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ABSTRACT 

The process of Sudden tunnelling of obliquely propagating extra-

ordinary mode is investigated in plasmas whose parameters vary along the 

magnetic field (parallel stratification). The wave tunnels through the 

evanescent region separating the right-hand cutoff layer from the electron 

cyclotron resonance. Coupled mode equations describing both ordinary 

and extraordinary waves are derived for arbitrary angle of incidence 

with respect to the magnetic field. Under appropriate conditions (nx 

and d 9,n (B)/dx not too large) the coupling can be ignored, and the 

usual Whittaker equation is obtained for a linear magnetic field profile. 

It is shown that deviation from strictly parallel propagation (n f 0) 

has a very small effect on tunnelling for a wide range of angle of 

incidence. The analytical results are verified by numerical integration 

of the field equations. The theory is applied to the propagation of 

extraordinary mode waves in the surface plasma of the ELMO Bumpy Torus 

devices. Fractions of incident power absorbed and transmitted to the 

high field region in the range of 2-15% occur for a broad spectrum of 

n . x 

1 
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I. INTRODUCTION 

One of the most promising techniques for wave heating of plasmas 

makes use of the extraordinary mode at frequencies near the electron 

cyclotron frequency (u ^ n^). Electron cyclotron heating (ECH) has been 

successfully applied in bumpy tori [DANDL et al. (1975) and DANDL et al. 

(1976)], tokamaks [ALIKAEV et al. (1974) and ALIKAEV et al. (1976)], 

multipoles [SPROTT (1971) and KERST et al. (1971)], and other devices. 

One crucial aspect of ECH is the accessibility of the cyclotron resonance 

zone to waves propagating from outside the plasma. It is well-known 

that extraordinary mode waves propagating from a low magnetic field 

region (or in some cases from a low density region) are reflected at a 

wave cutoff before reaching the resonant zone. In particular, at the 

right-hand cutoff defined by 

the extraordinary mode does not propagate at any angle. However, if the 

region between the cutoff and the resonance is thin, the wave energy can 

be partially absorbed at the resonance and partially transmitted into 

the high field region by the process of Budden tunnelling [BUDDEN (1961), 

STIX (1962), and WHITE and CHEN (1974)]. 

The details of the tunnelling process depend sensitively upon the 

plasma geometry. In some devices (e.g., tokamaks) the plasma is ade-

quately modeled as a slab with straight magnetic field lines B along the 

z direction and all gradients of density n e and gradients of magnetic 

field strength being perpendicular to B, say in the x direction. In 

1/2 
(1) 
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such a plasma, stratified perpendicular to B, the refractive indices in 

the z and y directions (n = k c/w, n = k c/w) are constant as the wave J z z y y 
propagates because of Snell's law. Cold plasma theory then predicts 

that if n = 0 , the extraordinary mode wave is cut off (n + 0) at a y x 
density and magnetic field strength such that 

(1 - B)n£ - 2(1 - a - 3)n2 + (1 - a) 2 - S = 0 (2) 

where 

3 = fi2/u>2 
e 

a = u 2 /w2 
pe 

eB 
n = z 
e m c e 

4irn e 2 
2 e 

= , 
pe m e 

and the extraordinary mode wave has a resonance at the upper hybrid 

frequency u>2 = w 2^ = w 2
p + Q 2. The resonance frequency is independent 

of the angle of incidence, k^. This case of stratification perpendicular 

to the magnetic field has received the most attention [BUDDEN (1961) and 

WHITE and CHEN (1974)]. 

Ivi other devices such as bumpy tori, mirror machines, or multipoles, 

the variations in B and n g along the magnetic field are very important 

and in some regions can dominate variations perpendicular to B. As an 

example, Fig. 1 shows a cross section in the equatorial plane of one 

cavity of the ELMO Bumpy Torus device (EBT). The magnetic field lines 

and cyclotron resonance surface are shown, as well as the location of 
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the right-hand cutoff surface for a particular plasma density model 

[BATCHELOR (1978)]. Near the cyclotron resonance, particularly at the 

magnetic axis, the magnetic field varies strongly along the field lines 

(a magnetic beach). As a simple model of this type of geometry, we 

consider in this paper a plasma slab which is stratified parallel to the 

magnetic field. The magnetic field is taken along z, and the field 

strength is assumed to vary only with z [B = B(z)z]. 

