

SU7900181

Ю. Н. Днестровский, Д. П. Костомаров, С. Е. Лысенко

A14

Определение температуры ионов по спектру нейтралов перезарядки

Москва 1977

ОРДЕНА ЛЕНИНА ИНСТИТУТ АТОМНОЙ ЭНЕРГИИ им. И.В.КУРЧАТОВА

Ю.Н.Днестровский, Д.П.Костомаров, С.Е.Лысенко

ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ ИОНОВ ПО СПЕКТРУ НЕЙТРАЛОВ ПЕРЕЗАРЯДКИ

Москва 1977 Ключевые слова: токамак, ионная температура, нейтралы, перезарядка, рекомбинация.

В плотной плаэме токамака рекомбинация увеличивает плотность нейтрапов в центре плазменного инура. Это позволяет измерять ионную температуру по перезарядке. Найдены асимптотические формулы для вычисления температуры ионов в центре шнура. Разработаны алгоритмы восстановления профиля температуры по спектру нейтралов перезарядки.

О Институт атомной энергии им. И.В.Курчатова, 1977.

1. ВВЕДЕНИЕ

Измерение спектров нейтралов, выходящих из плазмы, для определения температуры ионов давно используется в эксперименте. Пока размеры установок и плотность плазмы: были невелики, истолкование спектров требовало лишь априорных представлений о локальном максвелловском распределении ионов по сечению шнура. Однако увеличение размеров и повышение плотности плазмы привели к тому, что шнур стал оптически плотным по отношению к процессам перезарядки нейтралов на ионах (σ_{cx} nq>1, σ_{cx} - сечение перезарядки, η - плотность плазмы, q - радиус шнура). В этом случае три новых физических эффекта осложнили истолкование спектров и определение температуры ионов:

 плотность нейтралов в центре шнура оказалась много меньшей (на 3-4 порядка), чем на периферии;

2) при большой оптической толщине шнура плотность нейтралов с центральной его части определяется рекомбинацией;

3) даже энергичные нейтралы с энергией Е ~ 5-10 кэВ испытывают несколько перезарядок при пролете от центра шнура до границы и выходят из плаэмы с измененной энергией.

В настоящей работе проведены расчеты плотности и спектра нейтралов с учетом этих эффектов. Получены асимптотические формулы для модельных задач (разд. 3) и приведены результаты численных расчетов для экспериментов на установках T-10 и "Алкатор" (разд. 4), а также описаны возможные алгоритмы обработки экспериментальных спектров.

З

2. ОСНОВНЫЕ СООТНОШЕНИЯ ДЛЯ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПЛОТНОСТИ НЕЙТРАЛОВ

В стационарном случае приближенное уравнение для функции распределения нейтралов в круглом цилиндре имеет вид [1]

$$\vec{v} \nabla f + s f = (s_{cx} N + s_r n) \varphi_i , \qquad (1)$$

где $\Psi_{i}(r, \overline{v}) = \phi_{i}$ нкция распределения нонов; $\int \Psi_{i} d^{3}v = 1$, n = n(r), N = N(r) – плотности плазмы и нейтралов; $s = s_{cx} + s_{e}$, $s_{cx} = \sigma_{cx}(v) v_{n}$, (2) $s_{e} = \sigma_{e} v_{e} n_{,}$ $s_{r} = \sigma_{r} v_{e} n$; σ_{cx} , σ_{e} и σ_{r} – сечения перезарядки, ионизации электронами и фоторекомбинации;

 v_e - тепловая скорость электронов. В уравнении (1) относительные скорости атомов и ионов $|v_{-}v_{i}|$ заменены на v = |v|. Возможность такой замены связана с тем, что скорость перезарядки $S_{cx} = \sigma_{cx}(v) \cdot v$ слабо меняется в интересующем нас диапазоне энергий $0.5 \le E \le 10$ кэВ.

В настоящей работе нас будет интересовать оптически толстая плазма по отношению к процессу перезарядки, когда

$$na\sigma_{cx}(v_i) > 1$$
⁽³⁾

(\mathcal{V}_{i} - тепловая скорость ионов). В этом случае хорошее приближение для плотности нейтралов можно получить, используя решение задачи для плоского слоя.

Будем считать, что плазма расположена в слое – $\mathbf{Q} \leq \mathbf{x} \leq \mathbf{Q}$, а плотность и скорость-падающих на плазму нейтралов у стенки ($\mathbf{x} = \pm \mathbf{Q}$) равны N_0 и \mathcal{V}_0 . Для определения плотности нейтралов примем, что [2]

$$\varphi_{i}(x,v) = \frac{1}{2v_{i}(x)} \left[\delta(v - v_{i}(x)) + \delta(v + v_{i}(x)) \right]$$
⁽⁴⁾

Нетрудно показать, что в этом случае плотность нейтралов в плазме удовлетворяет дифференциальному уравнению

$$N'' - \frac{s_{i}s_{e}}{v_{i}^{2}}N = 2N_{o}\left(\frac{s_{o}^{2}}{v_{o}^{2}} - \frac{s_{i}^{2}}{v_{i}^{2}}\right)ch\lambda_{o}(x) - \frac{s_{i}s_{r}}{v_{i}^{2}}n, \quad (5)$$

$$s_{i} = s(v_{i}), \ s_{o} = s(v_{o}), \ \lambda_{o}(x) = \frac{1}{v_{o}}\int_{a}^{x} s_{o} dx'.$$

Первый член в правой части (5) описывает влияние нейтралов, падающих со стенок камеры, второй - эффекты рекомбинации.

4

где

Учитывая (3) и используя соотношение Sr << Se << S, для решения уравнения (5) в ВКБ-приближении будем иметь

$$N = N_{i} ch \lambda (x) + \frac{s_{r}}{s_{e}} n, \qquad (6)$$

где $\lambda(x) = \int \sqrt{\frac{s_i s_e}{v_i}} dx'$. Постоянная N₁ может быть выражена через N₀. Приближенно N₀ = N₁ ch $\lambda(a)$. В дальнейшем мы будем считать, что решение (6) для плоской задачи пригодно и для цилиндрической задачи (1), если заменить x на радиальную координату r.

