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Abstract

The esets in Euclidean spaces are determined, which are the images
of the mappings, perforsed by coertain systems of functionals, fros a
set Q in the Hilbert space Rz of functions analytic in the unit
disk, These sets|exprasa the correlations established by the elements
of f) between the functionals of the systems, Physically they give,
for the functionals chosen, the carrelation by experimental data
between the pinm charge radius, tie piomic contribution to the mmon
magnetic moment and sa Buclideas ( or equivalent Chebyshev ) measure

ng errors,



Y. INTRCDUCTION

A number of problems ia the (rigorous) phenomenology of the plos
electromagnatic fora factor, referriag to the detersmination ef the
isplications of experimental data for physical quantities related to
the pion form factor, ray be coaveaiently formmlated mathesatically
with the following elements :

a) a (mormed) space of smalytic fumctions, to which the pion ferm
factor is assumed to belong,

b) & sot {1 1n tass space, which includes all the elememts obey-
ing (theoretical and) experimentsl requirements impesed on the pios
form facter,

c) a systea (i".‘ .....d;_) of functiomals 1; (<=1, , %) im
this space, represeatiag physical magnitudes or quamtities expressiag
information contained 1n experimental data.

The systeam (ilg4 .....i,) perforss a sapping fros the space of amaly-
tic fumctions into H® . The object of the trpe of prehless we refsr
to is then the d-”~-mimation ef the image through this sappiag of

the set Q0 o 1 displays the whole pisture of correlatiean betwesn
the physical quantities of the systes (-‘{; .....() impesed by experd
mebdtal inforsatios (expressed ia the charasterisatien eof n and 13
values of some of the fumctiomals i. poeey {, Yo

In this paper we present the solutioss to twe (closely related)
preblems of this type. They express essentially the (joimt) imfer-
mation ose obtaime on the pion charge radins and the pionis esatri-
butiom to the muon sagnetic momeat from experimental data for the
piom fora facter, obtained is the processes ch ~ei'y aad €€ -N'T,
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It turns cut that the natural space for the formulation of these
problems is the Hilbert space 82 of functions ‘i(z) analytic in the
unit disk (2 <! ) : the pionic comtribution to the wnon magnetic mo-
ment can be brought to the form of the (squared) norm of an element
of this space., The pion charge radiuns is related to a functiornal in
R, the derivative £%) . a8 to experimentsl data we use those from
Q-r +¢ %% in order to construct an Buclidean (Chebyshev) error
tunctional A/R) ( K(£)) in terms of the valaes ﬂf('w socns 1((1,. « The
data from 2'¢ KR define, together with general theoretical con-
ditions, the set -Q « FOor a detailed descriptiria of this correspon-
dence between the physical aspects of the problems and the mathomati-
cal framework we refer, however, to Refs, 1-4 ,

The structure of the paper 1s as follows : In Sec.lwe formulate
the problems, In orde.; to give, in Sec.l, the solution of ome of them
we make in Sec.3 the necessary preparations in the form of en (auxi-
liary) extremal problem, These .ections are in fact, together with
Sec.5, necessary elaments for the solution of the asecond problem
(Sec.6), The remaining part of the paper refars to qualitative pro-
perties of the solutions (Sec.?), to elements of importance in its
numerical computation (Sec.8), and to the (slight) modification im-
plied by the sudstitution, in the problems, of the Euclidean error
functional X(4) by the Chebyshev functional F(’t}(Sec.‘;).

2. FORMULATION OF THE PROBLEMS
In the (Hilbert) space Hz of functions ~£(z) analytic in the mnit
disk /z/<1 and obeying
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'{IQ = 3!:‘ R de , - -plie) @
~X
v conmider the set{1(5.0) detined by :
w L= LEy
® Lor=a 2o (2.2)

() x> ) = Ao) , e«r (P: D(Q‘O:o‘u:)’

with @)oo ema Si)¢ L} . A 4i0) € L on /7 , Parther, with
given sequences of real sumbers Q, ,...y 8, . 7:,..., I,‘
(I.)o ), md  x ,...,x, (c« lf<4 v X # k. 94t ) and
with the valuesi(x. ) we defime
N . 4
. . "{/l.'!-d‘ )'2)3.
X(Z) (Z(Z Ty (2.3)

. i
asq

-

Now we may formulate our two (extremal) probdlems :
PROELEM 1e(2); %o determine for the set (2/i,c)in B> the image 4.0 1n
the 2-dimensional Euclidean space Rz » Elven by the mapping ~£(z) -
CIRIY, AR)
PRORLEN /7;(5! : To determine for the set -Q/J,'A)in Ba the image A;(a; in
the 3-dimensional Euclidean space R’ s Eiven by the mapping -{fz) -
¢ Lo, neI, Xie) y.

The sets O,/?) and O.(3) express the correlation between the
quantities lﬂlz, 1) e £t0) , ”"2 . X“) , respectively,
for functions {(z)(ﬂ/l,&).



