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ABSTRACT :

We try to abstract some general features from symmetry
models for the Yukawa-~interactions of quarks. We demand that
the successful relation tgzac = d/s (3c is the Cabibbo~-angle,
d and s are the masses of the down-quark and the strange-
quark) is incorporated into a model for ¢ flavours ( u,d,c,s,
t,b), arranged in three left-handed doublets. If the CP-
violation is determined by the generalize:i GIM-matrix with

a "naturally" large phase, we are led to the "prediction"

9 £t % 13 Gav for the mass of ﬁhe top-quark. The new
mixing angles turn out to be very small { £ -\9‘, /40 ).

In anticipation of this result we develop also a simple
rhenomenology, which at small angles may be more useful than

the standard one by Kobayashi and Maskawa.
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1. INTRODUCTION

The least artificial explanation of the narrow upsilon ‘ ile
L resonance [1] suggests the existence of a further quark with qua
; new flavour. This new guark could be the "bottom® in an n a
¥
fj additional doublet (t',b'), besides the usual left-handed han
{ ones:
£
i
| that é )
: = ) s y oo {(1.1)
~angle, Y (d) { \ t
; qc A ¥ "{ L
e- L, L L
g
d,c,s, % .
¢ In (1.1) the quark states are the "bare" ones. The standard sta
ﬁ mechanism to create masses for the "dressed” quarks of a : of
ith :
%‘ unified theory of real and electromagnetic interactions is the tion
nl' 1%
r! introduction of Yukawa interactions q._ }.,4; gr , which .
l: respect the gauge~invariance. In the most general case he¢ case
; is a matrix allowing for different cocuplings h to different diff
I .
ﬂtl;l scalar fields 4) . Suitable self-interactions of the the
than i
L ‘P - fields trigger spontaneous breaking of the gauge symmetry ! auge
N ;
; with vacuum expectation values <+> . As a consequence f ns
\ the Lagrangian contains mass terms Ull(") qt and q._a J.[@) i d
i
? with matrices wt“’ and LM,W nixing the up-quarks and | ark
£ ]
3 down-quarks separately. They are diagonalized by four : ur
18
5 independent unitary matrices
i w )
{5 wm Lm U - -
1 : ’ (1.2)
@ !
< )
b w m® Ue = ( "

.
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w © @ i
q(’i] = \.L(:)UL(;) ) q('i) = LL(Ii) d'cﬁ’ ) (1.3)
where the squares of W (= ue ‘e,‘-)l“*; = d,54,...- are the ‘;

eigenvalues of VM?‘JL“‘f and uwg’u““yr respectively. It is
clear that all these steps will also depend on the way the g
are defined (doublets as in (1.1) (2] or singlets (3] ).

Cnly the combination -
© « )
- ult ¥ (1.4)

the GIM-matrix (?] ¢« 18 observable in the charged currents of
weak interactions:

Y\;‘* = % Qs MCJM EA"'L + ha (1.5)
For 2N flavours the NxN unitary matrix LL may be parametrized
in terms of N(N-1)/2 "angles'&tthe real parameters of O(N) )
and N(N+1)/2 "phases” . The latter may be separated into N
*diagonal® matrices in the N-dimensional realization of W(N) Z
and into Elg:l’ phases 6; which we define to be the phases i
of complex "angles" (};z fh ai& . A redefinition of the :
2N-1 relative phases of the u, ard d; reduces the total . »ﬂ
number of the phases to 1—!:%11!:3) . Therefore an “intrinsic" -
phase causing CP-violation may occur for N 2 3 only [5] . é
E.g. for N = 3 we remain thus with one phase and three \

(real) angles in W .
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~ relation (for N = 2 ', e= 9.