Вернемся теперь к уравнению (1). Введем декартовы координаты (**x**, **y**) с началом отсчета в центре шнура. Для частиц, выходящих параллельно оси **x** по лучу с фиксированной координатой **y**, функция распределения на поверхности **r** = **Q** имеет вид

$$\sqrt{a^2 + y^2}
 f(y,v) = \frac{1}{v} \int w(p,v) \Psi dx \quad (v = v_x > 0), \qquad (7)
 -\sqrt{a^2 - y^2}$$

где

$$w(\rho, v) = (s_{cx}N + s_r n)\varphi_i, \quad \rho = \sqrt{x^2 + y^2} \qquad (8)$$

 $(s_{cx}, s_{r}, N, n, \varphi_{i} - \phi_{yHKUHH} \text{ or } \rho),$ $\Psi = \Psi(x, \sqrt{a^{2} - y^{2}}, v) = \exp(\Omega(x, \sqrt{a^{2} - y^{2}}, v)),$ $\Omega(x, z, v) = \frac{1}{v} \int_{z}^{x} s(\rho') dx', \rho' = \sqrt{x'^{2} + y^{2}}.$ (9)

Замет им, что при Te ~ 1 кэВ Sr/Se= Sr/de-2.108.

Если оптическая толщина плазмы не слишком велика ($\bigcap \alpha \, \mathcal{S}_{CX}(\mathcal{V}_{L}) \sim 1$), то в условиях установок токамак ($\bigcap \sim 10^{14}$, $N_0 \sim 10^{10}$) эффектами рекомбинации в формулах (6) и (8) можно пренебречь. Кроме того, при $\bigcap \alpha \, \mathcal{S}_{CX} \sim 1$ функцик N(r)и $\Psi(\mathbf{x})$ не очень сильно меняются по сечению плазмы и поведение $\Psi(\rho, \mathcal{V})$ на пути интегрирования (7) определяется функцией $\Psi_{L}(\rho, \mathcal{V})$. В этом случае функция распределения (7) уже при небольших энергиях нейтралов ($\mathcal{V}/\mathcal{V}_{L}(0) \sim 1,5-2$) хор ошо передает функцию распределен ия ионов в центре плазмы.

Поток частиц в анализатор равен

где

$$F = \frac{d\dot{N}}{dE} = \frac{v^3 f}{2E} = \frac{f}{m} v f \quad (\text{vactual/cm}^3 B); \tag{11}$$

 $E = mv^2/2$, $\omega = S_{\alpha H}/\beta^2$, $S_{\alpha H}$ и S – площеди анализ етор а и видимой из анализатора части поверхност и плазмы, в расстояние от центра шнура до анализатора.

Для максвелловской функции

$$\varphi_{i}(r,v) = \frac{1}{\pi^{3/2} v_{i}^{3}(r)} \exp\left(-\frac{E}{T_{i}(r)}\right)$$
⁽¹²⁾

в случае тонкой плазмы имеем

$$T_{i}(x=0) \approx T_{i}^{0} = \left(\frac{\partial \ln F}{\partial E}\right)^{-1}$$
⁽¹³⁾

Формула (13) обычно используется при обработке спектров нейтралов в анализаторе. Однако в современных установках типа Т-10 или "Алкатор" оптическая толщина плазмы велика ($n\alpha\sigma_{cx}$ ~5-8), и приближение (13) перестает быть справедливым. При этом следует различать две области параметров. Если $\lambda_0 = n\alpha\sqrt{\sigma_{cx}\sigma_e} > 1$, но

$$\exp(\lambda_0) < 10^8 N_0 / n, \qquad (14)$$

то эффектами рекомбинации в (6) и (8) по-прежнему можно пренебречь. Если же

$$\exp(\lambda_{o}) > 10^{8} N_{o}/n, \qquad (15)$$

то в центральной части плазмы рекомбинация играет главную роль. В обоих случаях функция $W(\rho, v) \Psi$ имеет узкий максимум в промежуточной точке ρ_{max} между центром шнура и его периферией. Пользоваться формулой (13) при этом уже нельзя, и для определения температуры ионов в центре шнура по спектру (11) требуется более детальное изучение зависимости функции рас пределения f от энергии нейтралов. В следующем разделе будут получены некоторые асимптотические формулы для спектров, а затем приведены результаты численных расчетов. Заметим, что в недавно опубликованной работе $\begin{bmatrix} 3 \\ 3 \end{bmatrix}$ по асимптотике спектров используется грубая модель, не учитывающая слвиг максимума функции $W \Psi$ от центра плазмы.

3. АСИМЛТОТИЧЕСКИЕ ФОРМУЛЫ ДЛЯ ТЕМПЕРАТУРЫ ИОНОВ

Рассмотрим спектр нейтралов, выходящих по главному диаметру шнура (y = 0). Подставляя (6) в (7) – (8), получим

$$F = \frac{1}{m} v f(v) = \frac{1}{m} \int_{-\infty}^{\infty} (s_{cx} N + s_r n) \varphi_i \psi dx = N_1 J_1 + N_2 J_2,$$
⁽¹⁶⁾

где

$$J_{1} = \frac{1}{m} \int_{-\alpha}^{\alpha} s_{cx} ch \lambda(x) \varphi_{i} \Psi dx, \quad J_{2} = \frac{1}{m} \int_{-\alpha}^{\alpha} s_{c} \hat{n} \left(1 + \frac{s_{cx}}{s_{e}}\right) \varphi_{i} \Psi dx; \quad (17)$$

 $n = n_0 \hat{n}(x), n_0 = n(0), \hat{n}(0) = 1; \hat{n}(x)$ - безразмерная функция, описывающая пространственный профиль плотности плазмы.