3. AN AUXILIANT EXTREMAL PROBLEN

We conmider the poxitive cone K’ of functions 7%) (1¢ a.e.) 12
the real Hilbert spece L2 over the arc C{” , the complement, with
positive Lebesgue messare, of [T wAth respect to [0.1] « In this
cone we define the sets Cl..(g Az, R by C’Z.-(‘(A) = {M))O/

a;lf;‘;)éc} » where the )7, {:)are given ¥y

PR AL 2h - £ [f.—»)&)!‘b)lo -5 Jf;'v)‘f’wﬂh , (3.1)
" cr

with

f..lo)- 1

. 4-x i . 3.2)
puois . ine, N
lq‘:‘z“"o‘

-

£ > o o4 fized (but arbitrery) real (asasere) mmmbers {: (<:/.
-, ). Thess 0ts are conver and ¢losed sines they may be conside-
Ted as level sets of (proper) convex lower semicentisusds funstionals
18 12 3¢ mherefore, alec their-intersection (L(¢.4,, 4 )s

n (1.-’{6) (LC x* ) 1s conv‘ox and closed,

420
Our auxiliary extremal prodlem for [](2) is : to establish the
existence of the minigus of the squared merm ia 12
LAY : L 1 d J
I = = T're) do (3.3

L3
er

subject to "O)EK* 54 e emstraiats aa'(‘f;“.-):"" (420, ™),
and to_deteruine the fora of \he extremal fumetion,
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The existence of the minimum and the uniqueness of the minimizing
function 7,(8) follow from the fact that the problex is a minimum

. . ral

nora problem in Hilbert space : the determination of iTh .7
e (Uin, ., 1))

In order to determine the form of the solution we make use of the

(global) Lagrange multiplier technique for inequality constraints,

This is justified by the convexity of K’, of the mapping {)A(f, (4}

from K' imto !M‘, by the existence of an interior poimt in the posi-

tive cone of R"”, and by the existence of functions F(m obeying

()"(*' %)< .7 por our eituation this technique ageures the
existence of n+! numbers A o (Lsgrange multipliers) with the pro-
"

perty ( Z Al 3.“"’. , :)=¢ ana)

AN Q
» n
— 2 > R
RYNEEPIR IS NENE R I L ARV N B
4= 42 C

valid for eny f{e)e .
The last inequality, written explicitly as

f,j—,,de _J(r’(o)do <

(3.5)
j}’,m'&«r:m de - j?,(e) Lotlmde | tek'
with
palé) < Z M piie) (2¢) (3.6)
4:0

(and the integration understood over (/7 ), we compare with the in-
equality
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f‘ﬁmlo - /;M)do < j-{u){ufmdo ~J-,’m &;w;d’é .

which is valid for aay pair of positive fumctioans f}w s G®) and
' &

(3.7)

satisfies the equality siga only for {m - yoio) . T™he validity of
both inequalities, (3.5) and (3.7), leads to

2
6): $.(0)
T8 b (3.8)
singe 12 1/¢) were not of the fors (3.8), taen (3.5) should be valid
with strict inequality for Tl(o)- ,),(e) s 1e0e WO had

‘H,mdo ~J'rf(o)do > ]?,mkp,u;ah -Jf,(,,Lffm.(e B9

in contradiction to (3,7). The squared norm of i.he extremal funmctioa

is

n
7 =
M - /Ao, @ ifﬁ-mdo (>0) (3.10)
170 en

The values of the Lagrange multipliers depend, of course, om
those of {; s but we are pnot interested in the determination of thias
dependence,

¥e now remove the limitation {#o imposed 0 far for 1+4, , %
Since <(,-«. Y0, @ Bave ia a,la.) -Z,f(”;[_' o Them, 12 o,g. (‘ro.
ve have ]‘ (+,0) s -c0 on the intersection (l' = Oﬂ_/{_) of all
(L4 ), tor which £ 4o , and the conditica Mt c)se 18
(trivially) obeyed on (7’ , 1.e. the set (7 4s tdeatical with (7%
This fact may be convenieatly formulated as the disappearamce of the
correspondiag Lagrange sultiplier ), 1a (3.8) aad (3.10) (Ay=0 ).
Thus, for ali values of '{‘ the form of the extremal function is



that given by (3.8).

If .4-c , then one can easily compute the extremal fumction (3.8)
and the mimisum (3.10) by weing the Jensen imeguality ' , with the
result

Ed
a Ty F
1‘,)‘,!0) - a® .ur(- o j—k J:h)do)

™~

> G.t1)

2 ,

g ey ‘ 2 2

ol = ®a "L?(' GT J'L" mdo)f *, ler) (3.12)
r

B8ince U < (l(a)for Mm% 41 , we aluays have 07‘,12; ff(cr} in this
general situation, _
Starting now from the solution of our auxiliary (extremal) prod-
lem we try to determine (in E”) the set /L((:(t'r‘))ot those values
( { secep {‘) for which there exists as "(@)c ({/a,{, .,{_)of squa-
red nera Irrl‘- {z(ﬂ') , With a gives numbder 'filer)-(- 3 ‘(f(cr) Yo, It
such sa 7(¢) exists, then the numbers ({4 ....,’ ‘f,,, ).bm ﬁch that
the minimam of I74° over (1/a,1,, £.] 1s smaller them ‘('/cr) .
1.0, there exist Legrange multi)fifers X, peses Ay q'nél_: tlut\
a;(d;,{‘-)‘o (A= 0 yeeey™ ) with these £, and 4%".-0.- -'{'(ep)
are obeyed, 8ince the valwes of 2,- decrease with the increase ef
M. , there also exist paraseters /44,;/\. vooor fn 2 A obeying

i/(.‘@" ‘3 {Q(U")

40

(3.13)

48
and ),-H;.,{-)sb , With f;m . Z‘,ﬁ.' $i/6) and these ‘{_. . This

leads to the inclusioa 4 (4%er))C B, (Y, where DAY 18 the wet
of thoee ( {, pocey ‘{. ), for which there exist numbers fu20
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obeying (3.13) and },(1/;,,,_)10. such that ]‘» /7/;‘4;‘ Jeo (o=
A seseyh ) 18 catistiod ; {3 18 defined by

) 2 p
{a = L(er) o = szmd& (3.18)

fhie met may be written as

Dy = U D) e pe)

. € AR?) (3.19)

where the set A(ZY) (in B®'') 1a dertned vy
A

A(2) = {(/..,.._ ,/A,‘)[f,- 3o, golh‘r.\.- = —(*/eﬁ) ,]o H{‘.,g); 017) (3.16)
Eﬁ({i,) =