It is clear that any relation. between the "observable" masgses

of the guarks [g] and the Cabibbo-type angles 01 , a8 well
as the CP violating phases 6} = provided such a relation

exists at all | - must have its roots in some symmetry of the

original Yukawa couplings. A classical example [ﬁ] of such a
is the Cabibpo-angle), which

is well satisfied numerically, is

tgzac = a/s . (1.6)

Within the present approach (1.6) is seen fallow from mass-
matrices
w, 0
MY -
0O M

go- (%)

by trivial algebra [§]‘. We. remark in parenthesis that the

(1.7

experimental valiues of 8, = 0.22 and the standard values for

the quark magses [PJ

we W2 MV, ¢ 415 CV .
' (1.8)

d= 75 MV, S= 150 MV
are also in agreement with
o £ ‘ (o€
(O o E
W= Lo e/ 0 @ - (0 K.) ) (1.7%)
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s well
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of such a

e), which

(1.6)

mass-

(1.7)

at the

lues for

(1.3

(1.7%)

O -

o @
because the two eguations for the two angles in w and u

T T o)
f%\%w= “Ye > g9 - A/S (1.8)

lead to

"
& = '\9&" - J08Y (1.9)

where S is a relative phase determined by the (complex)

numbers a, €, a', €' . Numerically 5#“ is not negligible

as compared to e‘d’ [b] , but e.g. a "maximal® & = % yields

an acceptable value for ac . This is a first illustration

of the difficulties which face comparisons of "theoretical®

predictions of this type with experiment. |

In order to arrive at such predictions, the structure (1.7)

or (1.7') of the mass-matrices must be the consegquence of some

symmetry principle. The corresponding yroup can be a subgroup

of the global L(¥), (&{Aﬂnsynmetry of that part of the

Lagrangian, which contains the gauge fields and 2N flavours of

quarks.

A continuous subgroup must be ruled out, because it creates -

after spontaneous breaking - unacceptable massless Goldstone-

bosons [10] . In fact the first models in which (1.7) or

{1.7') have been reproduCeq, were relying on discrete groups.

They were also bﬁsed>upon(left-right-gyn-ettc gauge-theories

of the type SU(Z)LxSU(ZkaU(1) [5,9] . The models of the

" .last ref. [?] are especially pretty, because they not only

leédhta‘ﬁhe relation (1.6), but also predict independently
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the ratio d/s = (2- Y3')/(2+ V3").

Actually gauge models of this type are not yet required by

the present experimental data: Apart from the somewhat

confused situation concerning parity violating effects of

neutral currents in atoms, the standard SU(2)Lx U(1) - model

[3] )augmented by the additional flavours and a generalized

G/M-mechanism (1.4), (1.5) seems to be nowhere in serious

disagreement with the experimental data [l 1] .
Therefore symmetry models within the SU(2)xU(1) - theory
should be investigated. Suppose that a general discrete

( permutation) symmetry
Qe — KL‘]L
o — k* Ge
d?& - R"‘ ‘br

with unitary matrices KL, KR and R leaves

— & ‘ — 'A f‘&
—Y\‘ikmg q;_}\, QR b + C||_4£u q:'l

+ Ac.

invariant [127, i.e.

Kt At KR RY o s

KU L8 KR R o RS
For the mass-matrices of u, and 4, , MY A'g, ,
Mo 215 g>  this means ( & = KpiD)

KLT NN A A‘(.&*)* R”‘R“s;ef

{(1.10)

{(1.11)

{1.12)

{1.13)
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(1.10)

ke O

(1.12)

€ (1.13)

and an analogous relation for MNLR) . Thus 1f in a certailn
model R is diagonal ,i.e.

R%e. e, D=1, TRV
(1.13) implies

[ k5 w®wet] -0
[ l<L) \AL@)XJ&GH.] < 0

which means - following the argument of ref. E;] further -
that no nontrivial relation for the Cabibbo-angles can occur.
(1.14) is trivially true for one (b-field or for two (b-fields;
one of which couples to h and the other to h*'. This is the
case of natural flavour-coﬁservation in the scalar-couplings.
If more scalar fields are present and if (1.14) does not
hold (nontrivial permutation of (bi ), relations between
the angles and the quark masses may follow. Thus it must be
concluded that the Yukawa-couplings cannot conserve the flavours
in a "natural® [ﬁ‘] way. Explicit models of this type are the
ones 1in ref. [1‘3] » of which, however, only the second one
contains (1.6). It has N=3 and six complex doublets of
Higgs-fields.
A common feature of the known models are the not altogether
‘sinple"assunptions about the representations of the permutation
group for thg quarks and the numerous scalar fields. Therefore - E
it is the purpose of this lecture to search a common "natural”