Введем безразмерный параметр $\mathcal{E} = \mathcal{E} / \mathcal{T}_{\mathcal{L}}(\mathbf{0})$. Если $\mathcal{E} >> 1$, то интегралы (17) можно вычислять с помощью метода перевала.

Используя (9) и (12), будем иметь

$$J_{4} = \frac{1}{2} \int_{-\alpha}^{\alpha} \frac{S_{C}x}{m\pi^{3/2} v_{i}^{3}(x)} \exp(g_{4}(x, E)) dx,$$

$$J_{2} = \int_{-\alpha}^{\alpha} \frac{S_{F} \hat{n}}{m\pi^{3/2} v_{i}^{3}(x)} \left(1 + \frac{S_{C}x}{S_{e}}\right) \exp(g_{2}(x, E)) dx.$$
(18)

Зде сь

$$g_{2}(\mathbf{x}, \mathbf{E}) = -\mathbf{E}\tau(\mathbf{x}) - \sqrt{\frac{m}{2\mathbf{E}}} \int_{\mathbf{x}}^{\mathbf{x}} \mathbf{S}(\mathbf{x}') d\mathbf{x}',$$

$$g_{1} = g_{2} + \sqrt{\frac{m}{2}} \int_{\mathbf{x}}^{\mathbf{x}} \sqrt{\mathbf{S} \mathbf{S}_{e} \tau} d\mathbf{x}',$$

$$\tau = \tau(\mathbf{x}) = 1/T_{1}(\mathbf{x}) \quad \text{. Перевальные точки } \mathbf{x}_{1} = \mathbf{x}_{1}(\mathbf{E}) \quad \text{и } \mathbf{x}_{2} = \mathbf{x}_{2}(\mathbf{E}) \text{ опреде-$$

ляются уравнениями

$$\frac{\partial g_{1}}{\partial x} = \sqrt{\frac{m}{2}} \left(\frac{s}{\sqrt{E}} + \sqrt{s s_{e} \tau} \right) - E\tau' = 0, \quad \frac{\partial g_{2}}{\partial x} = \sqrt{\frac{m}{2} \frac{s}{\sqrt{E}}} - E\tau' = 0. \quad (20)$$

Тогда

$$J_{4} \approx \frac{s_{cx} exp(g_{4})}{m\sqrt{2\pi} v_{t}^{-3} \sqrt{-g_{4}^{*}}} \bigg|, \quad J_{2} \approx \frac{\sqrt{2} s_{r} h(1 + s_{cx}/s_{e})}{m \pi v_{t}^{-3} \sqrt{-g_{2}^{*}}} exp(g_{2}) \bigg| \qquad (21)$$

$$x = x_{4}(E) \qquad \qquad x = x_{2}(E).$$

Подставляя (21) в (16), получим выражение для спектра выходящих нейтралов. Рассмотрим модельную задачу. Пусть

$$T_{i}(x) = \frac{1}{\tau(x)} = T_{i}(0) (1 + \alpha^{2} z^{2})^{-1}, \quad n = \text{const} = n_{o}, \quad (z = x/\alpha),$$

$$\sigma_{cx} v = S_{cx} = \text{const} (z + 1, 2 \cdot 10^{-7} \text{ cm}^{3}/\text{c}), \quad \sigma_{e} v_{e} = S_{e} = \text{const} = \frac{1}{4} S_{cx}.$$
⁽²²⁾

Подставляя (22) в (20), получим

$$\begin{cases} \lambda_{1,2} = \frac{\chi_{1,2}}{\alpha} \approx \frac{\sqrt{\varepsilon_0}}{2 \, \lambda \varepsilon^{3/2}} \begin{cases} \nu \\ 1 \end{cases} \end{cases}$$
(23)

Здесь $\sqrt{\mathcal{E}_{c}} = SQ / \mathcal{V}_{c}(0)$, $\mathcal{V} = 1 + \sqrt{\mathcal{E}/5}$; верхняя строка в фигурной скобке (23) относнтся к индексу 1, а нижняя – к индексу 2. Подстановка (23) в (19)–(21) дает

$$J_{1,2} = C_{1,2} \exp(-\epsilon) u_{1,2}(\ell),$$
 (24)

где

$$C_{1} = \frac{s_{cx}}{m\sqrt{2\pi}v_{i}^{3}}\sqrt{\frac{\alpha}{2\alpha}}, \quad C_{2} = \frac{5\sqrt{2}s_{r}\hat{n}}{m\pi v_{i}^{3}}\sqrt{\frac{\alpha}{2\alpha}},$$

$$u_{1,2}(\varepsilon) = \frac{4}{\sqrt{\varepsilon}}\exp\left(-\sqrt{\frac{\varepsilon_{0}}{\varepsilon}} + \frac{\varepsilon_{0}}{4\alpha\varepsilon^{2}}\left\{\frac{v^{2}}{4}\right\}\right).$$
(25)

Наконец, выражение для спектра (16) будет иметь вид

$$F = \exp(-\varepsilon) \cdot u(\varepsilon), \qquad (26)$$

где

$$u = u(\varepsilon) = N_1 C_1 u_1 + n_0 C_2 u_2.$$
⁽²⁷⁾

Для вычисления "истинной" температуры в центре шнура T_i(0) по "измеренной" T_i (13) удобно ввести поправочный множитель

$$\Psi = \frac{T_{i}(0)}{T_{i}^{\circ}} = \frac{\partial \ln F / \partial E}{\partial \ln (F/u) / \partial E} = 1 - \frac{\partial \ln u}{\partial \varepsilon}$$
(28)