(3.17)
{2 pr ), Jalg g0, peditr)]

2 4
The inverse inclusion L,K°)C Ha (Ler)) 1o a180 readily establi-
) "
shed, and theredy the equality

H(Aem) = DAY . (3.18)

Through a subset of <Lh(A') we estadlish in the mext secties the
connection with our prodlem fle(®) ,

4. BOLUTION OF TEE PROMEN /le(Y)
Coming back to the space EZ g recall that any real funetion
Ax) € B can be factorised 1ato an 1BROF fwiction Wz) o /4wz)/£4
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Jaz)) = 1 ¢ Wz) = W(2*) ) and an outer fuz-tiom

2
Efz) = axpf 2 f,_‘__z__ 4 1Ry ,,0) (het)
[" 4028 22en0
Q
according to

Ly = vz Elz)

(4e2)
A restriction {/o); qQ °n f(z;é P has the implicatios that
Etoryy a (4.3)
In the same war, a restrictior ({n ) :{. would imply
Eixg) 3 14, (heh)

for the omter function. The conditions (4.3) and (4.4) are im close
relation to the sets (£ (£:) 1 The comditions Q.H, £, )« ¢ defining
(.i£,)are, is fact, (4.3) and (4.4) for fusctions Arz) oveying
14(3)]= A(e) tor #¢T" , with the notation /A(T)/=Tre) » B €C1 o

There fore (.l;f(‘) (a=p svess 1 ) may be considered as the set
of those functions 1(#)€ k' for which tde set ¥z £ ) of (real)
functions Alr¢ B2 , obeying £ig)= 4 ( x= 0 ) and

) . el :
1z « A

?

(4.5)
1(e) , 8elr |

1s mot empty. All n+i conditiems Ji(7, 4 )<o  give the set
(U[/A.".. .‘m) ) of thome 7/9) ¢ [’. for which é(f,‘)fo,...,

6, (+.%a)4 0.

These comsiderstions alles us to write the sete D, /£*! A) of
the precediag section as



DAY =

:{!L. .L)/F.(t.)a/l.l,v-.€.(-)>llf~l-/“/‘/")} (4.6)

vith E;‘/z) delined by (h.1) and

/

,/ ey | €7

1t = (A7)

{ e . 6l
and interpret “hem as the sets of poiats ( X, ,....f..) 1n B, for
which 'f,(w} E,) #0000y ﬁ/ﬂ., £ )0, w1ty /.GAII}
fD..({‘,/A) =
(s.8)
it 20/ b, "eu/?-iw)“’,/«éﬁffl)}.

Aso Af{l) may be dromght to a slightly modified form,
i}
- 72
A({z) = {(/‘o: ;/‘a)//‘.‘ 2"»;/‘40‘ =% tery é}(o);q J{ ] (4.9
¥e now take the subest 12‘({',/‘) ot .7).({’,,) , dofined by

!\}A“i/s) .

(§e10)

-, )60 Em, ). /) f.'*f,aw;,-ew)]

Tt has the significames of (the set of) those points (£ ,.u.,%,)
for shich the 90t of iaterpolatiag functions associsted with q ,
£ peeerdy o Cfou venes frn s and A%er) , 1.0, the oot of
(veal) tunetions {(z)¢ r obeying
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o) | per
idw| < ‘ (8.11)
hit) , eeer , L€AY
/
{(c)'- qQ , {(K.) = f, T, '({x.) = l,‘ (h12)

is not empty. From this 4t follows 8 that it is the set of values

( £/~ (%) yuuey {’/L (x,)) the functions

a.[ ( ) s T A2)
{ (z) = -’:—‘~———3— /:;(z) L ALY (he13)

A+ at‘ {o)-l W (2)
may take for all (real) functions A (z) , I’Wz) €1 7}/4 ) is
thus in fact parametrized by the image B (in R’) of the uppuc .
A2y > (R(Xy) ,...,fﬁ('xm)) of the (real subset) of the unit ball
. a0
in H
The set

1}(&")* / 7/ ({2/ (e 14)

M€ AlLY)
then is that subset of Dﬁ.("lﬂz), which charactrrizes the vaiues

({(&) 'a.o,£[‘t4) ) of the fumctions "Z('z)c .(2(,4;¢) with (squa-

red) norm

2 .2
iy = I+ + 7—; .[‘/5'2/0) de (4.18)
r
. _{2
(o) -M(zvl, e Ci' ) equal to (as given by (3,14)).
The solution of problew /75(2) is givean by the determination of
the values of A(X) over the set l/}_ (4%} . This set is bounded, con-
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vex and closed. The first of these properties neede no proof, The
second follovs from the fact that 32 ({,(<),..., £,4) )61)34_/{4,/;) .
X ALY, ma (l,tw,....‘f;(t.))e12:{{‘,;\) » A€ ALY, then for
@y o< <q (« (I.(x.w«-u{‘(z.;..... wk s ) dye)) €
’&({z,d}r (4-)} 4 & fe (e-0) 2 € AR)} as a resnit of tne conditions
(8e11), (he12), the limear dependeace of f:(})on (/Lo_ sesvs fim ) and
the comvexity of A(¢)) . Closedmess follows fros the validity of the
compactaess principle for the wniom (over A({)) of the sets of ana-
lytic fuactioms £/.(?’ defined by (4.13). Over the (dounded, closed
a4 conver) sot V- ({Y)tne runction X(4) takes the values sitmated
between the (global) minimma Xm({‘) R
'XA((‘) = mwem YR
(£ic), »,{ta.»)eaﬂ;{\') (h.16)
and the (local) maximum :(/M({i) ,
A8 = mx XK
(Lo, Row)€ (LY (=17