sami-phenomenclogical background and investigate possible

consaquences.
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Recent theoretical considerations (16] congistently lead to
umall angles \97 < '\9‘ for the new 9; in (1.4). We believe
that such small angles can be understood naturally [M]

only in terms of small angles in .Hgnd USU (1.3)

separately. The consequences of such an assumption for the
separate diagonalization of the vu,c" and the vuw are
discussed in sect. 2. For small angles this is a simple
exercise in perturbation theory for matrices as examplified
by the special case N = 3, But small values of the "9’; imply
that r\9‘° and the "new" angles are essentially independent
to V] ) . Any further. restriction must rely on phenomena,
which are of higher order in '\9‘ . Hence the first subject .
of section 3 1is a repetition of the argument of the last

ref. [‘16]‘, which uses the success of the prediction by
Gaillard and Lee [21] for the charmed quark mass from the
Rm-Koz-mass difference as a constﬁraint. Then we check by
estimating oraer“s'\ of magnitude, whether a matrix like (1.4)
with gmall angles\znaturally" account for all the CP-violation
in the K -K, system [17] . The results as exhibited in the

Conclusions are nct divscouraging at all.
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2 ad to 2. Small Mixing Angles and Mass-Matrices
ve
2 ] 2a) The standard GIM matrix (1.4) in the parametrization of
K ) Kobayashi and Maskawa [?] shares with the description of
the - 0{3) in terms of Euler-angles the disadvantage that the
s small - © 1imit cannot be obtained by systematically neglecting
e powers of O up to a certain order: e.g. in linear order two
a fied angles remain instead of three. It is obvious that, on the other
h < :lmply hand
dent : . © '
i W= e = 1+ 06 +...
enomena,
. 1 (2.1)
ast ‘
by
m the does not suffer from this defect. A GIM-matrix for N = 3 may
by be based upon
(1.4)
o © -
. -8 (2.2)
iolation e-= -9F 0 o,
in the e ~-o* © ;

The "diagonal” phases (B:l = real)

=
>

g
(3 J
in the linear term (2.2) have been dropped already, because ;f

these ai and the phases of 62 and 03 can be eliminated in

TR AR LRI S
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“ the linear term of (2.1) by an appropriate redefinition of if t
(2.1) which changes the phases of the u; and dj : Ww-
: W= A T A (2.3) | The
2l
: oot \ w :
- [ e . : fr
5 A= ( b ) A- e? . f, .
a8 et et ! on t
L :
ting § (sin
o ]; with
- N
ther I8 o
v et" '\94 e, Qu‘ '\93. i ;= 15,
3 (2.4;
3 ! foll
2.1) i Thus (2.1) with (2.2) becomes for N=3 valu
) 2
E Me 14 9 + £UW o 0(6F)
f .
-edtBt ere e.g
4 §
! o » v
? W 6.9, RS- NN 0.8 y (2.5) cat
or e’ o6 -prB
» ¥ expe.
(2.2) 'g . w for
; which is the form to be used for the individual unitary U i
) H on ¢
¢ and \/Lu) transformations of the u; and d; , eq (1.3).
4 ¢ 2 - coul
1 4 The GIM-matrix to 0'(8. ) reads as (2.5) with 01 —» 0 N
i i this
5 b and
i 3 ) by
i i 6 - 6%_ e + 2 (gsﬂ o¥ . of e.(\gu)
i
o by
J O = o -08 . 4(of gy _O™eW) (2.6)
] 4 _ d) , . Then
3 ¥ T Q - Q‘F" + {( 9‘(095.\!» _ 95“ e‘@) x.) , ‘
{ with
3
3 ass
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(2.3)

(2.4)

(2.5)

(2.6)

h e A e
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if the "diagonal” phases 81 (which are of C7?62)) in

bL"Lkﬁff Lﬂf) are transformed away. The 81 can be

simplified according to (2.4).

