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ABSTRACT

In a sheared magnetic field, turbulent diffusion of electrons in
the vicinity of a mode rational surface can eliminate the stabilizing
influence of nonresonant electrons and lead to an absolute instability
at small but finite wave amplitudes. As the turbulence grows, the

inverse electron Landau resonance is broadened in both velocity and

configuration space, and the convective shear damping due to ions is
-enhanced by turbulent spatial broadening of the mode until saturation
occurs.

1

The original work of Pearlstein and Berk indicated the existence

of an absolute universal instability of a confined plasma (Vp # 0) in

a sheared magnetic field. Recently, numerical integration of the exact
differential equation describing the radial structure of the drift wave
eigenmode showed the absence of an absolute instability, regardless of how

weak the shear or how large the poloidal wave number.z’3

The stability of
the universal mode in these improved treatments is due to the inclusion

of nonresonant, nonadiabatic electrons in the region about the mode
rational surface where k"(r) = [m - nq(r)]/Rq w/V1o+ Here, m and n

are pcloidal and toroidal mode numbers, respectively, q(r) = rBT/RBP is

the safety factor, w is the mode frequency, and Vie (2Te/me)1/2 is the
electron thermal velocity. Thus, instability might be recovered by an
effect altering the electron response in the region around the rational
surface.

In this paper it is shown that turbulent diffusion of electrons
across the rational surface, due to a combination of shear (ak”/ar =
kﬁ # 0) and random E X E fluctuations and/or stochastic magnetic per-

turbations, results in a finite amplitude-induced version of the
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absolute universal instability. Physically, the turbulent scattering of
electrons across the rational layer leads to an effective finite value
for k" which destroys the stabilizing influence of the nonresonant
electrons. At larger amplitudes, the electron growth is reduced and the
ion shear damping is enhanced by spatial broadening of the mode, yielding
nonlinear stabilization.

The turbulent diffusion process in a sheared magnetic field pro-
duces a resonance broadening mechanism for the electrons which is funda-
mentally different than the process, due to random E x E drifts alone,
in a shearless f1'e1d.4’5 With shear, stochastj; radial motion combines
with parallel electron streaming to induce random po1oid$1 motion. The
decorrelation frequency resulting from this random motion of electrons
in a sheared field can exceed the magnitude of the Zzeal part of the
Tinear eigenfrequency for Tow levels of turbulence.

The electron distribution function .for a turbulent plasma in a
sheared magnetic field is written f_ = ?; + ;e’ where ?é is the phase
averaged part of fe and ;e is the fluctuating response. The phase

averagéd distribution satisfies a quasilinear type of equation:
92 > = > - e
E t iin * v Fat N (v x vfe(Fe) /B
(1a)
+ |e|\1l<ﬁ - Vo afe/ae>= o,
where E = -Vp, € = 1/2 mevz, ; = E}B, and brackets denote the phase
average. The fluctuating part of fe satisfies the nonlinear drift

equation:
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Here, w,, = 1 n x VFe/(leIBaFe/ae) =V 2n @ = kg aFg/or(le| BAF,/3€) 1
is the electron diamagnetic frequency and ke = m/r is the poloidal
wave number. The effects of magnetic field fluctuations have been

neglected here, but will be mentioned later.

Integrating Eq. (1b) along perturbed electron trajectories yields
>

for the phase coherent part4 of }e =3 ;g(r)exp[—iwt + i1(mo - ng)l:
%
fo = -IEIQi aF /3¢ - i(w - w*e)|e|(3Fe/3€)RE¢: > (2)
where ¢ = T @E(r)exp[-imt + i(m® - n¢)] and the resonance operator is:
be_': = g”exp(im'r) <<p_|: [r(t)1exp[-imsa(t) + ind¢(r)