В случае (14), когда рекомбинация несущественна,

$$\Psi = 1 - \frac{\partial \ln u}{\partial \varepsilon} = 1 + \frac{1}{2\varepsilon} \left(1 - \sqrt{\frac{\varepsilon_0}{\varepsilon}} + \frac{\sqrt{2\varepsilon_0}}{\sqrt{\varepsilon}} - \frac{\sqrt{\varepsilon_0}}{\sqrt{\varepsilon}} - \frac{1}{\sqrt{\varepsilon}} \right). \tag{29}$$

В случае (15), когда рекомбинация в центральной части плазмы нграет главную роль,

$$\Psi = 1 - \frac{\partial ln u_2}{\partial \varepsilon} = 1 + \frac{1}{2\varepsilon} \left(1 - \sqrt{\frac{\varepsilon_0}{\varepsilon}} + \frac{\varepsilon_0}{\sigma \varepsilon^2} \right). \tag{30}$$

Заметим, что поправочный множитель Ψ может быть как большим, так и меньшим единицы. Падение сечения перезарядки σ_{cx} с увеличением энергии E приводит

к возрастанию доли горячих нейтралов в спектре и завышению температуры. Рост плотности нейтралов на периферии (6), наоборот, обогащает холодную часть спектра и занижает измеряемую температуру ионов.

На рисунках приведены кривые, иллострирующие полученные формулы. На рис. 1 нанесены распределения температуры $T_{L}(r)$ при $\alpha = 1, 2$ и 3. Рис. 2 описывает поведение поправочного множителя по формуле (29) в зависимости от энергии \mathcal{E} для установки T-4 со "средней" оптической толщиной $\sqrt{\mathcal{E}_0} \sim 5$. Здесь же пунктиром нанесе но положение точки j_{max} . Видно, что для острого профиля $T_L(r)$ ($\alpha =3$) поправка суще ственно меньше, чем для плоского ($\alpha = 1$). Если j_{max} лежит достаточно близко к центру плазмы, поправка невелика (при $j_{max} \leq 0,3$ поправка не превышает 10%).

4. ЧИСЛЕННЫЙ РАСЧЕТ ПОПРАВОЧНЫХ МНОЖИТЕЛЕЙ

В оптически плот ной плазме при не очень большой энергии нейтралов точка упох сдвигается к периферии плазмы и описание профиля ионной температуры формулой (22) становится неудовлетворит ельным. Использование других модельных профилей для Т; (r) приводит к трансцендентным уравнениям (20) и необходимости численного вычисления интегралов (17).

В настоящем разделе будем считать, что

$$T_{i}(\xi) = T_{i}(0) (1 - \xi^{2})^{\beta}, \quad n(\xi) = n_{o}(1 - \xi^{2})^{\delta}.$$
⁽³¹⁾

где $n_0 \sim \tilde{n}$ лотность плазмы в 10¹³ см⁻³. Для сравнения с профилями (22) график $T_i(\xi)$ при $\beta = 2$ нанесен на рис. 1 пунктиром. Сечения \mathcal{T}_{cx} и \mathcal{T}_e возьмем из экспериментов [4], а для скорости рекомбинации будем использовать приближенную формулу [5]:

$$\langle \sigma_r v_e \rangle = 1,27.10^{-13} \frac{z^{3/2}}{z+0.59} (cm^{3/c}), \quad z = \frac{13.6}{T_e}.$$
 (32)

Рис. 3 – 7 содержат результаты вычислений для установки T-10 (\mathfrak{a} = 36 см). Здесь приведены поправочные множители для плазмы с температурой $T_i(0) = T_e(0) = 800$ эВ при $\beta = \chi = 1.5$, $N_0 = 3.10^{10}$ см⁻³ в зависимости от энергии нейтралов Е (рис. 3) и от плотности плазмы (рис. 4). Пунктиром обозначены поправочные множители, полученные без учета рекомбинации. Сравнение кривых показывает, что рекомбинация начинает играть роль при переходе плотности плазмы через некоторое критическое значение $\mathfrak{n}_{Kp} \sim 8 \div 10.10^{13}$ см⁻³. При $\mathfrak{n} > \mathfrak{n}_{Kp}$ плотность нейтралов в центральной части шнура определяется рекомбинацией (второй член в выражении (6) больше первого).

Рис. 1. Распределения температуры для модельной задачи

Рис. 2. Поправочный множитель в зависимости от энергии нейтралов для установки T-4

и здесь N(ξ) слабо зависит от ξ . Размеры области, в которой N(ξ) \approx Const, возрастают с ростом плотности плазмы. Все это хорошо видно на рис. 5, где приведены профили плотности нейтралов для двух значений плотности плазмы $\mathcal{N} = 10$ и 20. Пунктиром обозначены результаты расчетов без учета рекомбинации.

При уплощении профиля $T_i(\xi)$ или снижении температуры $T_i(0)$ поправка Ψ возрастает, однако эти зависимости являются более слабыми, чем зависимости от плотности плазмы и энергии нейтралов.

Рис. 6. Распределение подынтегральной функции по радиусу при разных энергиях нейтралов

Поведение подынтегральной функции W для различных энергий E = 1,9; 5,1 и 9,1 кэВ изображено в логарифмическом масштабе на рис. 6. Пунктирные кривые рассчитаны без учета рекомбинации. Здесь n = 10, $\beta = \delta' = 1,5$. В этих условиях ширина максимума почти постоянна $\Delta \rbrace \sim 0,25$, а положение точки \rbrace_{max} хорошо следует зависимости $\rbrace_{max} \frac{1}{\sqrt{\varepsilon}}$ в отличие от формулы (23), справедливой для мсдельного профиля (22). Учет рекомбинации сдвигает \rbrace_{max} к центру плаз мы и уменьшает величину поправки Ψ (см. рис. 3-4).

