И Ф В Э ОП 78-7

В.И.Гаркуша, В.П.Карташев, В.И.Котов, Р.А.Рзаев, В.Л.Рыков, В.П.Сахаров

О ФОРМИРОВАНИИ ВЫСОКОИНТЕНСИВНЫХ НЕЙТРИННЫХ ПУЧКОВ СВЕРХВЫСОКИХ ЭНЕРГИЙ

E 16

507902204

Серпухов 1978

В. И. Гаркуша, В. П. Карташев, В. И. Котов, Р. А. Рзаев, В. Л. Рыков, В. П. Сахаров

О ФОРМИРОВАНИИ ВЫСОКОИНТЕНСИВНЫХ НЕЙТРИННЫХ ПУЧКОВ СВЕРХВЫСОКИХ ЭНЕРГИЙ

Аннотация

Гаркуша В.И., Карташев В.П., Котов В.И., Рзаев Р.А., Рыков В.Л., Сахаров В.П. О формировании высокоинтенсивных нейтрииных пучков сверхвысоких энергий. Серпухов, 1978. 11 стр. с рис. (ИФВЭ ОП 78-7). Библиогр. 7.

В работе рассмотрена для формирования пучков нейтрино (антинейтрино) сверхвысоких энергий фокусирующая система из литиевых линз с аксиально-симметричными полями наприженностью до 100 к.Э. Показано, что подобная система обеспечивает увеличение потока нейтрино (антинейтрино) через дотектор радиусом 1 м примерно в 2,5 раза и позволяет уменьшить интегральный поток фоновых частищ в пучке нейтрико до 2-3%, а в пучке антинейтрино до 10%.

Abstract

جالا المرجب المراجب والمتصود وورد والمراجب

Garkusha V.I., Kartashev V.P., Kotov V.I., Rzaev R.A., Rykov V.L., Sakharov V.P., On Forming Highintensity Neutrino Beams of Superhigh Energy. Serpukhov, 1978. p. 11. (IHEP 78-7). Refs. 7.

A focusing system made in lithium lenses with axially-symmetric fields of up to 100 kE has been considered in the paper to form superenergy neutrino (antineutrino) beams. It is shown that such a system provides increase of neutrino (antineutrino) flux through a detector with R 1 m 2.5 times and makes it possible to diminish the integral flux of background particles in neutrino beam down to 2-3% and in antineutrino beam: down to 10%. На современных ускорителях при формировании нейтрикных пучков в широком энергетическом интервале применяются либо магнитные горны, дополненные рефлекторами $^{/1-3/}$, либо параболические линзы $^{/4, 5/}$, обеспечивающие сепарацию по знаку заряда и фокусировку π' - и К-мезонов – родителей нейтрино. В области сверхвысоких энергий указанные фокусирующие системы представляются малоэффективными по ряду причин.

Во-первых, эти устройства не осуществляют фокусировку частиц в приосевой области, где располагается их конструктивная шейка, в пределах которой магнитное поле или отсутствует, или его воздействие на пучок пренебрежимо мало. При переходе к энергиям в несколько ТэВ доля *п*-и К-мезонов, приходящаяся на сечение шейки и не испытывающая фокусирующего действия, значительно возрастает. В частности, результатом этого является существенное увеличение примеси нейтрино в пучках антинейтрино и наоборот. Применение для уменьшения этой примеси специального поглотителя, расположенного между мишенью и фокусирующей системой, приводит к сильному ослаблечию интенсивности основного пучка.

Во-вторых, при столь большых энергиях и ожидаемых интенсивностях резко возрастает число событий в рабочем объеме детекторов, что осложняет их анализ и вызывает необходимость перехода от длительностей вывода протонного пучка на мишень в несколько микросекунд к значительно большим длительностям и соответствующему удлинению импульса тока фокусирующего устройства. При этом охлаждение таких тонкостенных обо-

лочек вращения, какими являются горны-рефлекторы и параболические линзы, превращается в сложную техническую проблему. Кроме того, возможность дальнейшего увеличения оптической силы таких систем путем их удлинения ограничивается заметным ухудшением прочностных свойств и ростом количества вещества на пути **К**-и *п*-мезонов.