The ordinary Cabibbo-angle may be determined independently

from a comparison between u-decay (cosﬂc) and nucleon-f-decay
on the one side and the semileptonic decay of strange particles
(8in®_) on the other side [22] . In our notation of (2.5)

with (2.4), writing for simplicity 8, instead of 31

RPN K]

follows, because in the first line of W  the experimental

values

1-4'-9 =" cos™ k' = QY11 £ 0 Oy

v
i
A

Yaly, - 09524 * Ooau

®"saturate” the relation c0323c + sinzac = 1 within the
experimental error. If one could make a similar argument
for the second line of LL » using sufficiently precise data
on c-s-couplings from semileptonic charmed particle decays, it
could be checked, whether 6h is also small &3] . We shall

this assume to be the case:

d& ~ dﬁ = %

Then the 2x2 gector of the flavours u,d,c,s is weakly‘mixed
with flavours of very heavy quarks and it is “natural” to

assume this to be true for up~quarks and for down-quarks
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separately ( (,LL= SA ! or uf‘ ) ) as already pointed out in

section 1. We are thus lead to consider [_24]

W A
W. - ( a uo) y {4, 8) « Ul (2.7)

where \l, is a 2x2-matrix and (fo an (N-2)x(N~2) matrix,

& and A‘ are rectangular ((N-2)x2 and 2x(N-2)):

+ - "

Wik, = 4+ 00 (2.8)
lﬂrllo s A+ o)

Ud‘A+ Atu. = 0 (2.9)

M= _\M,\Mj' may be decomposed analogously:

M, V
M= ( ) , (2.10)
vt M.

M is diagonalized by (2.7), 1if

LL,J‘ M, U, + usA‘ fAtvtu, 4+ df"‘lod = diagonal (2.118)
.11a

\L;f'na Uo + u.*v“A+ A*Vuo + AI'H,A = dlugoap (2.11b)

uwt maa + TREVITS + Ot u, + atvta - o {2.110)
R A TR atya' = o (2.114)

ir

M

t in

(2.

matrix,

(2.1

(2.9

(2.1

om gl
(2.1

D.af (2.1
(2.1

(2.1
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t in
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(2.7)
T
o]
matrix,
(2.8)
w
f
(2.9)
(2.10)
B
o
i onal
" (2.11a)
Y, (2.11b)
(2.11¢c)

(2.114)

- 12 -
0’ N AN !
in such a way that terms of (4,4a™, Al ) are

.neglected. Thus the last terms on the l.h.s. of (2.11) may

be dropped right away. From (2.11c) and (2.9) we have
ut t 2.12
Ve AW Mo~ 1 a Ul +68(c)- 08 (2.12)

This is consistent with the other egqs. (2.11).
On the other hand M = \ALIM;'— is determined from

. ") & O, o (2.13)
ey = 5;‘%5 + 0ug; + 5 (¢:8.0) ,

J

where we have distinguished the first two lines (3) and S”

from the others:

H:L = (‘r\.q g; n. ga )(&q ("' + Jh (é,a'.‘)
(m)(“ f}‘j (r':." (2.14)

V (Lg""cru.m o’v—

Baring some accidental smallness of the internal products
of the lines of M, it is again "natural” to assume

lel « el
in order to be in agreement with (2.12). This implies that

M1 is still smaller than Vv, 1i.e.

oV M, ]
v o .|
M - (0 Mo) v (v“ o/ *° < o o)h" ) (2.1

ST S ST SO SR ) s e LA R RS AT S A S R S A L




IRt

where the expansion parameter t has been introduced in order Th in
: to keep track of different orders of magnitude. an
* (c
. ' ; we
: 2b) The diagonalization of the general 3x3 matrix is an ! is
N ) c -
12) 1 instructive example for the simple perturbation theory which is ‘ ry
required for the solution of an arbitrary model with a mass- : ' a
. :ﬂ matrix
}' D/‘\ € - & ‘
U -
i =15 “ €, (2.16)
13) z 5 - i %
; referfing to either the up- or the down-quarks. According rdi
1 ' .
{ to (2.13) - (2.15) we diagonalize
. ‘ M ¥ /ﬂ * €J -ea. .
14) :5 = ‘M‘u = EJ“ /A‘- e:“ (2-17)
: —e\:r €4 //«_}
l ; with
H { a
v "
» By = ,M,‘,“ \M_;_}- (no sum of i ! )
¢ (2.18)
B i
!
. . w
5 ana
J i :
i | % !
ll !l E,‘z - J., v o e’a - Jl d: |
4 |
: -
o ‘ E: — o T4 e, « O O (2.19)