(3)

ikﬁv" éTGr(T')dT']> dr

where o' = © - k"v". The quantity in the phase average in Eq. (3)
—)
represents the nonlinear response to random E x B fluctuations, e.g.,

dér(t)/dt = -ve¢/B. Its role is to broaden the linear wave-particle

-1
c

time arising from the turbulent scattering of the electron orbit. The

resonance o - k"v“ & 0 over a width T_ , where e is the correlation

terms = §6(t) and 8¢(t) have been previously computed for a uniform

magnetic'f‘ie]d.q’5 The new term « kﬁfTGr is an additional change in 6 due

to nonlinear radial motion, dSe/dr = '(Wlqu)(a 2n q/r)sr(r). It gives



the dominant broadening in a sheared field. To show this, the phase

average in Eq. (3) is evaluated using a cumulant expansion:

R_,"‘ --_]_22 '
kQF X é expliw't 7 M<80°> - k"v") <(] srdr’ )2>](5(¢)dr (4a)

where

6(e) = [* —3C— expl-(r - )%/ (2ErE(ON 1) . (4b)

== /é'n <6r‘2( T)>

The average¢Qisp1acements appearing in Eq. (4) may be evaluated by sub-

stituting ;: from Eq. (2) into Eq. (la) and taking the 662 and Grz moments
of the resulting diffusion equation for ?;. This yields <692> = ZDeer/r2
and <6r2> = ZDrrT, where the diffusion tensor for electrostatic turbulence
is:
“+> -2 -> * >
D=8B .
%(n X Vop N X VRE¢-I:> (5)

The inclusion of finite B effects on the drift modes considered here

results in an enhanced radial diffusion coefficient due to magnetic

fluctuations:6
= 2
Drr H z <brk R> b-+> (6)

Noting <6r(t])6r(t2)>= <6r (|:t] -t2|)> =20..|t - t,|, Eq. (4) becomes:

R§¢3.= fde expliw'Tt - 't/'rco - (T/Tc)3]G(®) (7)

where r;a = ngee is the shearless decorrelation frequenc§,4

)2

-1
and Te

[(kﬁV" Drr/3]]/3 is the decorrelation frequency in a sheared magnetic

field, which vanishes in the absence of wave-particle energy transfer.

3, y-1,2/3

Note that & = TC/TCO A [LSDrr(keAr VTe) 1%, where LS = RqZ/(rq') and



Ar 2 k;]

is the radial mode width. For tokamaks & << 1, except
near the value of Drr required for saturation of short wavelength modes,
for which £ £ 1. Henceforth, terms of O{t) are neglected. For § < 1,
G(2) & o(r) + Dy T 82¢/8r2, representing turbulent broadening of ¢ over
a correlation length L = Jﬁ;;?;. This contrasts with the shearless
case where Arzl(ng']) nv 1 and G(9) = o(r) exp [vkinrrt] contributes
to the resonant wave particle energy transfer.

Using Eq. (7) to calculate the electron density perturbation,
assuming F; is a Maxwellian, and invoking the linear ion response (for

E. < 1) together with quasineutrality.yields the eigenmode equation:

22 - uBf g%§lj 6=0 . (8)
ax

1/2

In Eq. (8), x (r-ro)/pi, where o, = (Timi) /eB is the ion Larmor

radius, q(ro) m/n defines the location o of the rational surface, and
A=[1+<(1 - ro) - row*e/w]d'] contains the basic drift wave response.
Here, t = Te/Ti’ T, = In(b)exp(-b), and b = (kepi)z' The shear parameter

15 u = 1L /L) uag/u) [Tyt + uygfu)d 12, with L1 = =3 an n/or.

1}

The destabilizing e1éctron contributions are contained in o(x)

coz[(xe-+ixc)/x], where 9 = (w/w*e - Na d'], Xo = aw/w*e, Xe = 0 mc/w*e’
a=(1/2 1 me/mi)”2 LS/Ln’ Z is the plasma dispersion function, and w, =
[(h;vTe)ZDrr/3]]/3/r(4/3). To perform the velocity space integrals of Fe

in terms of the Z-function, a Lorentzian form for the resonance function was
chosen. The quantity d = (r0 - P])(r tuggfo) +1.24 (1 - ”/“*e)(“*e/wc)xi

includes both jon gyroradius and turbulent broadening effects. Eq. (8)



is valid provided (3 gn ro/ab)azlax2 << 1. In a sheared magnetic field,
the neglect of ion Landau damping in Eq. (8) requires (klir‘effv.ﬁ/m)2 <1,
where rocc = Ar + p. is the mode width ar = pill/ﬁl broadened by the
finite ion gyroradijus.