При сравнении результатов расчетов с экспериментом и выяснении роли рекомбинации представляет интерес абсолютная величина потоков частиц, выходящих из плазмы. На рис. 7 приведены зависимости функции F = dN/dE (11) от плотности плазмы при энергиях E = 1.5; 5.5 и 9.5 кэВ. Здесь же нанесена кривая для плотности нейтралов в центре N (0). Температура ионов в центре принята равной $T_i(0) = 800$ эВ, плотность падающих ка плазму нейтралов и их температура равны $N_0 = 3.10^{10}$ см⁻³, $T_N(4) = 2$ эВ.

Поведение всех кривых при $n < n_{KP}$ и $n > n_{KP}$ суще ственно разли ся. В област и $n < n_{KP}$ рекомбинация играет слабую роль, и функции F и N (ц экспоненциально спадают с увеличением плотност и плазмы. При $n > n_{KP}$ плотность нейтралов в центре шнура слабо (линейно) зависит от плотности плазмы. Поведение кривых без учет а рекомбинации показано на рис. 7 пунктиром.

Заметим, что до недавнего времени возможность пассивной диагностики ионной температуры по спектру нейтралов перезарядки в оптически толстых системах казалась весьма проблемат ичной. Ожидалось, что потоки горячих нейтралов в анализатор

Рис. 7. Плотность нейтралов в центре и выходящий поток нейтралов в зависимости от плотности плазмы для

установки Т-10

будут слишком малы. Однако недавно проседенные измерения спектров на установке "Алкатор" при плотности 🃭 🗸 50 🚺 указывают на эначительную величину этих потоков. Одной из причин этого эффекта, по-видимому, является рекомбинация. На рис. 8 приведены зависимости dN/dE и N(0) от плотности плазмы для установки "Алкатор" ($\alpha = 10$ см) при $T_{i}(0) = 700 \ B$, $\alpha = \beta = 2$, $N_{0} = 4.10^{10} \ CM^{-3}$. Видно, что, начиная с плотностей 0_{кр} ~ 20÷30, рекомбинация играет определяющую роль. Она объясняет, в частности, наблюдающийся медленный спад потоков нейтралов при увеличении плотности плазмы. В эксперименте при росте плотности от n = 10 до **п.** = 60 абсолютная величина потока выходящих нейтралов с энергией 2 кэВ падала в 50 раз. Согласно рис. 8, при учете рекомбинации поток должен упасть примерно в 30 раз. При отбрасывании рекомбинации (пунктирная кривая, рис.8) расчетные потоки (при том же изменении плотности плазмы) падают на 2,5 порядка. Для установки "Алкатор", как и для установки Т-10, учет рекомбинации существенно уменьшает поправку для вычисления температуры по измеренному спектру. На рис. 9 приведены зависимости поправочного множ ителя Ψ от энергии нейтралов для этой установки. При расчете предполагалось, что температуры ионов и электронов при изменении плотности не меняются ($T_i = T_e = 800$ эВ, $\beta = \delta = 1,5$). Пунктиром обозначены кривыс, полученные без учет а рекомбинации. Замет им, однако, что рост плот ности плазмы приводит к падению температуры электронов и возрастанию температуры ионов.

На рис. 10 пунктирные кривые для $T_e(0), T_i(0)$ и T_E получены с помощью моделирования энергобаланса плазмы [2]. По оск абсцисс отложена плотность плазмы 🗛 о. Здесь же приведены поправочные множители 🦞 при энергии нейтралов

Рис. 9. Поправочный множитель в зависимости от плотности плазмы для установки "Алкат ор"

E = 2 и 5 кэВ (сплошные кривые). Видно, что в широкой полосе параметров поправка к температуре ионов составляет 80 и 15% соответственно.

5. ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ СПЕКТРОВ

До сих пор мы рассматривали прямую задачу определения спектра выходящих нейтралов по задачным пространственным распределениям плотности плазмы и нейтралов и температуры ионов и электронов. В настоящем разделе об судим постановку и методы решения обратных задач определения пар аметров плазмы по спект ру выходящих нейтралов.

5.1. Рассмотрим сначала задачу в следующей постановке. Пусть извест ны распределен из плотности плазмы и температуры электронов по радну су n(r) и $T_e(r)$, а плот ность нейтралов можно описать формулой (6). Требует ся определить распределение ионной температуры по раднусу $T_i(r)$ по спектру нейтралов, выходящих по главному диаметру шнура. С математической точки зрения эта задача заключается в решении нелинейного интегрального уравнения первого рода (16), в котором F является известной функцией энергии F = F(E). Мы обсудим ее решение в случае, когда интегралы (18) можно вычислять по методу перевала (21).

Предположим сначала, что рекомбинационный член мал для всего сечени. плазменного шнура и основной вклад в формулу (16) дает интеграл **J**₁ :

$$F(E) = \frac{1}{m} N_1 J_1$$
 (33)

Здесь интеграл **J** определяется формулами (19)-(21). Он содержит функцию $\mathcal{T}(\mathbf{x}) = i/\mathcal{T}_{i}(\mathbf{x})$ подлежащую определению. Одним из уравнений для функции $\mathcal{T}(\mathbf{x})$ является соотношение (20), определяющее перевальную точку $\mathbf{x}_{4} = \mathbf{x}_{4}(E)$:

$$\frac{\partial g_{\dagger}(x,E)}{\partial x} = \sqrt{\frac{m}{2}} \left(\frac{s(x)}{\sqrt{E}} + \sqrt{s(x)s_e(x)\tau(x)} \right) - E\tau'(x) = 0 .$$
(34)

Прологарифмируем равенство (33) с учетом (19) и (21)

$$G_{1}(E) = g_{1}(x_{1}(E), E) = \ln F(E) + \ln \frac{\sqrt{2\pi m v_{i}^{3} \sqrt{-g_{1}}}}{N_{1} s_{cx}}$$
(35)

и затем продиференцируем его по Е. После этого, согласно (34), будем иметь

$$G'_{1}(E) = \frac{\partial g_{1}(x, E)}{\partial E} = -\mathcal{T}(x) + \frac{\sqrt{m}}{2\sqrt{2}E^{3/2}} \int_{x}^{u} S(x') dx'.$$
⁽³⁶⁾