In this geometry the components of the refractive index in the x 

and y directions are fixed as a consequence of Snell" - law, and we can 

without loss of generality choose n^ = 0. Using cold plasma wave 

theory, one finds that the parallel index of refraction n^ satisfies a 

dispersion relation of the form 

An1* + Bn2 + C = 0 (3) 
2 Z 

where 

A = (1 - a) U - S) 

B = -2(1 - a) (1 - oi - S) - [(1 - a)(l - 6) + 1 - a - 0]nJ 

C = (1 - ct - fi)n£ - [(1 - a)(l ~ a - g) + (1 - a)2 - 0]n2 

+ (1 - a) [ (1 - a) 2 - |3]. 

Here the extraordinary mode resonance (A -> 0) occurs at 6 = n 2/w 2 = 1 

independent of n^, and the extraordinary mode cutoff (C 0) occurs at 

(1 - a) 2 - (3 - (1 - a - (3)nJ - 0 . (4) 
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The specific application we have in mind is to the surface region 

of the EBT-I device. Here the density is low, and the resonance and 

cutoff zones are relatively close together (Fig. 1). Aside from the 

mechanism of tunnelling through the cutoff, the extraordinary mode 

microwaves injected near the mirror midplane cannot directly penetrate 

into the cyclotron resonance. The density and temperature of EBT-I 

are such that ordinary mode waves are only very weakly absorbed. Simple 

calculations for propagation along the magnetic field indicate absorption 

and transmission efficiencies in the range of 1-15% for parameters 

appropriate to the EBT-I surface plasma.. The crucial question is how 

the absorption and transmission fraction vary as the wave propagation 

departs from parallel to B (i.e., n ^ 0). If the transmission fraction 

is >0.1 for a significant spectrum of n^, then tunnelling can play an 

important role in the ECH of EBT. In the final section of this paper, 

it is shown that for moderate values of n (e.g., 0 < n < 0.5) the 

tunnelling and absorption efficiencies are nearly independent of n^. 

In section II we derive, from Maxwell's equations and the cold 

plasma dispersion tensor in this geometry, scaled equations for the 

electric field components E , E [Eq. (9)]. For propagation exactly x y 
along the magnetic field (n = 0) these equations can be combined to 2C 

give simple, independent second-order equations for ordinary and extra-

ordinary eigetunodes. However, if n^ is nonzero, the eigerunodes do not 

separate and one must deal with a fourth-order system. In section II we 

•identify eigenvectors of the homogeneous plasma corresponding to forward 

and backward propagating waves of both ordinary and extraordinary mode 

and derive a set of four first-order coupled equations describing their 
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behavior in an inhomogeneous plasma [Eq. (29)]. As might be expected, 

the actual coupling between ordinary and extraordinary modes is weak, 

even at the extraordinary mode resonance and cutoff, provided that the 

magnetic field scale length is small in comparison to the free space 

wavelength and that the n is not too large. We combine the coupled 

mode equations to show this coupling explicitly; then neglecting the 

ordinary mode we obtain a second-order equation for the extraordinary 

mode alone. Interestingly enough, the equation obtained is exactly what 

would have resulted by simply plugging the refractive index obtained 

from Eq. (3) with n + 0 into Eq. (10) which is valid for n = 0 . The 
X X 

mode vector, however, is much more complicated than E = E + IE "r x y 
which one finds for n = 0 . 

X 

In section IV we consider the problem of a linear magnetic field 

profile. The equation then reduces to the standard Budden tunnelling 

problem with modifications due to n^ of the effective parallel wave 

number ko and effective cutoff thickness xo> It is found that the 

tunnelling and absorption coefficients are not significantly modified if 

n x is small enough that coupling to the ordinary mode is unimportant. 

The analytic procedure is verified by comparing to a numerical inte-

gration of the field equations. Section V contains a brief summary. 

Details of the derivation of the mode coupling matrix are contained in 

an appendix. 



II. DERIVATION OF THE FIELD EQUATIONS 

For a cold magnetized plasma with the magnetic field oriented along 

the z axis, the wave equation takes the form 

2 x 2 x E - — E = 
- c 2 

4iriu 
c 2 

g • E , (5) 

where the conductivity tensor g is given by 

" E l ie2 0 -
iui 

S = 4? -ie2 ex 

_ o 0 

0 

23. 