The turbulence enters the electron response function o(x) through
the effective collision frequency W However, turbulence does not
affect the electrons in the same way as a local (in real space) number
conserving collision operator, which is known to have a stabilizing in-

7 > .
Indeed, the E x B (or magnetic)

fluence on drift waves in slab geometry.
fluctuations scatter the particle orbits in real space, producing a tur-
bulent flux of electrons in the kinetic Eq. (1) for for

For We << Wy Eq. (8) reduces to the eigenvalue problem solved in
Refs. 2, 3. At small turbulence levels (which may be initially present,
for example, due to small amplitude tearing activity), it is possible to
achieve W, > w. For m/m*e s 1/3and bz 1, g is already comparab]é to
w for a turbulent diffusion coefficient nearly as small as the neoclassi-
cal value. Thus, the effects of turbulence are well illustrated in the
limit w/wc < 1. Then the Z-function in the electron response becomes
purely imaginary and there is no longer any nonresonant electron con-
tribution, which previously led to stabilization of the linear universal

mode in a quiescent p]asma.z’3

The destabilizing electron contribution to Eq. (8) can be treated
by perturbation theory3 (for Imw/Rew < 1), using the full electron Z-

function. The dispersion relation for the most unstable modes becomes
A+t Z(x,,x) =0 (9)

where I_ _ f’°¢§(x)[cx(x)/x]dx/go ¢gdx and ¢q(x) = exp(-iux?/2) is the
0



lowest order eigenmode corresponding to the propagation of

energy away from the rational surface' for x > |vii]. Treating

w /3x % 0 for |x| < |/ yields =, = 2igy/Tu HL-2i (xg + 1xc)/'1"u], where
H(z) = gwe'Zt(l + 1:2)']/2 dt. Th- branch Re/ip > 0 for Imy < 0 is chosen.

For relatively small values of w_ juw, 2 0.1, the figure shows that
with kepi 2 1.0 and moderate shear (LS/Ln = 16), the turbulence destabili-
zes the drift mode, with maximum growth rates Imw/Rew ~ 0.2. There is
good agreement between the numerical results using the shooting code
described in Ref. 2 (which predicted stability for w, = 0) and the
analytic dispersion relation in Eq. (9)., As the turbulence level in-
creases, the electron growth arising from Ze is weakened and finally
reduced to a value where shear damping, enhanced by turbulent broadening
of the mode, leads to stabilization. There is a narrow range of values
for v, 0.1 s W,/ Wg S 2, corresponding to a variation in D, over
three orders of magnitude, over which the nonlinear instability is
excited and finally saturates.

The value of wes and hence the turbulent diffusion coefficient,
required for saturation of this instability can be détermined by
solving Eq. (9) at marginal stability. As the turbulence grows, xc|¢ﬁ|
approaches unity (the mode width is limited to Ax 2 Xe by turbulent
broadening). In this limit, the approximate stability criterion becomes

(for b 2 1, corresponding to the modes most difficult to stabilize):

(m,p,e/mc)2 - ug (m*e/w)(Bﬂb3)”1/2 - 0.36 'ugxﬁ =0 , (10)



where AO = Ad and Mg = ud]/z. (Recall that X, =0 wc/w*e’ where a R 1
depends on the shear length,) There is also @ nonlinear increase in the fre-
quency determined by A, = 0.6 ugxi. In Eq. (10), the first term represents
broadened electron growth, the second is due to linear shear damping and

the last is enhanced shear damping resulting from the turbulent spatial
broadening of the mode which decreases the effective shear length [the

¢" term in G(¢), cf. Eq. (7)]. A stabilization mechanism similar to

this latter one has been computed for a Q-machine in Ref. 8. There, however,

TC/TCO >> 1, so that mode coupling in the {on kinetic equation was the

dominant roniinearity (with adiabatic electrons).

