case/,
therefore the corresponding notations will be Q a &

&/p ) a’?v ) a'VP )X'Py and LVp .
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K—>» 22X decays,

First it is matural to test the symmetry relations for
K-meson decays, when the SU(3)- symmetry is, in fact,

reduced to SU(2) /isospin/. The derivation of SU(2)-

rules for the strangeness changing decays is completely
analogous to the charm changing case, therefore, it is

not necessary to repeat again the arguments of the previous
Section. The SU(2) quark rule is given by Eq.(6) and Eq.(10)
for the semileptonic and nonleptonic decays, respectively.
Instead of Eq.(9) the initial quantum numbers of the hadronic
states are given by

="
IK’-:‘?“’ IKO .

)
/23/
The relations in Eq.(llo) are replaced by
— My + — Mgy _ ﬁ‘ﬂ‘ — My
T M@ FA™ T IM AT - ( )4'9.(M )ud, ,
roSy oM + ™ (—"") '
TP M@ ™M Ox )}4 )M M 5
/24/
where 4=w for k* decay and i-d for K° decay.
The K-#27X amplitudes following from Eqs.<10,23,24> are
best displayed by the generating functions
G'(K*)- 1W+5t°:%f(}1rp4"$;) |
o O ‘ 7 + - 7
G (K)=T=x \Ii(‘?r-‘n% TR sfi(lq; Q—rr) .
/25/

ro—
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The caleulation of the decay widths from here goes via

the substitution

———

imim! "
a. ’ﬂ* . ‘n‘ , ‘“. . {K_'x*“;x'"_ Jl" 0)'
(ﬂ++n__+ Mo)l. /26/

Ax-t’"'o K—n- jtoﬂ. ,_-—_?lA

+MN,, —"M_ o
where Q(K—«)‘K T T means the two-body phase-

space (W/gﬂ,' in Eq.(l‘,))) belonging to a number N
o
of TC mesons in the final state (k= +)——,0) .

There are altogether 5 K-» 29C decays, hence for the 2 ratios
we have 3 complex parameters [Qay: a”/a?P"?P/a?P ’f," lla"]
therefore in QCV there are no symmetry relations among these
decays. In the case of colourless quarks Eq.(lS) or Eq: (16)
holus for femion and boson quarks, respectively., In the first

case the only /complex/ parameter for the ratios of decay
widths is Q. /EI.,,P :

(Ko x'xd) _ olkhatn?) l O
v (K,—’Tf*"t’) © (K»707) | Oyt Opp

2

{o.0021¢ 0.00003} ’

_ Z
MKxx) Qi) 4 | Tpp-any {0.456£0.006]
T(Kon'n)  Slkoa'n) L 1 s om i~

The measured values are given in the curly brackets. They are

reproduced by \Q-” /ﬁ._." ‘f-_l' 0.05_, , therefore the
annihilation diagram is dominating.

The second case /Bose-quarks/ was proposed to explain the
A‘I-% rule [1"),21-2(;] resulting in the relations



- +
(K>t wt) -0,

{'(st_vt"vc") _ Q(Ks—ﬂt -n) 1 - 0505 .

V(Ks-77\‘+1€) Q(k -ﬂt‘ﬂ) 2/ /28/

JAs it can be seen from kg, (2’) these relations hold also
for Q‘PP:O in the previous case, The smal Ilness of

IO.?P /ﬁ",‘ shows how rood is AI:::% ./

The data can also he fitted by the geometrodynamies value

(" in Eq. (ll’? where ,aPP /aﬂ:l turns out to be

Two-body decays of charmed mesons,

The generating function analogous Lo Eq. (:.";) for two-body
nonleptonic decays of the D- and F-mesons can he obtained

from Eq. (l()) using the expressions in Eq. (l’l) . The result is:

Q)= Kt (q )+Y‘-\‘t ( ">+ ?12 (6— & )
(4 1—251,,)