N : €y ~ 'L'J; + 406 g £

P
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in order

is an
ry which is

a masg-

(2.16)

rding

(2.17)

(2.18)

(2.19)

Thus M in (2.15) to leading order should contain M,y only
and therefore, at least one quantity among ay 61 and 62
{(cf. (2.18)) must be large as compared to the others in (2.16).
We thus have the perturbation problem (2.15) in this special

case:

) & @
Me= e (2.20)

M - Ho*t\‘*t\VL

e () v( &,

-e* €, ©

. € (2.21)
\A,= : ) ¢ .

=X o

With eigenvectors

& (e G YY)
e + +...

e = TE + T ¢ (2.22)
and eigenvalues
© (e &0 L
A= + 'c& + T (2.23)
we obtain to zero order in =<
o) . (we (3 .

e e M UL R R S e e L R L
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2.20)

2.21)

(2.22)

[2.23)

(2.24)

PRy e
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T ST 3 e e T T e
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e S A
i) RN

-

T e

e Lr e

¢ o (w9, ade' o)

(uo
[

=

G
)

"

(."L‘9°—‘ LT, O)
L. O, b, 4)

G

and to first order the relations A = 0 and

((s&)gm

(uo L",v)]

A
e =

€-

L}

~&ey - e/,_,,

? {4 -
= () EYm

N - LN Wl

o
E,v8e + E.* nd

. <)
From the orthonormalization of &

R(. @ l~n’°

(e ) =0
part of the same quantity is undetermined and may be chosen
(0 @1)

(1i=1,2), which simplifies the evaluation of (2.20) to

to be zero.

'6'(1:2)3

1)

We also take ( gq(

€e)- -0
N

B d- - </t

+s = mE 4+ EE

928 = - 2 W/a

to

= (

Civg

o {t) we get

(no sum over 1 !'), vhereas the imaginary

- 4|z)

(2.25}

(2.26)

(2.27)
ii.za)
(2.29)
(2.30)

(2.31)

[P
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guar,

From
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(2.25)
The
quar
(2.26)
From
the
inary
hosen
to
(2.27)
(2.28)
(2.29)
(2.30)
(2.31)

- 16 -

w= s\.+ .e") (2-32)

2 po pmpu) + B

(408 2 (e 2
The eigenvalues i = L A= m, {the masses of the 1light

quarks) are

G

ﬁ;\u = (§ =V ‘iw)/l,u. (2.33)

S = falpin) —EL-E .30

From the eigenvectors to cr(tz) - wepat t =1 now -

the unitary matrix is given in the notation (2.8) by

Uo~ A= (4" + Bt/ 0 (2.35)

s B G, —nde 128

LL1=

“if o4 R (2.36)
sSue - E,Efy 0 tn 3 - E,€ N2
-G
4 ») :
A= o\ e (2.37)
" " (2.38
A‘= - i( é‘ , E) ( )
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(2.32)

(2.33)

2.34)

2. 35)

2.36)

2.37)

2.38)

"
SYRRRCINI R .

i
i
i
i
H
4

i

O REACATRA L Latcs e R :
CIRNE S BRI ':rz.“‘;;;fm—g.‘ -

A gt g AT T e e o s T TR TS

ez S e e T T

I B ey e et e 5 e et e -

Here we have retained terms O' (|E|2 /uz) , which have been

neglected consistently in (2.8). Comparison of (2.35 - 38)

with (2.5) yields to ©(9)

0= (B &2 0% ) Lu,
9¢= ey -k, QJL)A@w
93 = ~\9¢,‘J\ »

A general feature of (2.39) is that e.g. for E.,-O the

corresponding angle O, is proportional to 8; and of

(2.39)

~-

& ( o“) only. The model of the second ref. [15] is of this

A
type (with 9.-"-«9;, 9?':0 ) .

So far all these formulas may be used for an arbitrary model.