С другой стороны, если в формуле (35) из второго (неокспоненциального) члена оставить лишь главную часть, явно зависящую от E $(ln(\sqrt{-g_1^{*}}/S_{cx}) \approx ln(\sqrt{E}/S_{cx}))$,

то после дифференцирования будем иметь

$$\mathbf{S}_{i}(\mathbf{E}) = \frac{\mathbf{d}}{\mathbf{d}\mathbf{E}} \ln\left(\mathbf{F}(\mathbf{E}) \frac{\sqrt{\mathbf{E}}}{\mathbf{S}_{cx}}\right),$$
⁽³⁷⁾

где $S_{cx} = \sigma_{cx}(v) \cdot v$. В результате получаем

$$\tau = G'_{i}(E) + \frac{\sqrt{m}}{2\sqrt{2}E^{3/2}} \int_{x}^{\infty} s(x') dx' \equiv h_{i}(x, E).$$
(38)

Это у равнение нужно рассматривать совмест но с уравнением (34), которому можно придать вид

$$\tau' = \sqrt{\frac{m}{2}} \left(\frac{s(x)}{E^{3/2}} + \frac{\sqrt{s(x)s_e(x)\tau(x)}}{E} \right) \equiv h_2(x, E).$$
⁽³⁹⁾

Обсудим полученную систему уравнений (3E) - (39). Если бы можно было явно выразить из уравнения (38) переменную \mathbf{E} через \mathbf{x} и \mathbf{T} и подставить в (39), то задача определения функции $\mathbf{T}(\mathbf{x})$ свелась бы к дифференциальному уравнению первого порядка. Однако аналитически это сделать нельзя, и систему (38)-(39) надо решать совместно числечными методами, определяя из нее две функции $\mathbf{T}(\mathbf{x})$ и $\mathbf{E}(\mathbf{x})$. где $\mathbf{E}(\mathbf{x})$ - функция, обратцая к $\mathbf{x}_{4}(\mathbf{E})$.

Для односначной разрешимости такой смешанной системы колечного и дифференциального уравнений необходимо задать начальное условие для функции $\mathcal{T}(\boldsymbol{x})$. Такое условие можно получить либо на границе, либо в центре плазменного шнура. Используя естественное соот ношение $\mathsf{T}_{\boldsymbol{L}}(\mathbf{Q})=0$, получим

$$\tau(\mathbf{x}) \rightarrow \infty$$
 при $\mathbf{x} \rightarrow \mathbf{0}$. (40)

Из (39) тогда следует, что $E(x) \rightarrow 0$ при $x \rightarrow \alpha$. Отсюда видно, что использование начального условия (40) требует знания спектра **F**(**E**) вплоть до весьма малых энергий.

Начальные условия в центре шнура можно получить, воспользовавшись условием аксиальной симметрии: **Т**⁽**x**)-0 при **x** - 0 . Используя (38) - (39), получим

$$\lim_{\infty \to 0} \mathbb{E}(\infty) = \infty \quad \mathcal{T}(0) = -\lim_{E \to \infty} \frac{d}{dE} \ln \left(F(E) \frac{VE}{S_{cx}} \right). \tag{41}$$

В реальных условиях верхняя граница измеряемого спектра лежит в области не очень больших энергий ($E_{max} T(0) \leq 10$), и для нахождения T(0) но формуле (41) с вычислением производной в точке $E \sim E_{max}$ требуется учет поправок Ψ , обсужда вших ся выше. Если начальные условия для системы (38)-(39) поставлены, лыбор алгоритма для ее числэнного интегрирования не представляет затруднений. Проиллюстрируем развитый метод обработ ки спектра модельным примером. Сначала решим прямую задачу. Пусть профиль температуры ионов имеет вид $T_i(x) = T_0(1-x^2)$, а параметры плазмы соответствуют экспериментам на установке T-10 (Q=35 см, N₀=5, водород). Будем также счит ать, что S=const, $S_e=const$ (22), $n(x)=n_0(1-x^2)$. Подставляя $T(x)=1/T_i(x)$ в (38)-(39) и решая трансцендентное уравне ние, найдем функции

$\mathsf{E}=\mathsf{E}(\mathbf{x}),\,\mathsf{F}=\mathsf{F}(\mathbf{x})=\mathsf{F}(\mathbf{x}(\mathsf{E}))=\widetilde{\mathsf{F}}(\mathsf{E}),\quad \widetilde{\mathsf{G}}_{i}^{i}=\frac{d}{d\,\mathsf{E}}\,\mathit{ln}\left(\widetilde{\mathsf{F}}\sqrt{\mathsf{E}}\right),$

где $\mathbf{x}(\mathbf{E})$ - функция, обратная к $\mathbf{E}(\mathbf{x})$. На рис. 11 сплошными линиями нанесены графики $T_{i}(\mathbf{x})$, $\mathbf{E}(\mathbf{x})$, $-G_{i}(\mathbf{E}(\mathbf{x}))$. Перейдем к решению обратной задачи. Аппроксимируем функцию $G_{i}(\mathbf{E})$ выражением

Рис. 11. Восстановление профиля

ионной температуры по спектру нейтралов – пунктирная кривая;

прямая задача - сплошные кривые

Такая аппроксимация в какой-то мере передает сглаживание экспериментальных спектров. Подставляя \hat{G}_{i} (E) вместо G_{i} в (38)-(39) и решая полученную систему, найдем $\hat{\tau}(x)$ и $\hat{E}(x)$. Кривые для $\hat{T}_{i}(x)=4/\hat{\tau}(x)$ и $\hat{E}(x)$ нанесены на рис. 11 пунктиром. Бидно, что в област и 0,2 < x < 0,6 различие между $T_{i}(x)$ и $\hat{T}_{i}(x)$ не превышает 10%.