(Qge 7 &31) /29/

— T +12 VA4 Y
-+ o

- + + N7 J: - ) a, +2
G(F) =R K" (bor T )r i [T (6, )i a' 5 (0,0 2)
For the pseudoscalar nonet the octet-singlel mixing was neglected
here, that is c"’tP,“" % was taken /the same will be nsed
also in the resit of Lhis paper/. The amplitudes Q'PP)"" Z”
entering in these expressions are related to the ones in
Eq. (25) by SU() -symmetry /SU(4) may, houever, he hadiy
broken/. To obtain the decay widths From here the same
recipe has to be applied as in l~‘.q.(2h) /extenced, of course,

+__~__0O
from U ,7C, T to Lthe whole set of psendoscalar mesons/,

4’(’1 ‘—3—‘
GON) =K "x*
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The ratios of the decay widths for the 8 different two-body
channels in Eq.(T» are given by 5 complex parameters [%ay:
Qpp [y | 5—" /Bgp (W/ﬁw /  therefore there must be

some relations. The following ones are independent from the

values of the parameters:

+ *_ e
rel. x*n*)=0 ,

O Em)  0o¥a) 3 sa5
I (Do-a?."z) Q=K 7] /30/

if the b-amplitudes are related to the a-amplitudes by some
of the Egs. (15), (16) or (18), then there are, of course,
much more relalions. The parameter free ones are collected
in the Appendix in the first and last cases, /The ratl. -~
unconventional case of Bose-quarks in Egq. ﬁfo is left to
the interested reader as a simple exercise./

Quasi two-lhody decays of charmed mesons,

Similar relations can also be derived for quasi two-body
nonleptonic decays producing /in general/ two resonances in
the final state. In the present paper only vector mesons will
he considered hut the generalization te other kinds of
resonances is straightforward. The generating functions in
this case are /with cvupv =1,that is ideal mixing for the
vector-meson mixing angle/;

oo
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G(rr)= Kg* (o, + (—:N) + K xt (a,,+ _vr)"?.?."d(" - &w)*
Kdo ol ( ,_?;_ +Kwa'(8,+_ 4_}( 7{:%‘ 2‘)
yKb byt K 15k, )t K70 {a,,+&w)+
+’Z4o?°—'{i( v w)*K”wﬁ(gv*' ) —“(P v )
G- Rt (s )+ Koo (a0 ) ¢ RG fanr bv);
G- RK (!%v,+avp)+r<‘°'< (6, Bn) +'x 5 @)y
Pt (Qyp- arv)+ Klogg (%*%)+?2¢f@,*ﬁw2“>)+
s da, + o 7 ‘g’ (a,v+aw+-a.rv)+ RAOKA* 1 4 a,w) 4
g»uo{"avv + Q 4)(1VV .

/31/

For the ratios of the 8 vector-vector decays there are again
3 complex parameters, wheareas for the ratio of 18
pseudoscalar-vector decays there are § complex parameters.
In the case of indecpendent b- and a-type amplitudes the
following parameter-free relations hola:

F(rl o' =0 |
M (Fo=" 9) QST o
T (Firgtn ) QlEmgtr /32/

The parameter free relations in the case of Eq. (15) or Eq.(l&)
are also listed in the Appendix.
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IV. Three-budy decoys,

For three-body decays it would be in principle possible to
compare the probability distributionsin the Dalitz-plot,

but the direct comparison of decay widths is not possible due
to the differences in the Dalitz-plot shapes resulting from

the SU(S)—breaking mass differences. A possibility for the
estimate of decay width ratios is to approximate the amplitudes
hy constant /average/ values. In this case only the ratios of
the Dalitz-plot areas matter. This approximation will be used
in the present Section.

K—=»3% decays,

In the case of K—» 3% decay SU(3) is reduced to SU(2)/isospin /.
The relations following from Eqs.(i0,23,2q) are given by the
generating functions like for K— 23U decays in Eq.(ZS):

G(K+)- (@, + &‘_4 Qz,) (ji’lf*ﬂoﬂ" + 1(’")1'1\'_)

G ( KL).:._ (/&oa'— &4L+ 814) (%.1(.’(.1‘0 + 1‘(’;('7[-) .