» (6) 

and 

ur 
si = 

a)2 - n2 
e 

e2 = 
£2 u) e_ pe 
0) to2 - n 2 

e 
£3 

U>2 
-EE 
U>2 

The plasma parameters are assumed to vary only with z so the electric 
i(k x+k y) 

field can be represented in the form E(x) = g(z)e x y- Without 

loss of generality we choose k^. = 0. Equation (5) then becomes 

3 ZE 

dz 

3E a) x ... x — h ik 
2 x z 3z c 

+ — [(ei - l)Ex + ie 2E y] = 0 (7a) 

3 2E U 2 

+ k 2E + — [-ie2E + (ei - 1)E ] 2 * y c 2 z * y 3z 
(7b) 



'dE 
ik 

x - + k2 E + — (e3 - 1) E - 0 
dz X Z 5 (7c) 

These equations are simplified somewhat by using Eq. (7c) to eliminate 

E and noting that e? = ft /u> ei, z e 

a2 

(1 - e 3) + kg(l - ei)(l - e3 - n 2) 
3z2 

m 
Ev - kgtjfl - e3 - n 2) —S- E x' y w 

n 2e' X 3 5E 

1 - £3 - n 2 3z 3 x 
, (8a) 

3z2 
7 + kg(l - Ci) - k2 

x 
n 

E + k2E! i — E = 0 y 0 1 X 
' 0) 

(8b) 

where kn = <u/c is the vacuum wave number, n 2 = k 2c 2/w 2 is the refractive 
3o)2 X X 

index in the x direction, and = /u2. We now restrict consideration a z 
to systems in which only the magnetic field varies with z (e^ = 0). 

Introducing the dimensionless variable 5 = kgz and the notation a = m^/u)2 

and 6 = ft2/w2, Eqs. '8a) and (8b) become 

(1 - <0(1 - 3) 3
2 

3? 
- + (1 - a - 6)(1 - a - n 2) 
2 x 

- ia \/f (1 - a - n 2)E x y = 0 

(1 - B) — + (1 - a - 3) - (1 - 6)n2 

3S2 * 
E + ia VB E = 0 . y * 

(9a) 

(9b) 

This set of coupled equations describes the propagation of electro-

magnetic waves at an arbitrary angle in a cold plasma where the magnetic 



9 

field is a function of z Cor ?). In the limit n^ 0, Eqs. (9a) and 

(9b) can be combined to give independent equations for left and right 

circularly polarized waves E+ = E ± E , 

Here the upper sign corresponds to the extraordinary mode and exhibits 

the resonance/cutoff pair, whereas the lower sign corresponds to the 

ordinary mode. Taking the upper sign and assuming a linear profile for 

B ( O near the resonance (i.e., Vk = 1 + <C) gives a form of the Whittaker 

equation, 

where = This is the standard form of the Budden tunnelling 

problem. For nonzero n^, however, the two modes do not separate unless 

the magnetic field is constant. The problem must therefore be treated 

by means of the coupled mode equations. 

(10) 

(11) 
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III. DERIVATION OF THE COUPLED MODE EQUATIONS 

The field equations (9a) and (9b) can be solved in nonuniform 

geometry by considering the characteristic modes of the infinite uniform 

plasma and developing equations describing the coupling between these 

characteristic modes [see for example Chapter 18, BUDDEN (1961)]. To 

accomplish this, it is most convenient to work with a set of four 

first-order equations. Introducing the field vector, 

/ 3E 3E \ 
u(?) = (ui, u2, u 3, ui») = ^Ex , , Ey , j^-j , 

Eqs. (9a) and (9b) can be written in the form 

0 1 0 0 ui 
au C21 0 c23 0 u 2 

3? = 
0 0 0 1 u3 
Cl+l 0 c4 3 0 

= c«u (12) 

where 

c2i = -
(1 - a - 8) (1 - a - n £ ) lot (1 - a - n £ ) 

' C 2 3 (1 - a)(l - 3) (1 - a) (1 - 3) 

c m = - ia VP 
1 - 3 ' 

C43 = -
(1 - a - 3) - (1 - 3)n2 

1 - 3 

For a uniform plasma = 0 , we find solutions of the form u(?) = ue1"^ 
° £ ~ 

where the eigenvector u satisfies 

(iAI - c) • u = 0 , (13) 
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and A satisfies the secular equation 

A = det (iXI - c) = 0 . (14) 3; fa 

Expansion of the determinant above yields the quartic dispersion relation 

for X, given previously in Eq. (3). We now enumerate the roots of the 

dispersion relation as follows 

where D - B 2 - 4AC and A, B, and C are defined after Eq. (3). Roots 1 

and 2 correspond to ordinary mode waves propagating in the plus and 

minus z direction respectively, while roots 3 and 4 correspond to ex-

traordinary mode waves propagating in the plus aiid minus z direction. 