Let us assume now that the model is such that

tg2o = vr'/x.m :.flﬂ«)/u“

i.e. a relation of the type (1.6) holds. With (2.31) and
(2.33) this means

2 -2§-2y=-0
The three eqgs. (2.33) and (2.41) are equivalent to

&led+ haw,
<> = (- wmyt

[<Blo>)* = <ele> [l ~ gip> ]

(2.40)

(2.41)

{(2.42)
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B T e T N R L

in terms of complex vectors

[ = (4 ©) [> = (-8, «) (2.43)

A symmetry model will be characterized by the fact that

some (nonvanishing) elements of (2.16) will be equal up to
factors of order one. From (2.42) the parametera € and €,
which determine the angles 81 and 82 {cf. (2.19), (2.37),
By~ ) g D Wy W )}, are then estimated to be of
order mm, or mz?ﬁi ~m, . © or ©, will thus be given

by four types of relations ( S~V il )
@) Bl ~ wfu,
@ foul ~ W/,
® ol o foullor ~ { R 5, @
Virde Wy = o/, @)
o le -~ o0 .

In the case (III) 81 {or Ez) is zero in the specific model,

(2.44)

Numerically III(a) coincides with II.
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3. Ko - Mass ~ Difference and CP - Violation

aAn crientation about the magnitude of B, and ©, can be

obtained [25] from the successful prediction of the mass

Eer= el R T S E

of the charmed quark in a model with N = 2 by Gaillard and Lee

Lee [21] . In our notation of the GIM-matrix the graph for a

transition of quarks with AS = 2, A¢ = O, appropriate

for a calculation of the Ky ~Ko — mass-difference is

A . _‘5_ wo — &
——
A Wi
yos e 2l

where my=t, mznc» my=u - (mN t).

Because the

m.__“ < G:w, é’ [éi - é‘:én. ‘;("‘/u;)]

(3.1)

first term in the sgare bracket gave the good prediction for

A
m, = c we must have ( 6, % = ow )

|8 ligr « \\‘(,,’
é1 ~ 9?, - a}“
é% ~ ey\_ ssv

{(3.2) can be combined with any of the situations (I),(II),
(II1),(IV) in (2.44) for the o or 9;‘" (i=1,2).

(3.2)

{(3.3)
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(A ("
- First let us consider models in which a § or a o
vanishes (case IV) in (3.3) so that each is determined in

terms of one angle alone. A straightforward discussion of all

those cases with the tentative identification b = 4.7 GeV 1
Lee @67 showst that (3.2) is not restrictive at all for the mass
r a t of the top guark; typical limits are t £ tmax with

tm R 300 Gav  (where (3.2) cannot be used any more ! )

4 (LR
for 68" , or t = thin With to.. % 0.4 Gev for

A a .
é; = t“:)_."" ad  §, = QY g, - 9,(" . Only in the two cases ;

n ) 2 4 (k1

. )] Qe %1 (£ 2 36 cev) ana =tftny, o. = Gany
‘/"‘; (t ?T!f 5 GeV) some restriction for the t-mass is observed. |
Thercfore Lt £eems pointless to consider more complicated cases

A
for 9(. at all.

Now we turn to the more interesting CP-violation. We have seen

in sect. 1 that a nontrivial relation between the angles in
(3.1) the GIM-matrix demands the introduction of more than one

doublet of scalar bosons. This opens up the possibility of

CP-violating Yukawa int_eractions @O] . but such a mechanism
for is without much predictive power, even as far as orders of
magnitude are concerned [27] . However, if the relevant

boson~masses are large enough so as to eliminate this source

(3.2)
of CP-violation (together with flavour-changing neutral :

interactions of those scalar-fields ! ), it may happen that i

(3.3) the CP-violation resides in the GIM-matrix (2.5) with (2.4)
N {

only. A phenomenological analysis based upon this assumption

in the parametrization of ref. [5] has been carried out

ol - DR
oAl

by Ellis, Gaillard and Nanopoulos Els] . In our notation of
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(3.1) the CP-violating parameter of the K _-K_ system [28]
becomes [29]
!
ek ~ BTN A/zp‘A ~ % j‘\-\%/l_ nw)

oA (3.4)
(@_’”_G."‘ b‘r l‘,(c‘/f\)
X
again for m. Wt,c . For the Do-ﬁ;-lysteu £pis similar,
except ¢/t —» s8/b ; for "bottonium® after a similar

calculation ( m v << my)

g ~ ondBalB
2‘[ @J + (é,“é,,l NJ]

can be obtained (25] .