В связи с этим приобретает актуальность поиск новых методов получения чистых нейтринных пучков сверхвысоких энергий. Одним из перспективных способов решения данной задачи может быть применение систем из литиевых линз, представляющих собой сплошные цилиндры, через которые пропускается ток с однородной плотностью. Такие линзы для целей формирования пучков позитронов, инжектируемых в накопители, были разработаны в ИЯФ СОАН СССР, причем результаты испытаний отдельных образцов показали возможность создания литиевых линз с магнитными полями на поверхности 100-300 к Э^{/6/}.

Среди фокусирующих систем из многих линз, если ограничиться протяженностью системы в пределах 10-15% от общей распадной базы и К-мезонов, как отмечалось в работе ^{/4/}, оптимальной является оптическая структура из трех объективов. Оптимизация параметров системы при заданной ее длине L производится в рассматриваемом диалазоне импульсов (Р_{МАКС}, Р_{МИН}) по минимуму функционала

$$MUH \quad \left(\int_{P_{MUH}}^{P_{MAKC}} \left(F_{x}^{2} + F_{y}^{2} \right) dp \right) \equiv F, \qquad (1)$$

где F_x , и F_y , – угловые огибающие пучка мезонов в поперечных направлениях. Если в распределениях вторичных частиц на мишени по координатам \mathbf{x}_o , \mathbf{y}_o , \mathbf{z}_o и углам \mathbf{x}'_o , \mathbf{y}'_o средние значения равны нулю, то для \mathbf{F}_x , \mathbf{F}_y , <u>судем иметь</u> $\mathbf{F}_{x',y'} = \sqrt{\left(m_{21}\sigma_1\right)^2 + \left(m_{22}\sigma_2\right)^2 + \left(m_{21}\sigma_2\sigma_3\right)^2}$, (2)

где σ_1 – дисперсия распределения по \mathbf{x}_o или \mathbf{y}_o ; σ_2 – по \mathbf{x}_o' или \mathbf{y}_o' ; σ_3 – по \mathbf{z}_o ; а \mathbf{m}_{ij} – элементы матрицы преобразования от мишени до точки наблюдения в горизонтальной или вертикальной плоскостях

4

соответственно. При относительно короткой длине фокусирующей системы L условие (1) обеспечивает на ее выходе минимальную угловую расходимость пучков *п* – и К-мезонов в широком диапазоне импульсов (р_{мин}, р_{макс}), что в результате приводит к максимальной концентрации нейтрино на детекторе.

Эффективность применения литиевых линэ рассмотрим на примере формирования нейтринного пучка с широким энергетическим спектром Р_{мин} ≈ 200-300 ГэВ/с, Р_{макс} = 1000-1200 ГэВ/с при выводе на мишень протонного пучка с энергией Е, = 1,5 ТэВ. Распадную базу примем равной 2000-3000 м, а протяженность фокусирующей системы 100-300 м. Возможный диапазон изменения радиусов линэ го можно определить принимая отношение толщины скин-слоя δ к f_0 больше 0,4 (в этом случае распределение поля в линзе не будет сильно отличаться от линейного). Отсюда при длительности полупериода импульса тока ~ 3-5 мс и соответственно $\delta \approx 1, 2-1, 5$ см, будем иметь $f_0 < 3$ см. В расчетах оптических сил линэ значения импульсных токов ограничим величинами 600-700 кА, а длины линз - уровнем потерь мезонов в веществе 🏑 25%, как это принято на действующих нейтринных каналах /1-5/. При этом с учетом поведения сечения поглощения частиц в интересующей нас области энергий суммарная длина литиевых линэ не должна превышать 35÷40см.