For each eigenvalue A.., there is an eigenvector u^ given by Eq. (13). A 

simple choice for these eigenvectors is 

= ia N/T(1 - a - n 2) , uj = ±\ J , x x z J i 

(16) 

ui = -(1 - a)(l - B)A? + (1 - a - 6)(1 - a - n 2) , uj = iA.uJ" .. O J x H J J 

To proceed, it is also necessary to solve the adjoint eigenvalue 

problem 

(~iA*I - c +) • v = 0 (17) 

t 

where c is the adjoint of the matrix c defined in Eq. (12). A con-

venient choice for adjoint eigenvectors v^ is 
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1 * i v^ - -iX vJ 
1 j 2 

vj - (1 - a)(1 - B)X*2 - (1 - a)[(l - a - P) - (1 - g)n2] z j x 

v? = ia v T (1 - a - n 2) . (18) 4 x 

A direct calculation shows that, with this choice, u^ and vJ satisfy an 

inner product relation of the form 

v 1* - uj = -a yfii (1 - a - n 2)(X 1 + Xj)[A(Xi2 + X j 2) + B] . (19) ~ x 

Using the dispersion relation this can be reduced to an orthogonality 

relation 

v 1* • u3 = -2o (1 - ct - n 2 ) X i 0 l V5" 6 ± i = w ^ . . , (20) 

where w^ is a weight factor, is the Kroeneker delta, and o^ is the 

sign with which the discriminant D appears in the eigenvalue, i.e., 

+ 1 for i = 1, 2 (ordinary mode) 
(21) 

- 1 for i = 3, 4 (extraordinary mode) . 

We now introduce a 4 x 4 matrix S whose column vectors are the 

eigenvectors u 1, u 2, u 3, and u 4 and a matrix T whose row vectors are 

complex conjugates of the adjoint eigenvectors v l, v 2, v 3, and v1*. The 

product matrix TS is diagonal 
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[TS]±J - v 1* • u j = w ^ y . (22) 

Also, since the columns of S are eigenvectors of c we have 

[TCS]^ = ±A jw i6 l j . (23) 

The field vector u(?) is resolved at each point into a linear 

combination of the four uniform plasma eigenvectors. Let u(?) be a 

vector whose components tL (t) are the local amplitudes of the jth eigen-

mode in u(0> then 

u(C) = S • u(c) . (24) 

Using this in Eq. (12) gives 

3u 3S 3u 
+ < 2 5 ) 

Multiplying on the left by T and eliminating u gives the equation for 

3u 3S 
T • S • - T • c • S • u = -T • -r̂ - • u . (26) a ^ o L, ~ % 3 ~ ~ o Lj ~ 

The left side of Eq. (26) is diagonal and describes the evolution of 

the separate modes in the absence of coupling, while the right side of 

Eq. (26) describes the coupling between modes due to the inhomogeneity 

of the plasma. 

The evaluation of the coupling matrix TS' is quite tedious and is 

therefore outlined in the appendix. The result is 
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[TS' J^j - - \ a(l - a - n2)Wg V&" (Xj) '(t^ + o ) 

+ (X1 + Xj)[(oi + O J ^ K + VlTo Dj - aSn2*]} (27) 

where prime denotes differentiation with respect to and X^ and a^ 

are given by Eqs. (15) and (21) respectively. We have also defined a 

dimensionless inverse scale length for magnetic field variations 

k(S) = 3 and introduced the quantity Dq where 

D = vTa{[2(l - a) - n 2] 2 - (1 - B ) ^ } 1 / 2 = V3~ D0 . (28) 
X X 

It is clear from Eq. (27) that ordinary and extraordinary mode waves 

(o^ = a r e coupled only by the final two terms of TS'. Furthermore, 

this coupling disappears completely as n^ •»• 0 [note DQ 2a(1 - a) 

which is independent of £]. Also, oppositely propagating waves of the 

same type (X1 = -X-') are coupled only by the first term of Eq. (27). 