The set AE(i) im, therefore, given by the inequalities

. 2 ‘
i > ff s f,(c") ¢ ;ff(”‘/“ > (4.18)

r

X)) € Xy « X, (1417 (8.19)

S. EXTRNSION OF THR AVIIIJARE PRORLEM
We come back again to the positive cone I’ 1a the spass 12 . In


http://coapa.cta.aaa

ih
] "
it we define for arbitrary but fixed nunbers § , Fip pocen (,_ in
addition to the sets CZ‘ {{;)( 1=1,,.0,%), which we characterige

through the inequalities
CL (4.} 6] - E£() s € (5.1)

for functions £(z) tithl(l't)/z A6) 5 e 17 Gikini= TE) , e O

in (4.1), two new gets (/Z_.(G,Z) (iastead of C‘Zv(u)) by

Fyo : £fe “
(7 tady - S, 220«

Efc) « 2% Ea)

_ (5.2)
(I (a) Eo £  Ew, &

Elo) I Q &i¢)

The intersection (1(«.0)= (¥ fa,4)/) {7 (a,1), a subset of (] (n)=
{ﬁ&)zc /EQ(C)?a}lia the set of those functions r7¢)¢K' for which the
set £(+, d,'é} of (real) functions Z(z)¢H° obeying 4iy= a ’ Ll = §
and (4.5) is not empty, The set (,Z(a,{) is also convex 9 and closed

(as intersection of level sets of (jLroper) convex, lower semiconti-

nuous functionalas) and so is, therefore, [/Z(a.[,(,, .(__)a

n
(ﬂ (] .. ))/7 CZ(“«.") . This already assures the existence (and
v .

11

uniqueness) of the solution of the auxiliary exiremal problea for f]ap
to determine the minimum of /INIQ in C'Z(d.{,‘tf,, .Aya)nnd the fore of
the extremal functiom T.(O). The direct determination of f;(;) by the
rethod cf Sec.3 ig, however, no more possible since the functionals
defining the sets Ultfa,‘) have not the suitadble form, Therefore we
shall apply it in an irdirect way which avoida this inconvenience,
Namely we make use of the fact tbhat the closed, convex set

OZ(G,'ﬁ,f“ ,ﬁ..,) is the union, characterized by the coordinates of
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RMZ 2
poiats (ix a set) in , 9f other closed and convsx sets ia L° .
The derivation of the structure of (Z(.L,ﬂ,(“ ,‘f‘) nakes use
of anothe- form of the factorization of {(real) functions £z € '2 ’

than (&.2) :

Lizy = Biz)Sea) (5.3)

where A(2) 1a a (rezl) Blas:hke product, completely spesoified by
the number and position of se.os of {(2) i yzict y 18Bep)I=T s
and S(2)#0 1n 12/<4 . We comcentrate o the (real) fwmctirns Sin¢
32 withou: seres im /zr’/<41 , Those functioms S('z) for which

,d(b) , &€ n

[SGy] 4 (5.4)
"ﬁ’.\ , B¢ cr

1o

(with NereK* , 4 7#)cL') have to evey '? the restrictions

Eller 2 &0 o So AP 10
E(e) 0 $(e) E¢) Stoy

(5.5)

and

Sty « E0) (5.6)

with £(z) defined by Jfs) and 7(s) . In analogy Lo Sec.3 we AW
consider fixed values $(¢) Q>0 S’m = “/ , and S'l'(;):,l,- >0 and

defino d»y
~No 1, .
¥ ( ,{ . - ‘EJQ ﬁ - -2‘ —E——(o’ <
M" %.45) E(o ’ a 4y €e ’ (5.7)
~. 1
a (Q )‘l < E—(g, - ‘_‘A - g(‘)
) &0y R
and

OL (h) A - £y <o (5.8)
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the closed, convex sets (L, (g 4) (L (d) ({21,000, 0) K,
The interpretation of these sets im connection with functions {/z)io
in B2 13\fzoupletoly analogous to that given for U, ia,4) , AL, )
(since Ul.(a’,,‘JA) = &.(‘1‘.4. &)7) @_(«,A,{dc C-Zc(cu)=/ﬂo);a,’[(o;?q‘}).

From the comditions

-4 < Btey € 1

(5.9)
sy i8]« B < 18rar - 1an
Bie)
and
~ 1 £ 8(‘\) L 1 J 1. = 4) ) L ) (5.!0)
obeyed >y the Blaschke products and from (5.3) we derive
(€| « Ste)

Y . o1
sw | S el Lo, S e O
Sto) }€(0s] Ster Zie Jior il Vo)

and
ftix )| ¢ SCx) (5.12)

These inequalities (!{(.nlsj'[c) is implied by the second lime of (5.,10)
define in B**2 the set of allowed values Ste) = Y Sty = ‘& o S0y =
A, for given values of f."o) = Q& {,(o) = { ’ {(&): {.' 1

—— _—

« e a “ «

4 u,a 4%, t,9 a (5.13)
y L]
(wbich implies &, 3 4 ), and

vy (5,14}
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this set we demote by <(a{,i,, .,t‘f.‘)s(n . From the fact that ia
¥ (with coordinates X = £(o) ? = ';‘;(:’ ) the domaim defined by
(5.2) 15 the envelope of the domains defined by (5.7) over the va-
lues Q4 , '6,, allowed by (5.13) and in R‘ (with coordinates X =
E(X)) the domain defined by (5.1) is the envelope of the domains
defined by (5.8) over the values ,54 allowed by (5.14) it follows

thnt

Liatd, i) U Dl 4 4

’ (5.15)
(4, € 4,, An)ed

where &(G;,‘;,J', ,‘m) is the closed, convex set defined by the
intersection
—~ n ~~
Aty b, b)) CL () ) /1 (L tai 4, ) 516