Результаты расчета фокусирующей системы отражены на рис. 1, где приведены огибающие пучка частиц и минимально возможные значения функционала (1) в зависимости от полной длины системы L. Так как с уменьшением угловой расходимости пучка частиц на выходе фокусирующей системы существенно возрастают апертуры линз, то приемлемым компромиссным решением будет выбор полной длины системы $L \simeq 250$ м с олтимальной геометрией размещения оптических элементов, указанной на рис. 2. Как следует из рис. 1, при L = 250 м размеры пучка частиц в третьей линзе составляют $\sim \pm 10$ см. В частности, в качестве такого элемента при условии решения вопроса охлаждения можно применять параболическую линзу длиной 100 см, по которой пропускается ток около 200 кА.

Ť

B (

The second s

Рис. 2. Принципиальная схема нейтринного канала,

Так как к этому моменту поперечные размеры пучка мезонов становятся большими, роль шейки не будет столь заметной.

Более простым представляется использование в качестве третьего объектива симметричного триплета из квадрупольных линз, близкого по своим фокусирующим свойствам к аксиально-симметричной линзе. Действительно, матрицу преобразования симметричного триплета можно представить в виде

$$\begin{pmatrix} 1 & \ell/(1 \pm \ell/f_1) \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \begin{pmatrix} 1 & \ell/(1 \pm \ell/f_1) \\ 0 & 1 \end{pmatrix},$$
(3)

где

$$1/f = (1/\ell) (1 \pm \ell/f_1) [2 - (1 \pm \ell/f_1)(2 \mp \ell/f_2)]; f_1 и f_2 - фокусные$$

расстояния крайних линэ и центральной линзы соответственно, а ℓ – расстояние между линзами. Верхний и нижний знаки в формулах относятся к двум взаимноперпендикулярным плоскостям. Из формулы (3) вытекает, что при $\ell/f_{1,2} <<1$ и $1/f_2 \simeq 2/f_1$ фокусные расстояния триплета одинаковы в обеих поперечных плоскостях и равны

$$\mathbf{f} \simeq \mathbf{f}_1^2 / 2\mathbf{l}.$$

Подобный триплет может состоять из линз с максимальными градиентами 1300 Э/см длиной 2м (крайние) и 4м (центральная) и апертурой 20 см.

Значения параметров, характеризующие первые две литкевые линзы фокусирующей системы, приведены в таблице.

	Линза №1	Линза №2
Длина, см	20	18
Радиус, см	1,4	2,8
Величина пропускаемого тока, кА	500	630
Максимальное поле на поверхности, кЭ	70	45
Сопротивление, мкОм	32,5	7,3
Энергия поля в объеме линз, кДж	1,25	1,8

Характеристики литиевых линз

Оценки показывают, что для питания литиевых линз можно использовать генераторы, формирующие тралециодальные импульсы тока длительностью 5-6 мс и плоской вершиной 2-3 мс при стабильности <u>+</u> 2 + 3%. Запасенная энергия в конденсаторной батарее такого генератора составит величину ~ 100 кДж, нагрев первой и второй линз за цикл приведет к повышению их температур на 160 и 20⁰С соответственно.

На рис. 3 для сравнения представлены угловые огибающие лучков частиц на выходе (в единицах угла входа) комбинированной системы (две

Рис. 4. Доля вторичных частии, сосредоточенных в заданном угловом интервале,

للمرد والمحجور المراجب والأقي بمتواطق والموجور ووالا الرائع المراج

литиевые линзы и триплет квадрупольных линз) и системы, целиком состоящей из аксиально-симметричных оптических элементов. Заметное различие в поведении кривых наблюдается для области больших значений импульсов частиц. Однако это обстоятельство несущественно сказывается на конечном результате.

Угол захвата вторичных частиц, определяемый режимами первых двух линз, практически постоянен для всего диапазона импульсов и составляет <u>+0</u>, 75 мрад. Поэтому эффективность захвата мезонов фокусирующей системой в замисимости от импульса будет определяться соответствующей кривой на рис.4, определяющей долю вторичных частиц, сосредоточенных в конусе с указанным угловым раствором. Для расчета кривых на рис.4 и нейтринных спектров использовалась функция распределения π - и Kмезонов по углам и импульсам, приведенная в работе $^{/7/}$.