Using this equation in Eq. (26) gives a set of four coupled equations 

for the mode amplitudes u^(£), 

/3 \ M 2K q 1 ^ 
2 I iXi J + — + — + — ui u 2 
. \3c / Xj v5"j Xj 

2 v6~ 

'Xj + X3 ^ Xj - x3 ^ 
u 3 + u^ (29a) 
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/a \ xj q 
( — + iAj ) + — + 2 — + — 
\3c / Vb vfT 

A A u 2 U 1 

2 vfr 

M - x3 Ai + X: 
u 3 - u. (29b) 

t - "3) X3 K q 
+ — + 2 — 

x3 Ve v5". 

. X3 
A A 
u 3 Ult 

2 Vfr 

Xi + X3 Xi - x 3 
A A 

U l u 2 
X3 X3 

(29c) 

/3 \ X3 K q_ 
2 I — + iX3 J + — + 2 

/ X3 n/6 V&. 

^ 3 « A Ul4 u 3 

^ 3 

2 V & 

-Ai + A3 Ai + A3 
/v , /v 
U l + U 2 

X 3 

(29d) 

where 

1+ = ±D' - a Vp n 2< 0 x 

These equations are quite general in that no assumption has been 

made concerning the plasma parameters a and 3, the angle of incidence n^, 

or the shape of the magnetic field profile VP (C). Neither is there any 

restriction on the wavelength compared to the magnetic field scale 

length. A variety of coupling and reflection problems could be attacked 

by direct solution of the coupled mode equations. However, for the 

present application, it is instructive to make contact with previous 
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work on the Budden tunnelling problem based on second-order field equa-

tions. To this end we take the sum and difference of Gqs. (29a) and 

(29b) 

— (ux + u 2) - iAj(Gj - u 2) + X+(ux + u 2) = 
2 

(u3 + u 4) 

(30a) 

— (u-i - Go) + 
ae 

— x , (u: - U 2) - iX^Uj + U 2) 

q_ 
2 vfr \ 1 

— (Uq - u u) (30b) 

where 

X = — + 
+ y/fi 2 v® 

Similarly, using Eqs. (29c) and (29d) gives 

+ X (u3 + U(4) - iX3(u3 - Ult) = 
2 v6 

(ux + u 2) (31a) 

3 X3 
— + — + X 
9? X3 

X1 
(fi3 - a^) - ix3(G3 + a 4) (fij + a 2) o i b ) 

X3 2 

where 

X = 
< q_ 
S 2 V ? 
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Equation (30a) is solved for (Gj - u 2) and the result substituted in 

Eq. (30b); also, Eq. (31a) is solved for (u3 - u^) which is substituted 

in Eq. (31b). This yields a set of second-order coupled equations 

involving only the sum of the amplitudes for the forward and backward 

propagating ordinary modes Qj + u 2 and the sum of the amplitudes for the 

forward and backward propagating extraordinary modes u 3 + u^, 

H' 
2 3X+ + \ + — -

H 
+ 2X — 

3C 
+ X z + V I 

4D 
(u, + u 9) 

L (2 vff) 
q_(q+ + q_) 

4D 
(G3 + G 4) (32) 

3?' 
+ A2 + 

3X 3 
— 1 1 + 2X — + X* + 
3^ 3? 4D 

2 • V 1 - (Go + G u) 

3 

ac 

/ q + \ q + ( q + + O 

\2 v£>/ 4D 
(Gj + u 2) . (33) 

These equations are still exact. However, the terms involving q + 

are second-order in the magnetic field gradient. Furthermore, these 

terms are not influenced by the singularity in A3 which occurs at the 

electron cyclotron resonance. Assuming that the magnetic field gradient 

is weak (k < 1), we can neglect the coupling terms on the right and the 

last term on the left of Eqs. (32) and (33) unless the discriminant D 

vanishes. Reference to Eq. (28) shows that this does not occur unless 

a s 1 or n 2 = 1 in which case the tunnelling is exponentially small anyway. 