The structure of A (a.4.L,, ,(..) » expressed by (5.15), allows
to derive the equality

s ',«f 2 ey e lrl"}

Move CLad e, b)) (b b, Sared tore Qi g b A POND

by which the auxiliary extremum problem of ﬂ(’) is transferred, as
far as the infinity of 1:- dimensionality is concerned, froms
liad,4,, £n) to Qlag 44, 4. . 4a) . Here it may be eastly
solved by the method of Sec,3 . The possiixility of solutiom is due
to the convenient form of the fwmctionals

JUady) - 2ha B
a

Né I#(Q)‘/{O}d‘ ‘éf?t/”kr‘l‘) d‘ , (5.‘8)
ar

hd
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;t('o) = 42 o8

which defime by [’l,lu,ﬁ)-{mnv/‘)g(f.ué)sc} the sote (1,(4,4).
The form of the extremal fuaction ,(#) im (;E(q"{““. '4_) is thus
Ziven by

JA .
)‘bl’) = L '\1 ?’l‘) 5 A; P RS ’ 7‘ .-, 1 e (50‘9)

The ucond step of the minimisatiom im (5.17), over flu‘ L, L),
is jJust the selectiom of one of the extremal functions of the ferm
(5.19). We therefore may comclude that the extremal functiom ia the
auxiliary problesr of [](3) for Pta f 4, L) 1s of the form (5.19).

When A:=C , the extremal function fz‘u) 18 of ths form r“u, =
A\ 4) ﬁ (#)- {‘)P 1#) + The values of ) (4) cam, hnonr, 20 BOF® be
easily determined ; we denote the mimimum 47, " by “2(0')

1 2
My g0 = Ao, + Aibjw -« {4(u~), @, - éjftloid‘.("z")

er
Proceeding now in anslogy to Sec.3, we first defime for

Ulad k., {.)ans tixed (@ md) € tue st (4 (?m)(vm L),

{4(0)). For the description of its structure we define

dx{‘ﬁn“) Jmo &Amdo -
(s.21)
—~-ur/ [4,‘,(0)40 '“7/ J{d‘,mdo)
with
Ay , es¢p ,
A'(‘, - (,ou)

e , o6eer | Vi (WY, Vo)
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N —
and T,18) = JL V' ) (¢) s V‘ 3o , and further the set

/\({,‘LZ) : {(V,J_,V,, ,Vg)[Vazo , ‘?; Yo = 7':2((.’) )
PRCAFSE O RY: Dt w ) } _ (5.23)

The description of H, (4, {'1(”,) is glven by

Ho 4. L)) = Dal4 4Y) (5.24)
and
Daltxt) = (/ Dart&hv) (5.25)
ve A(E,12)
with

j)m({'{_{\')={({“ -£A)/74(t,‘,)$0, |}m{‘f,_‘-)$0 , VeE A[{gl)} (5.26)

The solution of the problem //.(i) will be given in the nmext section

with the help of a subset of U, ({4,

6. SOLUTION OF THE PROBLEM /7:(3)
We observe that we may take over directly from Sec.4 the ‘unction

theoretic interpretation for the set O,(3,%2v)
D«“»{’."}:{“’m A G, g )ke, S Eut Ka )P0 ,wA(ﬂ,l'*)} (6.1

In order to construct its subset we are interested in, we use 1n
addition the set f('f;,a,{) introduced in Sec,5, which is not empty

1f T,(0)¢ 07_(0.‘). This subaet is

fl}.(‘-{i 4 ):{lyf,, .£1 )’ f”a,‘h‘)/zf,“v.‘t )/) /) g.('ﬁ.ﬂ.)w,wﬁu,{ﬁs.z)
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It ia the set of those (£, ,..., €. ), for which the set of (real)
functione {(z)e KZ obeying

ey < A,l0) , ve A, £2) (6.3)

and

{(,ha s {’(u;:‘& , {(l.):{, » ,-((u)c {,. (8e4)

is not empty., Thersfore it is given 8 by the values ({,(z.),....{,,lz.))
of the functions

aE—l‘(o) - 2A, ()
{,(2) = d d £ ,z) > ve N4 L) (6.5)

1. @Bz
viers £(7) 1 defined ¥y (ha1) with HGil= d0), and ab(z) Yy

Ak, t0) 25(2)
M,iz) - . : - (6.6)
A r A1) 2 N(2)

with

a0y = /f - M’)’@’ . g )" (6.7)

Eyie) a E{‘;"
and a (real) functiom 4A(z), which im arbitrary exzsept /Axz) <1 .
Othervise sisted : Lﬁ({,{‘, v) is parametrised, like 12 (4?,), by the
set Bq » O9ly in a di1ffereat manmaer,
The set which characterizes the values ( £() ,..p Llda)) of
the functions £(2)¢ Q(l,‘ﬂ.) , obeying -{'(., = -‘ , With squared
norm (k.15) equal to £ (given by (3.14)), 1s

J442) = U 1&({,{‘,,,) (6.8)

ve A(4,4Y)

This set is, again, bounded, closed and cenvex. The argumsats of the



21
Proofs are the same as invse for 1},({1) , supplesented by the com-
vexity of the set A($,£3.7!

With the quantities

X (8.2%) = e XK) . (6.9)
(f), Lu)e ¥ 14,43
X (4.1Y) = max KH)
" (R, Aa)) e (4,1 (6410)

ri . ‘.
we Aescribe in B> (of coordinates o, Mlz. X)) a set 4.3 vy

{’(‘) = ‘ﬁ ) (6.1‘)
52

Ay e ;{ﬁ;‘re)de = L) (6412)

XA RIP) « xRy < X H0012) (6.13)

The solution of the problem /7E/3) , the set 46(3,, is then given by

the union

A (3) - ¢/ Ae(z) (6414)
£ 2 3

over all real valuss of ‘ﬁ .