Оценивая задачу (38)- (41) в целом, заметим, что она содержит два типа неопределенностей, связанных с экспериментальным спектром F (£):

а) спектр измеряется в ограниченной полосе энергий Emin < E < Emax, что делает неточным постановку начальных условий; б) для использования уравнения (38) нуж-

но вычислить производную от F(E), что ведет к дополнительным ошибкам.

Указанные неопределенности в постановке задачи (38) – (41) дают основания ожидать, что вариационная задача для разыскания приближенного решения задачи (38) – (41) может оказаться более устойчивой [7]. Для этого ее надо рассмотреть в достаточно уэком модельном классе функций, удовлетворяющих условиям (40) – (41).

Будем считать, что распределение температуры ионов в пространстве $T_{i}(r)$ определяется выражением

$$T_{i}(r) = \hat{T}_{i}(r) \equiv T_{o}\left(1 - \frac{r^{2}}{a^{2}}\right)^{\beta}, \quad \hat{\tau} = \frac{1}{\hat{T}_{i}}, \quad (42)$$

где **Т**₀ и β - параметры, подлежащие определению. Модельный профиль (42) достаточно хорошо передает поведение темпер*а*туры ионов в центральной части плазмы. На периферии отклонение профиля (42) от реального может быть значительным, однако восстановление реального профиля здесь затруднено, поскольку экспериментальный спектр **F**(**E**) обычно содержит мало информации об этой области.

Рассмотрим два возможных метода разыскания приближенного решения задачи (38)-(39) с использованием (42).

Подстановка (42) в (39) дает трансцендентное уравнение для функции $\mathcal{E}(\mathbf{x})$ при заданных значениях параметров T_0 и β . Это уравнение не содержит экспериментальной функции $\mathbf{F}(\mathbf{E})$ и всегда однозначно разрешимо. Введем функционал

$$W_{i}=W_{i}(T_{0},\beta)=\int_{0}^{q}dx\left[\hat{\tau}(x-h_{i}(x,E(x)))\right]^{2}.$$
(43)

Разыскивая минимум функционала W, как функции параметров To и β, мы найдем приближенное решение исходной задачи. Другой возможный метод решения заключается в следующем. Введем функционал

$$W_{2} = W_{2}(T_{0},\beta) = \int_{0}^{a} dx \int_{Emin}^{Emax} dE \left\{ \left[T(x) - h_{1}(x,E) \right]^{2} \left[T'(x) - h_{2}(x,E) \right]^{2} \right\} (44)$$

и будем искать значения параметров **Т**о, **В**, реализующие его минимум. В этом методе не надо решать трансцендентное уравнение, однако увеличение кратности интеграла может усложнить вычисления.

Рассмот рим теперь случай оптически более плотной плазмы, когда в цент ре шнура появляется область $0 < x < x_r$, в которой плотность нейтралов определяется рекомбинацией ($N \approx s_r \Omega / s_e$), и основной вклад в формулу (16) дает второй интеграл. Экспоненциальный характер возрастания плотности нейтралов в области $x > x_r$ позво ляет заключить, что

$$F(E) = \begin{cases} N_4 J_1 , e^{CRH} x_2(E) < x_r, \\ n_0 J_2 , e^{CRH} x_2(E) > x_r, \end{cases}$$

$$(45)$$

где J_1 и J_2 определяются формулами (21). Аналогично предыдущему для определения функции $\mathcal{T}(\mathbf{x})$ в области $0 < \mathbf{x} < \mathbf{x}_r$ получаем систему двух уравнений. Одним из них по-прежнему будет уравнение (38), а второе уравнение принимает вид

$$\tau' = \sqrt{\frac{m}{2}} \frac{s(x)}{E^{3/2}} = h_3(x, E) \qquad (0 < x < x_r) . \tag{46}$$

В области $x_{r} < x < \alpha$ остается справедливой система (38) – (39). На границе раздела при $x = x_{r}$ решение $\mathcal{T}(x)$ должно сохранять непрерывность (хотя оно имеет в этой точке разрывную производную). Начальные условия в точке x = 0 разыскиваются описанным выше методом. Итак, е сли положение точки \boldsymbol{x}_{p} извест но, то профиль температуры ионов может быть спределен либо с помощью прямого решения системы (38)-(39), (46), либо с помощью привлечения приближенных методов типа (43) или (44). Главный вопрос заключается в том, откуда взять сведения о положении точки \boldsymbol{x}_{p} . Зде сь могут встретиться различные ситуации. Пусть, например, из эксперимента известна плотность нейтралов на периферии плазмы N_{0} . В этом случае формула (6) для плотности нейтралов приводит к следующему трансцендентному уравнению относительно \boldsymbol{x}_{p} :

$$\int_{x_{r}}^{u} \frac{ss_{e}}{v_{i}} dx = \ln\left(\frac{N_{o}s_{e}}{n s_{r}}\right)$$
(47)

Хотя уравнение (47) и содержит неизвестную функцию T_i (r) (че рез скорость ионов V_i), однако зависимость от нее слабая ($V_i \sim \sqrt{T_i}$), в то время как зависимость левой части уравнения (47) от x_r – линейная. Для уточнения положения x_r можно ис пользов ать ите рационные процедуры.

Если данные о плотности нейтралов от сутствуют, то нахождение точки \mathfrak{X}_{r} становится более неопредэленной задачей. С одной стороны, ясно, что вид f(E)зависит от положения \mathfrak{X}_{r} . Одна ко эта зависимость может быть слабой, поэтому обратная задача одновременного определения по f'(E) и температуры ионов $T_{i}(r)$. и положения точки \mathfrak{X}_{r} (фактически распределения нейтралов N(r)) может оказаться слишком неустойчивой для успешной практической реализации. В следующем разделе мы рассмотрим более общие алгоритмы, использующие дополнительную информацию о спектрах нейтралов. Следует окидать, что они будут более устойчивы.