The terms involving X + can also be eliminated by means of the transfor-

mations 
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U! + u 2 = U exp 

£ 
U 3 + Uii = V exp [ - J dc'X_(?r) (34) 

The newly defined field variables U representing ordinary mode and V 

representing extraordinary mode satisfy simple uncoupled differential 

equations of the form 

( — + U = 0 (35) 

( l L + x ; ) v . 0 . (36) 

Ther>e equations are precisely what would be obtained if one simply 

substituted the refractive index for n x ^ 0 given by Eq. (3) into 

Eq. (10) replacing 1 - a/(l ± V3). The field variables U and V are, of 

course, much more complicated than the E+ in Eq. (10). 
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IV. SOLUTION FOR LINEAR PROFILE AND DISCUSSION 

Budden tunnelling of the extraordinary mode in parallel stratxiied 

plasmas is described by Eq. (36) with X2 given by Eq. (15). In order 

that coupling to the ordinary mode be weak, we must restrict to K = 

3 vf/3? < 1 where ? = koz and n < 1. To proceed, X2 is expanded, 

keeping only terms of order n 2. Expanding the discriminant gives 

n' 
V D ~ = 2 a V f l l - c t - 2 i J + O(nJ) , (37) 

so that 

1 - nx - r ^ r i -
yfi n 2 

x 
2(1 - a) J + 0(n 4) x (38) 

We now assume a linear profile for the magnetic field and measure X, from 

the cyclotron resonance, 

n (?)/w = V3 = 1 + K£ = 1 + - , e L, (39) 

where K is now constant. Equation (36) then reduces to the form 

d 2 J X ° Y V = 0 , (40) 
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where 

(2 - ct)n2 
K0 ~ 1 ~ 

x0 = -

2(1 - a) 

a/< 
(1 - a)n2 

1 -
2(1 - a) - n 2 

x 

Equation (40) is a Whittaker equation in the standard form of the 

Budden tunnelling problem. The Stokes parameters for this equation are 

well-known, and the usual analysis gives reflection coefficient |R|2, 

transmission coefficient |T|2, and absorption coefficient |A| 2 of the 

form [BUDDEN (1961), WHITE and CHEN (1974), and ABRAMOWITZ and STEGUN 

(1964)] 

/ -TTK0X0 \ 2 
I R| 2 = \1 - e / (41) 

-TTK0X0 
T|2 = e (42) 

AI2 = 1 - |R|2 - |T|2 = e VL - e ) . (43) 
- i r K 0 X 0 ^ — K 0 X 0 ^ 

Insight into the behavior of these coefficients can be obtained by 

expanding KqXq for small density (a < 1) and small n 2, 

K0 X0 - £ 

an 2 

4(1 - a) x (44) 
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where we have assumed 

2 (2 - «) 
x 2(1 - a) 

The first term of Eq. (44) is the correct limiting value for n x •*• 0. 

For low density and n x < 1, the second term is indeed a small correction. 

Within the range of validity of the expansion, the transmission and 

absorption coefficients actually increase (KQXq decreases) as n 2 

departs from zero. Although finite n 2 increases the separation between 

resonance and cutoff, XQ, it also tends to increase the effective parallel 

wavelength (KQ /2H)-1. The total effect is to increase transmission and 

absorption for small values of n 2. 

For the application to EBT-I, the wave frequency is 18 GHz; the 

density in the outer region of the plasma is n g ^ 1 x 10 1 1/cm 3 to 

2 x 10 1 1/cm 3, a = 0.025 to 0.05, and the magnetic field scale length is 

typically L = 6.5 cm [K = (koL)-1 ^ 0.04]. With these parameters the 

n = 0 transmission and absorption coefficients are in the range |T|2 ^ 

0.15 to 0.02 and Ia|2 ^ 0.125 to 0.02. The correction due to nonzero n 1 1 x 
is quite small since 

<2 0.01 n 2 

exp 
an' x 

n 4(1 - a) = e x a 1 for n 2 < 1 . x 

We conclude therefore that fractional energy loss from Budden tunnelling 

and absorption of the order 20% to 30% should occur for a wide spectrum 

of incident wave angles. 