7. CONVEXITY PROPERTIES OF THE SOLUTIONS
Se derive in this section a few qualitative results, which give

an insight into the structure of the sets 4, () and Ae(3) . 8ince

Ag(2) is jJust the projection of A:(3) om the subspace R /I-(Iz, A4))



22
ot R({) , I-U[ X{{) ), we shall derive only the properties of 4.(J,

First we prove convexity of the projection 19' of A,ti)on the
cubapace R (‘ﬁla) /I{/I ). The set V' consists of the pointe (((n-’#.
u{j 'ﬂ ) for whiech 19 N{) is not empty. If ( ‘g. ,‘(1 ) and ( £, ,
£} ) belong to 1t, then there exist functionms %@, £,@) of the
form (6.5) belonging (through 1&({:(_,) and ‘J_l‘.,{f)) to them, The
values (i‘(n) enesy -;f_u..)) of the function ‘(;(1) = o f,lz)vﬂ-i)f,, )
C¢ & <41, belong duo,t.o {;u): a , {:{c)- x t-’, ’ h«n{ and /fi(t)lf
(21t e’ te-a) o)) o R (<8, -0l atl -]} vhich 1e thus
proved to be not empty, Therefore («x {,' {4--1){ ,x'ﬁf,n.x)ff ) € ’l/a
and ‘\9‘ is convex., The set ’\.9 is closed : to any boundary point of
it there corresponds only one function {,(z) of the fork (6.5).

If we let {Ulz) ’ {,(z) go through the whole classes defining by
(6.5) the sets '&(‘.,{f)ud 1},_(4..{5), then all valuss (f_{x,) yeees
‘(((L.) ), ("(x“-)_-. at{ll.»)'fh‘l)((l;) dufine the convex combination
0"\&(&,{5 )+ (1-4) \)l(;{.’{“) of these two sets. The arguments
presented above in the coavexity proof of q,a‘ also show that

d'&\({“.{i), (1-2) 1, (4, {%) 4s (strictly) included (i.e. with no
common boundary points) inm 19,“(«(“,4(4--() £,,=‘£.f#f4-d){3) .

For a fixed value .f £ the set ‘\2“/{,{2) iucreases strictly
with £? (the boundary points become interinr points since they are
of sorm Ilflll= 4% ), Therefore 2 (4,22) 1s a strictly increasing
function of 41 , whereae )’ ({,%%) 16 a strictly decreasing function
of 41 as long as (q, .....a.)#?"/‘l? 1.0, tor L% £} (4} , where
'{i{l) 1s the value of £ at which ( @, ,ece, @n) 1208 on the doun-
dary of ’\2‘(*‘,{"‘) . ror £33 £:u} ve have X/.H'{!) =0 .

The function Xm("‘!) 1s convex, 1.e. it satisfies over 19‘ the
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inequality

X AL e X4 L)y
Xm(d{,Oll-d)i,,“£‘2»(4-.,()£.1) o= A£4

The proof of it makes uss of the comvexity of the function {L) ana

(7.1)

of the fact (just proved) that the convex combination of lgq.(‘,,fi}nd
1}.(‘,,{1,) is strictly included in the set 1}.;(‘{,'14-(){“1 Kffﬂ-l)‘f).

From (7.1) it follows (since X‘_({,{") % 0) that the subset I}; ot
N , where X;(“.{’)- o , is convex. If not both pointa ( - ,(f)
({ ,{’;) belong to l% , then there is strict inequality 1im (7.1)
for o< X <4 »

Since intersections and projectiona of sets preserve convexity, we
may derive in this manner further interesting and useful convexity
properties of partial correlatioss between ' ALY l. and 14)

By projection of 4.(3) en the Nlame 23( Hlt. X4)) we obtain for
the increase (decrease) of XHMQ’)(X.(MJ‘)) with Hdlnd the com-
vexity of the curve XA( D("‘) in the region l{"l {f of their defini-
tien {the projectiom of 1} on the I{Il-nxi-). These properties are
all strict (for} '_(m')n the domain where it is mot zero),

A somewhat stronger correlation tetween J{)  sna X(4) , thean n2-
ven by Af(z). is obtained by the projection of the intersection of
A, (3) ¥ith the (convex) set ot Loy s 4, (mwn 4, 4., fixed,

lm 5{.1 ) The functions L(H";‘.,{.)- ) I,‘/"M,I‘Iz)

, Liore Wé, Ly, 1442)
ang X Kz,{.’{,, n A (‘h,“" ’ "oy |
¢ L HEL ) {1.,.5(43}.,:’01)) H oy { € |

(Lo, R1Ye$ 4, Ll e 1'.,}. defining by A,(t;‘.,&)-/{lil', 1))
Iy L 40), X (M1 £, )6 T X, (R 4, t)f A¥h)n
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» A {'Ir{) » the set A_(1,; {..,l.) expreesing this cerrelation,

« 4,

have the same qualitative propertics as I.fl‘l"). I.(H") .