Спектры нейтрино и антинейтрино на детекторе с радиусом 1м для геометрии канала, указанной на рис.2, даны на рис.5 и 6 соответственно. Из этих рисунков видно, что интегральные потоки нейтрино и антинейтрино при идеальной фокусировке *п* – и **К**-мезонов в области энергий выше 100 ГэВ примерно в четыре раза больше, чем без использования фокусирующей системы. Спектры нейтрино и антинейтрино при использовании комбинированной фокусирующей системы и системы из аксиально – симметричных оптических элементов практически совпадают во всем диапазоне импульсов, причем интегральный поток нейтрино и антинейтрино увеличивается в 2,5 раза.

Заметную разницу указанные фокусирующие системы дают в уровне фона: интегральный поток фоновых частиц при использовании комбинированной фокусирующей системы в 1,6 раза выше. Примесь антинейтрино в пучке нейтрино при использовании комбинированной фокусирующей системы составляет 2%, а примесь нейтрино в пучке антинейтрино – 9%. Этот уровень фона, как показывают оценки, можно уменьшить в среднем на 30%, используя мишень, через которую пропускается ток в несколько десятков килоампер.

۶ł

والمريب المراجع والمراجع والمراجع والمراجع والمنافع والمنتقو والمراجع والمروح والمراجع والمراجع والمراجع والمراجع

Рис. 5. Спектры нейтрино на детекторе с радиусом 1 м: 1 - идеальная фокусировка, 2 - комбинированиая фокусирующия истема, 3 - без фокусировки, 4 - примесь антинейтрино при использования комбинированной фокусирующей системы, 5 - примесь антинейтрино при использования лксиально - симметричной фокусирующей системы,

Рис. 6. Спектры антинейтрино на детекторе с радиусом 1 м: 1 – идеальнея фокусировка, 2 – комбинированная фокусирующая система, 3 – без фокусировки, 4 – примесь нейтрино при использовании комбинированной фокусирующей системы, 5 – примесь нейтрино при использовании аксиально - симметричной фокусирующей системы.

В заключение авторы выражают свою признательность Г.И.Сильвестрову и Б.Ф.Беянову за обсуждение технических р'эможностей создания литиевых линз с требуемь ми характеристиками и А.И. Мухину за полезные замечания при прочтении рукописи работы.

ЛИТЕРАТУРА

- S. van der Meer. CERN Report 61-7, 1961; A.Asner, Ch. Iselin. CERN 65-17, 1965; J.C.Dusseux, J.B.M.Pattison, G.Liebarth.CERN-TCD/Int. 72-11, 1972.
- 2. W.A.Venus, H.W.Wachsmuth.TC-L/Int. 73-2, RL-73-137 (1973).
- 3. F.A.Nezrick. Nuclear Science, NS-22, N:3,1479 (1975).
- 4. В.И.Воронов, И. А. Данильченко, Р.А.Рзаев, А.В.Самойлов. Препринт ИФВЭ ОП - 70 - 93, Серпухов, 1970; Nucl. Instr. Meth., <u>105</u>, 147 (1972).
- 5. Д.Г.Баратов, Н.З.Бикбулатов, В.В.Васильев и др. Препринт ИФВЭ 76-87, Серпухов, 1976; ЖТФ, <u>47</u>, 1007 (1977).
- Б.Ф.Баянсв, Г.И.Сильвестров. Препринт ИЯФ 76-41, Новосибирск, 1976; Т.А.Всеволожская, М.А.Любимова, Г.И.Сильвестров. ЖТФ, <u>45</u>, 2494 (1975).
- 7. R.J.Stefanski, H.B.White, FN-292, Batavia, 1976.

t

Рукопись поступила в издательскую группу 18 января 1978 года.

Цена 6 кол.

О – Институт физики высоких энергий, 1978.
Издательская группа И Ф В Э
Заказ 169. Тираж 270. 0,5 уч.-изд.л. Т-04623.
Январь 1978. Редактор Н.В. Ежела.