To obtain the decay widths from here /for constant amplitudes/
the substitution in Eq. @ﬁ) has to be performed. Q is now
the relativistic phase-space integral /equal to the area

of the Dalitz-plot/:

Ny

gl ™) [z 2 1)

VUV

4"“ d.j?("d) /31,/
.d[1r10 £;!4 .iZEE;?zzg; .




poo—-

— 19 -

/p is the four-momentum of the decaying particle./

There are 2 relations following from Eqgs. (5'5,‘..'6), namely

Mk Thxn°) ?(K:7(+J(.7t°) ! _o
—_— =t o =0305 0.309%0.04

M (k5 nbatx) Q(K—?n*jr"f) 4 { } )
V(\(L—-v’lto‘)th‘no) . Q(K—fn""\oﬂo)

2
= 2 =483 {1#5ro0%].
(K> T TTX) W 2 }

/35/
These are expressing the absence of 1=% components in the

final state, The measured ratios /in curly brackets/ are in
excellent agreement with the theoretical values.

Similarly to the K~—»2% case, the approximately valiad

+ - btk
P (Kt ) q(K’rJt:rrth_)Qz 162 {1.91x004}
Tq(Kl-oﬁlqﬂ?7f) §>“ﬁ}iﬂ_xin)

/36/

follows for Bose-quarks from Eq.(No or,in the case of
colourless fermion quarks, if only the annihilation amplitude
6-3= t:l_»3 is present,

Three-hody decays of the charmed mesons.

The generati~-~ functions for three-hody nonleptonic decays
of the D-an. F-mesons can be obtained from Eqs.(iO,lQ):
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The amplitudes a..)&'rn)e‘ appearing here are related
to the ones for K-meson decay in Ey. (3‘5) by SU(h) . It is
important to note that the channels are understood here as

the "direct"” three-hody ones, without the resonances /quasi
two-hody channels/,
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In the genaral case (b,-a) the following parameter-free
relations follow from Eqs. 37,26 :

ro ) | @0-Rx) 4 _qz49
FO—kxx)  QGtrKmtat) 4

T'(F > xnon®) Q(F—,Jt"')i 0452
M(Fotr) o (Frxr'x) 4

oo Kn?) _ o0 K 7c'n) 4 - 0449,
oK) o(d 7 K7* 7)) 4

FIFL k'R | oF T KB 2456
F(D-»¥=7"y) o0»F " z) /38/

Calculating the Dalitz:plot area the masses 4"3p =1863 MeV,
Myt = 1868 MeV, My  =2030 MeV [3-,’:’] were used.
These relations are expected to hold somewhat less rigurously
than the corresponding ones for K—» 3X decays (‘55). The
reasons are that SU(3) can be broken more semfously than SU(2)
/the mass differences are more important/, therefore the
approximation of the amplitudes by constants /in the larger
Dalitz-plot area/ is less good and finally the subtraction

of the resonance /quasi two-body/ contributions is by no
means unambiguous.

The parameter-free relations following from Eqs.(lS) or (18)
expressing the b-type amplitudes by the a-type ones are
also given in the Appendix.



Semileptonic decays,

The Sll(ﬁ-prnpertips of the semileptonic decays are given
by Eq. OJ . In the case of a single hadron /in general a
resonance/ we have a thrre-body decay and the approximation
of constant amplitudes /here constant k%;,:pls and ;}3
rform-factors/ may be taken in order to get an estimate for

the branching ratios,

In the generating functions onty 1 or 2 pseudoscalar mesons
will be written out. The resonance nonets can, of course, also
be included without further ado. The results are:

C (K= fa{f—(% e g )Cz_}

c\

G K)= (lt'l"t-* (—3115*)_‘_1_{ j
C(D),Z-JL{KC +[K-:c +|(7c l(hr-;l( ]c}
Q1) 3, {Fe e [Kmt Rl “Bra Ry s W

Rk G {75 -1 (3 s -mAE odeineed].