5.2. В предыдущем разделе были изучены "локальные" методы решения обратных задач, основанные на вычислении интегралов J_4 и J_2 по методу перевала (21). Сейчас мы рассмотрим "интегральные" алгоритмы, не использующие приближенных формул (21).

Будем счит ать, что известны результаты измерений спектров нейтралов по различным лучам, параллельным главному диаметру шнура F_{exp} (y, E). Как и раньше, предположим также, что известны распределения плотности плазмы n(r) и температуры электронов $T_e(r)$ по раднусу. Подставляя (7) и (12) в (11), получим нелине йное интегральное урав нение относительно двух функций N(r) и $T_i(r)$ одного переменного с правой частью F_{exp} , зависящей от двух переменных. Вообще говоря, ин формации, содержащейся в функции F_{exp} (y, E), может оказаться достаточно для более или менее устойчивого определения N(r) и $T_i(r)$. Корректность задачи может быть улучшена, если имеется дополнительная информация об этих функциях. Для повышения устойчивости задачи ее следует сформулировать как вариа-

ционную и ввести достаточно узкий модельный класс функций $T_i(r)$ и N(r), в котором разыскивается решение.

Будем считать, что

$$N(r) = \hat{N}(r) \equiv N_1 \operatorname{ch} \lambda(r) + \frac{s_r}{s_e} n , \quad T_i(r) = \hat{T}_i(r) \equiv T_o \left(4 - \frac{r^2}{a^2} \right)^{\beta}$$
(48)

(см. формулы (6) и (31)). Введем функционал

$$W_{3} = W_{3}(T_{0}, \beta, N_{1}, A) = \int_{a}^{a} dy \int_{a}^{E_{max}} dE_{M_{1}}(y) \mathcal{H}_{2}(E) (AF - F_{exp})^{2}, \quad (49)$$

где

$$Va^{2}-y^{2}$$

F=F(y,E) = $\frac{4}{m}\int w(g,E) \Psi(x,\sqrt{a^{2}-y^{2}},E) dx$, (50)
 $-\sqrt{a^{2}-y^{2}}$

а функции W, Ψ , ρ определяются формулами (8), (9), (12), (48). Весовые функции M_1 и M_2 в (49) от ражают роль и надежность измерений F_{exp} при разных Ψ и E. Множитель A позволяет учесть неточности в абсолютной калибровке измерений спектров. Значения параметров A, T_0 , β и N_1 , для которых функционал (49) имеет минимум, естественно считать приближенным решением обратной задачи.

Удобно ввести обозначения

$$F = F_0, F_{exp} = F_1, \quad a_{ij} = \int dy \int dE M_1 M_2 F_1 F_j. \quad (51)$$

Функционал (49) квадратичен по **A**, поэтому его минимизация по этому параметру дает

$$A = \alpha_{01} / \alpha_{00} .$$
 (52)

Подставляя (52) в (49), получим

$$W_{3} = W_{3} \left(T_{0}, \beta, N_{1} \right) = a_{11} - a_{01}^{2} / a_{00} .$$
⁽⁵³⁾

Таким образом, обработка результатов эксперимента сводится к минимизации функционала (53) по трем параметрам. Если известна плотность нейтралов на периферии N_0 , то $N_1 = N_0 \exp(-\lambda(\alpha))$. В качестве начального условия для поиск а минимума можно использовать результаты разд. 3 и 4: $T_0 = T_c^0 \Psi$. В предельных случаях, когда рекомбинация не играет никакой роли (14) или играет главную роль в большей части сечения плазмы (15), в выражении (48) для N(r) остается одно слагаемое (первое или второе), и параметр N из функционала (53) вообще выпадает. Поиск минимума в этом случае существенно облегчается.

0. ЗАКЛЮЧЕНИЕ

В настоящей работе исследовано влияние различных факторов на слектр выходящих нейтралов в оптически "толстой" плазме. Вычисленные полравки к измеряемой ионной температуре оказались неожиданно малыми. В условиях современных токамаков при энергиях нейтралов $E \sim 8$ кэВ они составляют 10–15% даже для очень плотной плазмы ($\delta'_{CX}/\Omega \sim 10$). Эффект рекомбинации суще ственно увеличивает плотность нейтралов в центральных слоях плазмы. В связи с этим использование анализаторов спектров для определения ионной температуры оказывается перспективным и для больших строящихся и проектируемых установок. Предлагаемые алгоритмы обработки экспериментальных спектров позволяют учесть конечную оптическую толщину плазмы и использовать информацию, содержащуюся в малоэнергичной части спектра.

Авторы выражают признательность М.П.Петрову, обратившему их внимание на важность эффектов рекомблиации, а также Ю.А.Соколову и А.И.Кислякову за обсуждение экспериментов на установке "Алкатор".

Литература

- 1. Константинов О.Б., Перель Б.П. ЖТФ, 1960, т. 30, № 12, с. 1485.
- 2. Днестровский Ю.Н., Костомаров Д.П. Сб.: Вычислительные методы в физике плазмы, Дополнение. М., "Мир", 1974.

3. Mayer H.M. - IPP, 111/28, 1976.

- 4. Rehker S., Speth E. IPP, 2/217, 1974.
- 5. Гордеев Ю.С., Зиковьев А.Н., Петров М.П. Письма ЖЭТФ, 1977, т. 25, N. 4, с. 223-227.
- Alcator Group, VI Int. Conf. Plasma Phys. and Contr. Nucl. Fusion Res., IAEA, CN-35/A5, 1976.
- 7. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М., "Наука", 1974.

Редактор Л. И. Кирюхина

Технический редактор Н. И. Мазаева

Т-02876. 11.08.77. Формат 60 х90/8. Уч.-изд. л. 1,20 Тираж 180 экз. Заказ 1157. Цена 12 кол. ОНТИ.ИАЭ

12 коп.

--