By intersection of the convex set 4. (3,%) = {{(’/‘),I{I‘, I/())/
(Zio 180%)e ¥ XR) 2 Xpltlo, 120Y) } vith the halfspace F{) % {?
(with a fixzed value £ ?(3 ) we got a convex sst, which we project
on the plane B(L76), 1K)). The convex set A‘/(")- {/{'/o,', I/{))/
({Im,_(a)é ‘}L’ ’,{({)zl\(ﬁc),f‘)/thu obtained expresses the correla-
tion (as far as XA is implied) between Lioy , 2/{) under the comdi-
tion )< A2,

By intersection of A_(3,%) with the halfspace 1/£)<x (with a
fixed value 30 ) we get snother convex set, of significance through
its (convex) projectiom A (‘K)-{({m I‘Il)/({(:) I'ul}‘& 2;/4") i{ll)“(}
on the plane ({9, IIU ), which gives the correlatiom (as far as

Xﬁ is concerned) between fld) and //{' under the condition {/d)<% ,

. . 2
8. PARETEISATION o 7ux sommpppres or Y4 Y g 144V
in the preceding sections we have reduced the determination of the

sets 4. (1) and A.(3) to finite-dimensional optimization problems. The
(computational) solution of these prodlems is such facilitated by a
convenient parametrization of the sets ‘l}./{"), 1&/‘,"‘) which express
their constraints. An important part of the parametrisation of 1h({Y,
12'.(‘.{") 18 solved 1f one for ALY, A/{,4%) 1s founa.

The definition of A2Y, A({.{!) ashows that they are subsets of
simplexes in Euclidean spaces. Concentrating oa Al{'iu order to be
specific (the discussion for ALY 1e 1dentical, cnly the dimensien
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of the spmce is larger by one unit), we defime by ‘4,; = ‘,(er) (
¢ Ler) 5 £3 Jer)>e )y o mappiog of the stundard n-anouiom oim-
plexnn“‘ («): 3¢, 7_. <4 on the stuplex 1 4 3o,
Z_/“:J = £er) sasociated with ALY . The standerd simplex (« )
may be considered as the image of the unit cube o<« £ <f (.24, ., )

in B® through the (singwlar) trapsfc-mation of Serre ;
& = A~ &,
= *1 {4‘ t&)

2
Iy
[

« R o-n
1]

s o2 4 (1 4,,) (8.1)

o = A Ay

This troasformation is, geometrically, the projection ocn the simplex
(d)y Dy o, = 7" » of the imtersection of the wnit sphere with

che asamegative orclntn!'" (7)0. Z? s1), pan.otrnu

.z

ia terms of .’..HC‘I coerdinates 6 (“'4-0...*) ,t. 4“;‘ »

0< 6, « I . The mature of the simgularities of the transformatioa

(8.1) is indicated by its Jacobl detersimant,

‘.,v..,d;‘, e ’..V,d‘, ‘ A- -4

3( L ). (-0 i' " {: /

D, oo 1) AN ¢ ¥ )
(“:0:‘_.‘,1)

Their presence is, however, harmless ia computatios.

We bave thus parametrised tbs sets ALY, A/£.€!) as suveets of
the umit cuses in F* and l'". respestively.

Since the (nontrivial) valuee ef x. N xn are realised by poimh

on the boundaries 91&1’&‘). 31&(&“) of ‘l&({'), ]&(“,") and these
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are included in the unions of the bhoundaries ami(‘{fl.) .?1,9.({,4‘,,.)
of 19.;({2,/0 and '19‘(4.{’, v),

1) ¢ U st

pe ALY > (8.3)
91&(’{,{2) C ¢ 912((‘&) , (8o4)
y ¢ AlL.LY)
we shall seek convenient parsmetrizations of ?'Lg,./{f,.) .)1?‘/4,{’; v).

8 that the boundary 78" of BN 1e the ismage of (real)

It is krowmn
BElaschke products 3~,(z) with at most ne! geros, Therefors 9‘.2‘/{2,/‘),
9'\&[{,{',\1) are parametrized by the zeros of Blaschke products, by
the substitution AHx) = B (z) in (4.13) and (6.6), But there is a
pairwise correlation between complex zeros, which causes a differen-
oe of status intnon real and complex zeros. iIn order to eliminate
this difference we observe that the Zzeros of the real second order
polynosial (z) = 2% A2+A, 1ie in the unit disk /z/¢4 42 (and
only 1f) the coefficionmts ( 4, , A, ) are confined to tbe closed
triangle ( A ) with cormers of coordinates (-1,0), (1,-2) and
(1,2) .8 This triangle (2-dimensional simplex) may be parametrized by
the barycentric coordimates 12 o sy sy (3o, qeo,soly ~ 1)
as ,
A, = - o+ ol o o
A~ -2 4 LZ'R X {8s5)
and further, by the Serre transformation (8.1) (with ms2), as

A, - a4, -1

(8.6)
44 ® 2{‘(1*]") > 04 *"{L S A
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This parametrization of 4 is simpler than the one given earlisr im
Ref.8 , which turms out to be essentially the result of the 'rasent
prccedure, applied separately to the two triangles, of corners (1,-2),
(1,0}, (~1,0) and (1,2), (1,0), (=1,0), respectively, of a subdivisim
or 4 .
Any pair of (real or complex conjugated) zercs Chus leads in the

12' ‘442’ Aq

Blaschke product to a factor of the form — _ 7" ""¢
4, A,z +4,2%

, vith

( A ,A,) corresponding to some values £ , ¢, , according to (8.6) .
It n-1 is even, then any 3,07(1) may be written, up to a saign, as a

product of (n-1)/2 factors of this type, For n-1 odd it has up to a

sign the form of a product of n/2-1 such factors aad a factor ‘l—*—‘ﬁ

1432
-4 /5 s/ e
The sign ambiguity may also be considered as coming from a factor,
¥ , with T =2/ . If we oxtend this factor to all values - 4:¥.4,

ve get (real) functioms
n-1

2 2 b (h)
42, A‘ n=odd

b1 . 4 4:02‘ A 2
2y ¢

3&-4 ;%) = (8.7
21 0

[
M z"Ar,Z‘A:,
g 5]
¢

44 4‘11;1 . 4,’"22 ; mpeeven
vith ( A, , A" ) given by formulas of the fora (8.6) in terms of
f.,{‘)p tl(l)’ and with -1f§ds /1 ., The substitution 4xz) =8_(2¥)

in (4.13) and (6.6) tren leads to a parametrization in etrms of the
unit cubs in B® of the whole sets ‘[&l{z,/h),'l&(‘,(’;v) , but this is
computationdlly equivalent with the parametrization of the bouadaries



28
as long a8 (e, yeaeyQy )#12‘/{":/71, «2’./{(5\:) and even the parametri-

zation needed when (d, ,...,d, )€ 'Li({"./:). \}l({,{f v) .