/39/
For k;s decay /taking the average of electronic and
munnic widths/ if follows:
T o
MK aol) QU xehgrglkmhts)
/n0/

in excellent agreement with the experimental number /in curly
hrackets/, The corresponding relations for the charmed mesons are:




>, KN PPN
.P_(‘,D___T\:)_ - Qﬁi _‘i *_!:)_ -0999
TSR oK) >
+
MFS ) Wyt
TR CETEN

= O. 'th 1

Y'(FLV(LZL\, :_LQ(Ft’?lt’z) _ o180
TRy 2Ty I/

Note that the hadronic Final state in n* semi leptonic decay
is ohtained from D° semileptonie decay by an isospin
transformation, therefore the fnll semileptonic widths of
n* and D° are eanal /by SUC%-ﬂynmetry/.

From Eq.(ﬂ% it is straightforward (o obtain the relations

for resonance and for two psendoscalar meson production, too,

V. Conclusions.,

in the present paper the derivation of the Sﬂ(ﬂ-relﬂtions
for mesonic weak decays is hased on the following assumptions:

1/ the validity of the GIM - current for weak interactions
B{] /only the dominant parts, j.e, the cos© term
(24
for semileptonic and the cos~© term for non-

leptonic decays, were considerved/;

i SU(%)-symmvmry for amplitudes and /osaal/ SU(%)-breaking
phase space Tactors; /for three-hbody decays the

estimates of branching ratios were given for constant

amplitudes on the Dalitz-piot/;

ivi/ the validity of SU(%)-unupl!nu rinle analogous to the
0Zt=-rule in strong deenys []%} . which ean be eastly

Incorporated into a quite genecal class of quark

models [l';-l',ﬂ .
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The actual framework explicitly considered is the quark
model with phenomenological quark confinement E?-lé]
applied previously te calculate form factors and the strong
decays of resonances., In this model the -‘uplest quark
diagrams /"direct terms"/ for the weak decays [?0] have the
same SU(3)-structure as a large class of graphs containing
also internal hadron lines [“indirect terms” including

the pole contributiong] and/or internal gluon lines. In

the spirit of the 0ZI-rule this class of diagrams dominates,
determining the SU(3) coupling scheme among the hadrons in
the final state.

The internal symmetry relations obtained were tested first
for the well known case of K-meson decays, The two relations
in Eq.(%S) for K-»37%¢ are very well satisfied. The amazing
accuracy is due to the fact that only isospin symmetry is
involved in these relations, and besides, the phase space
for K-*3X is rather small, therefore the constant amplitude
approximation is good. Altkough not surprising /as they
express the absence of I=3 in the final state/, these
relations also shed new lignt on the duark rule generally
known as OZI-rule. /In this respect note also the h(i4
relation given below which can be one of the best places

for checking the accuracy of this quark rule./

As far as the cheiried meson decays are concerned the experimental
verificatton of the relations in Eqs."50,32,38) would give
strong support to the first one among the above three assump-
tions /GIM-current/ as the SU(3) symmetry of hadron couplings

and the 0ZI-rule is well established,

A very interesting feature, in my opinion, is the possibility
to investigate the effects of quark colour in nonleptonic
decays. In general there are two sets of amplitudes /a-and
b-type/. For colourless quarks /or if coloured gluon exchange
is negligivle/ the two sets are connected by some of the



relations hlkq.OGJhJH).mev|wmhw051mmbm'nf
additional h’l'(?) —relations amons ponleptonic chamels /see
e.r. in the Appendix/. More genecrvally, the commeetion of the
a—and h=type ampl ., tudes depends on the Fiertz-transformation
properties of the effective enrrent x current nonleptonie
interaction and this gives a handle to investigate the colour

properties of the weak current,

It is interesting to note that the preliminary datia known

al present seem to indicate that D’—» K T * and o'— K°x”
oceur at roueshly the same rates, According to Eq.(:.")) this
means that neither b= -a /hoson-quarks/ nore the dominance
of the anmmihilation process ( Opp = L‘,r’:o) work for
D-meson decays. This is in sharp contrast to what we learned
from K-meson decays. If more data will be available it will
ve very informative to know which part of the nonleptonic

amplitudes /if any/ is dominating.