(3.5)

It is tempting to assume that IeKI takes its experimental

value 10-:‘l

in a "natural® way, i.e. for a big phase & ~ -'2‘-
in (3.4) and to try to find a combination of the alternatives
(1) - (IV)‘in (2.44) yielding such a regult. We restrict
ourselves to an "allowed” range of b St £ 30 Gev, where.the
upper limit is determined by the validity of the approximation
used in (3.1) [30] . We consider all possibilities (2.44)

for (é,‘ and (ébl and take in those cases, where lé‘(
obtaines contributions from both 9@ and 9@, a situation,
where one of the two angles is "big" {31] as compared to the

other. The result is surprising: The values of t are far outside

the "allowed" range, except

m
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[2s]

(3.4)

imilar,

(3.5)

tal
n

~3
natives
ct
eAthe
ximation
.44)

-~

(S {
uation,
to the

ar outside

1 t ~ 88 CeV R)" lé“ "'F;"‘ ~ EE <7073 s e@“
(2) t ~ 29 GV b \6“ | Bl ~ _V:; =F1.4070 N %

In the case (1) é ~ 9(‘“' corresponds to alternative II in
(2.4‘), whereas all alternatives aia allowed for 9@U :1n case
{2) gen can be only the one in alternative III(b). It is
perhaps more than a coincidence that the formulas for the new

Cabibbo-angles must be again of the type encountered for &, ,

|83| = Vm.llmz“ = v‘\,vu\:,/w", in order to yield a theory with
“natural® explanation of the CP-violation. Note that the small
angles é, and é& essentially drop out in (3.S), so that

a large value ¢ R 0°1 results [25] for a "maximal® &§ ~ mw/2 .
Our result is also completely consistent with the consequences

of (3.2) above.

For completeness we mention another possible situation:
In some model those small angles may be produced by a
cancellation % . 9¢ in (3.3). Again the only "solution"
for t in the allowed range is the onegiituation II or I1Ia) :

& _ &
£

t
with t ~ 9-8 GeV, i.e. again with a value in the vicinity

of 10 GeV.
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4. CONCLUSIONS

We have seen by rather model-independent arguments that the
top-mass of a sequential doublet (t,b)L can be expected to lie
in the range 9 £t < 13 Gev i.e. the vector meson of the
"topponium® may be looked for in the mass-range 18 - 25 GeV.
We have only assumed that a (global) symmetry model for the
quark doublets and scalar mesons reproduces & ~ =y /m, in
the 4 flavdur subspace of "0ld"™ quarks and that this symmetry
makes new elements of the mass-matrix “"equal" (i.e. that
relative factors are of order one) to old ones or zero.

In addition CP~violation has been assumed to depend on a
(*naturally”) large phase. Moreover the ovserved CP-parameter
€x 1n the Ko—system should be determined by the CP-violation
in the GIM-matrix alone. It is clear that the values from
current algebra for the quark masses u, d, ¢, s ({1.8)
together with b = 4,7 GeV influence this “prediction" as well.
We have linked the smallness of €y to mixing angles of 5r(1o'2)
for the new flavours, which are thus an order of magnitude
below the Cabibbo-angle ec. Replacing in the estimate of the
last ref, @é] for the lifetime of a "bottonic" mesdn the
appropriate X.-M.-angle E{] by loll, the life-time could be
as long as 10° '

effects.

sec, which may produce interesting experimental
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In such a theory the electric dipole moment of the neutron

can be expressed in terms of €k -

The predictions are

much below the experimental limit [?5] .

The extension to m, 4 t of the result (3.1) and the

discussion of conseguences for t X 30 GeV is left as

an exgrcize to the diligent reader. Vector mesons with

such masses are still out of the range of present

experimental possibilities.

“Big” is defined to be a factor of about 10.
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