The maximum diffusion coefficient obtained from Eq. (10) occurs

for b = b, = (1 + t)3r'2(Ln/Ls)3(mi/me), where the nonlinear and linear

0
shear damping become comparable. Typically, bg/z s b}/z = (1 + T)'1 X
(LS/Ln), whzre b < b] is sufficient to neglect ion Landau damping in
Eq. (8). Also, the mode width Ax v o b]/2 2 1, which justifies the
use of the differential Eq. (8). The diffusion coefficient which

results from maximizing D, with respect to b is:
7/2 y3/2

6 L
_2x10 T S e 2 1
Dy =TT 1T (1 — f;') A cm/sec (m
n

with B in kg, Te in keV, and Ln in cm. The éssociated electron thermal

conduction coefficient is Kg = 3/2 Drr’ For the ISX-A discharge9 with
plateau regime electrons, where the main electron energy loss channel
might correspond to the effects considered here, Eq. (11) yields the
correct order of magnitude to account for electron heat transport out-

side the g = 1 surface.



Equations (5-6) and (11) can be used to estimate the fluctuation

Tevel required to stabi]izg these modes. If magnetic braiding is the

8

dominant stochastic mechanism, Eq. (6) indicates BZ/B2 N 1070 is suf-

10

ficient for stabilization. If E x B turbulence is dominant, Eq. (5)

yields the following result in the strong turbulence limit We 2wt

~ 2 i\ 3o
n 1 (] + T) Ln Ln

For typical ISX-A data, n/n % 0.04 is obtained from Eq. (12).

In conclusion, destabilization and saturation of the drift mode
in a sheared field have been shown to result from a resonance broaden-
ing mechanism that dominantly affects electrons. This contrasts with
previous turbulence theories in a shearless fie]d,4 where nonlinear ion
damping led to saturation and the electron dynamics were 1inear. Thus,

whereas recent theory5

indicates that for tokamak parameters, ion non-
linearity is not a viable saturation mechanism for electrostatic drift
modes, the present theory predicts saturation at modest fluctuation
levels.

We wish to thank Drs. D. J. Sigmar and J. D. Callen, and Prof.
T. H. Dupree for useful discussions. The numerical results were
computed by Drs. J. Whitson and Julius Smith.
| This research was sponsored in part by the Office of Fusion Energy
(ETM), U.S. Department of Energy under contract W-7405-eng-26 with the

Union Carbide Corporation and U.S. ERDA Grant No. EG-77-G-01-4108.



1.
2.

A n & W

10.

10

REFERENCES

L. D. Pearlstein and H. L. Berk, Phys. Rev. Lett. 23, 220 (196°).

K. T. Tsang, P. J. Catto, J. C. Whitson, and J. Smith, Phys. Rev.
Lett. 40, 327 (1978).

D. W. Ross and S. M. Mahajan, Phys. Rev. Lett. 40, 324 (1978).

T. H. Dupree, Phys. Fluids 10, 1049 (1967).

T. H. Dupree and D. J. Tetrault, Phys. Fluids 21, 425 (1978).

K. Molvig and S. P. Hirshman, MIT Plasma Fusion Center Research
Report PFC/RR-78-7 (1978); A. A. Galeev, Phys. Fluids 21, 1353 (1978);
J. A. Krommes, Princeton Plasma Physics Laboratory Report PPPL-1462,
(1978).

P. N. Guzdar, L. Chen, P. K. Kaw, and C. Oberman, Phys. Rev. Lett.

40, 1566 (1978).

G. Hasselberg, A. Rogister, and A. E1-Nadi, Phys. Fluids 20, 982 (1977).
M. Murakami et al., Plasma Confinement in the ISX-A Tokamak, paper
IAEA-CN-37-N-4, Innsbruck (1978).

J. D. Callen, Phys. Rev. Lett. 39, 1540 (1977); A. B. Rechester and

M. N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978); J. A. Krommes,

R. G. Kleva, and C. Oberman, Princeton Plasma Physics Laboratory

Report PPPL-1389 (1978); submitted to J. Plasma Phys.

~



Figure 1
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FIGURE CAPTION

Growth rate (normalized to real frequency) vs W,
(normalized to m*e) for T /T, = 1, Lg/L, = 16, and

various values of kepi’ obtained numerically (solid
1ine) and from analytic dispersion relation (dashed

Tine).
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