In principle it is possible to extend the results of the present
paper also to multiparticle charnels,. The estimateshased on

the approximation of constant amplitudes may be very useful

in this case. As an example, the relation for |<14 decays
/obtained from Eq.(h) with constant amplitudes/ P?j:

k@to - tﬁ; -3
T2 9 0tn e 2y raseagg
M (kSrentetdy) K anie)

seems to work well within the experimental errors, /Q denotes
here the four-hody relativistic phase space integral./ Similar
relations hold also for charmed mesons., 1n general, also the
mul tiparticle production aspects of the woak decays /average
mul tiplicities, inclusive distributions ntu.[?é]/may be
fnvestigated along these lines,
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Ap_gendix .

In this appendix the additional parameter-free relations
resulting from the Fiertz-transformation properties of
nonleptonic current-current interaction are collected.
Two cases are considered:

i/ colourless /fermion/ quarks, when Eq.(l‘i) , 1.e.
‘ b=a holds;

i1i/ coloured quarks in the geometrodynamics approach [}8]
when Eq. (18), i.e. lv“sa is valid, Otherwise the
same notations and assumptions are made as in the text.

Two-body decays, b=a,

ML) oGan) _agy
M (Fo> k'R) @ FHrK'Y)
TELR) | eT=KD _omy
TiFewey)  oF=TT)
T(YXxD _ g_(D°~r7"ff') 5> - 0689
m o(F Sty 4

Two-body decays, b:%--a.

F-%Y) _ o0=%%) 1 _oogf
F(Fooxty) Q@Fteay) I
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T'(Ft-—"f’z‘) Q(pf_,,n*,z) 12




uats i two=hody decavs imolvineg vector mesond, bh=a.
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Quiars i two=hody decays involving vector mesons, bz 71“'
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Three-body decatvs, hz=a,
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Table 1,

Feyuman rules for first ovder weak interaction gquark graphs

/single quark loop for semileptonic and two gquark loops

for wonleptonic deeays/.

1/ Label the internal quark tine tour-mementa taking inle

acecant four-momentum conserval bon,

2/ Write a factor

(lx)z(mm;ﬂ (et 5&" %, dl'kz T f.- f‘ ‘L:i...}l

where

kJ = four-momentum of some of Lhe guark lines in the

pj = number of quark lines ‘quark 1oop

m o= numher of BS vertices fopen cireles/ with index
T;{uis = trace over Sﬂ(h) and Pirac—indices J= (1,2)

5/ For incoming mesons

D =MX (p,K+)

K+p
wheve M js the internal symmetry matrix of the meson and

%X is the momentum dependent. part of its BS wave-funetion,

h/ For outgoing mesons

P "_Mi(p,K—g)

K-p

Y'v .
where M=M" an0 & are the conjogiate wave funetjons,

-
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5/
o—hR o -Mg-K7)

vhere Hq is the quark /effective/ mass matrix.

6/
- ST

& =R @8 -,y

This assures overall four-momentums conservation,
7/

o—e—o0 =~ [A
(TA)

for the local current operator @ (l"ﬁ) with Virac-part

T' and internal symmetry part A



Firnres.,

a) b)
Figure L. The leading semileptonic coupling for charm decay,
The intermediate vector bhoson coupline (u) is
equivalent at low energiex to the four-fermion

coupling (b),

Figure 2, The simplest /"direet”/ gquark graph contributing

to the semibeptonic decay of n°,
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u
Figure 3. Examples of indirect terms to semileptonic n° decay

/m is an internal hadron line/,

I

< u @ u
A wt
/....< N >@< ,
S d S d N
S d
) b)

Figure 4. The leading nonleptonic coupling for charm decay.

The four-fermion coupling can be given in two equivalent
forms /a and b/ connected hy a Fiertz-transformation.

n, hadrons (n,21)

n, hadrons (n,20)

Figure 5. "Exchange” quark graph for n° nonleptonic decay.
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