9. ALTERRATIVE MO OR OF THE
The function X{‘(.) s defined dy (2.3), has the significance of an

Buclidean mors in R, Iis use is computationally very convecient but
physically less well motivated since its value does notfhop the
quantities {f_‘._;._ﬁ‘- individually under control. The epposite situa~
tion appears u‘ono uses insteed the Chebyshev nora (in E°)

M) s wax [Rlr

P % (9.1)

Geometrically X(£)<x ( %30 ) represeats in E* aa ollipsoid,
vhereas 71(4) 43 is the parsllelotope inscribed ia it,

The use of the Chebyshev sorm X/4) imstess of X({) wodifies
the forsulatios of our prodlema into i
EBLEN [To2): 10 ditermine tor the set {2(q)1n B the 1mage 4,(4)1a
the 2-dimemsional Buclidean space X° , given by the mapping £a) ~
(gt , TH) ),
mﬂﬁfj: To doetermias for the set Q(A,-qu E the image 4,0)1a
the 3-disensional Buclidean space t’ s Eiven ty the mapping {(;) -
Ly , K1, BR) ).

Since the censtraction of the sete 19‘,‘(“), 12(‘.(") in Secs, &
@t 6 1s still independent of A(€), and AX) 10 a ceatinseus and
coavex tumetion of {(4),...,{(a), we nsy write directly their sols-
tiens wita the fumctions



KuldD = i R)
({ew), ., Liegy) e 1Y)

I"(‘l) . oy 1(‘) (9.2)
(L, .., Alaw)) € Yy
(defined, an X,.(-(‘) . X.({l) o for £t )": ) aad

Tl 4% = wew T4)
i), Lasy)e i&/"{‘)

(9.3)
I~ ("") = ndX T({)
(i), Ak LR

(defined over the same eot Ve X (4.4Y) e X, (4.£%) ), os

A2 -{(MI', ) KIS L) T (ke « 'i(()nr“”"z)} ooty
4,0 - (/ A,‘m ) (9.9)
{

a3 { (Ko, KA, A))| Lin-4 | 113 48y,
S RUPRLIN T./U*)}

Thereby, all coavexity propertiee derived im Sec.? can be ertended
to the analogous quantities comstructed with Tﬂ) .

The relative position of the sete AE and 4> can de deter~
ained gualitatively froam the (topological equivalence) relation

X)) ¢« T(L) s ix XH) (9.6)
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A simple proof : - the convexity of d, (.1,() may be given by func-
tion theoretic methods: If we have two functione T, , 1,(8) ¢ K’
with {7 (0)¢ L', then we may conastruct the sets (2% ,QH,) of
(real) functions ‘{,(z),‘&(z,é B2 obeying "‘lb/.‘jlwo el , and

I{;(t;! < T.(8) 6 €€, Their convex combination -(Q(r,)'ﬁ.n)DH;)



M
consisting ef the fumctioms {‘h) = ‘ll.(tn(d-o{,a) , Cex e
obeys (K, 0)] < aH ()]« (e), 12y 4 {4/1.!:)/"/4-4)1{.1";/‘)5.“ 1s
therefore imcluded im the unﬂ((ﬂ'ﬂ-‘)f-) Mﬂ((itl'(f-d)tl)i).
The maximum modulus (8zegt) theorem thea leeds to

£
« uf{,i: ILA(O)JO) . (4--)47(% [rl.l,mdo) .

(+)

L3
“p /#(-&(1 4(o)+ (4-¢)L1.))do)
and to

J 3
4 1 ]
« (f: JL l,fmh) s (4-o) o4 [ L j A 4#)«16)‘
"T o . 0?/“ ¢ (++)

4 > >
ur (?t A (< &lo) l««)»‘Jﬂ)do)

0
with L:0)= Lis) o #¢7 4 Lis)= Tio)» ®€CI . From (+) follows the
convexity of (J7,(x) and from (++) ome may derive the comvexity of
ARY) o= 12 L (g) are such that ‘“f{'t‘ fl&,.,g.)?q_ , thean we de-
fine witk them the sets (i(t ,a) of real fuactions £ye 12 obey-
ing H. o)l ¢ L®) amd {;“i s Q . Their comvex combinatioa -(-Q(i:.t)f
- S2(%, &) 19 again imcluded, due to the same imeqaalities as
vetore, 13 Lt eu-0)1, ) and uQ((-f.’m-qrf)i,a.) . Fros
the combination Of these iaclusions with the raage eof i'(o) is a
set Ql"‘.t) we got (over a.(t) ) the cenvexity in %) aand in f?ﬂ
of the fumctiomals defining the sets Ul:/a,4) .. Convexity of the
sets Ul‘,la.)/’u,(q,l) (and therefere of (J(a,{) ) 1is implied by
the cervexity im T(H) of these fumctionals,

to i.luannor, lLett. Nwovo Cimento §, 690 (1972).
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11 convexity of A({,{') is implied (through the convexity of ?g(‘f,,n.‘)

2 2
in T (e oOver E,(0)3q ) by the convexity in Yis) (over CZ,(a) ) of the

functionals defining ag (a,4).

12 N.T.Rockafellar, Convex analysis (University Press, Princeton,
1970).