As n x increases, the assumptions under which the ordinary and 

extraordinary mode equations were separated must eventually break down. 
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To estimate this we could go back to the coupled mode equations Eqs. (32) 

and (33) and treat the coupling as a perturbation. Instead we have 

chosen to verify the entire analysis by solving the field Eq. (12) 

numerically. Using a linearly increasing magnetic field profile, u(s) 

is initialized to be an outgoing extraordinary mode wave for £ = > 0, 

i.e., u(C°) = u3 as defined by Eqs. (15) and (16). Equation (12) is 

then numerically integrated backward through the resonance-cutoff to a p 
point £ = e 0. To avoid the mathematical singularity at c = 0, a 

small collision frequency (v/u> ^ 4 x 10 - 6) is included in the conductivity 
p 

tensor Eq. (6). After the integration, u(c ) is resolved into a linear 
i F combination of the eigenmodes u (£ ). In general, for n ^ 0 the final x 

i F wave on the left uJ(e ) is found to contain a nonzero component of 
F 

incoming ordinary mode u'(s ) due to the coupling. Since the problem we 

seek to solve is that of purely extraordinary incoming wave, we add a 

small component of outgoing ordinary mode on the right u '(£°) and adj ust 

its amplitude and phase iteratively until the component of ordinary mode 

incoming from the left is <10-5. 

Figure 2a shows the reflection coefficient |R|2 calculated analyt-

ically using Eq. (41) and numerically (circles) as well as the fraction 

of extraordinary mode energy converted to ordinary mode (dots) as a 

function of nx» For this calculation the parameters were a = 0.04 and 

K = 0.0398 (i.e., L = 8ir/kg = 4 free space wavelengths). It can be seen 

that the agreement is almost exact for n^ < 0.3. There is virtually no 

disagreement until significant coupling to the ordinary mode occurs at 

n^ > 0.5. Examination of the solutions reveals that the ordinary mode 

energy is generated in the vicinity of the resonance-cutoff and that it 
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is roughly equally divided between the left and right going waves. 

Figure 2b shows analytic and numerical (circles) values of the trans-

mission |l|2 versus n^. The absorption coefficients |A|2, both analytic 

and numerical, are nearly equal to corresponding values of ]T|2. Again 

the agreement is excellent until ordinary mode coupling becomes important. 

The transmission coefficient does increase slightly with n as suggested 

by Eq. (44) although this is not evident from the figure. 
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V. SUMMARY 

We have investigated the tunnelling of obliquely propagating extra-

ordinary mode energy through the right-hand cutoff to the~Si^.ctron 

cyclotron resonance in plasmas whose parameters vary along the magnetic 

field. Starting with Maxwell's equations in a cold magnetized plasma, a 

set of four coupled mode equations [Eq. (29)] were derived which describe 

the propagation of ordinary and extraordinary mode waves in an inhomoge-

neous plasma. These equations are quite general; no assumptions are 

made concerning the plasma density, angle of incidence, magnetic field, 

or shape of magnetic field profile. It was shown that for sufficiently 

weak magnetic field gradients and a small deviation from parallel propa-

gation, the ordinary and extraordinary mode equations can be decoupled 

[Eqs. (35) and (36)] even at the resonance-cutoff. Under these restric-

tions we have found simple analytic expressions for the Budden tunnelling 

transmission, absorption, and reflection coefficients. By numerical 

integration of the original field equations, the results were verified 

for n <0.5, and the breakdown of the approximations and coupling to 
X 

ordinary mode were demonstrated for larger n^ (l?ig. 2). An application 

was made to the surface plasma in the ELMO Bumpy Torus device. 
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APPENDIX. DERIVATION OF THE COUPLING MATRIX TS' 

The coupling of the four eigenmodes in Eq. (26) is defined by 

T • 3S/3C. where T and S are defined above by Eq. (22). The i,jth 

component of TS' is given by 

t T S' ]ij = ' TiT • ( A 1 ) 

where u^ and v̂ " are defined in Eqs. (16) and (18). Differentiating 

Eq. (16) gives 

(u-|)' = ia(l - a - n2)K 

(u^)' = IAj(u^)' + iA'u^ 

(u|) ' = k [ (1 - a)A2 - (1 - a - n 2)] - 2(1 - a) (1 - B)A.A.' 

J J x j j 

(ujj)' = iAj(u J3)' + iAjul , (A2) 

where prime denotes 3/35, and we have defined k = 3 Vff/35. Using these 

expressions in Eq. (Al) gives 

[TS']^ = i(Aj) '(v2*Uj + v J V j ) + i(A^ + X .) [vj*(xx\) ' +vj*(u])'] 

(A3) 

Using Eqs. (16) and (18), the first term in brackets can be written as 
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+ vt* u3 = lot ~ a " n x ) { ( 1 " a > ( 1 " B ) ( X i + Xj } 

- 2(1 - a)(l - a - B) + [(1 - a - 0) + (1 - a)(l -

= ia vf(l - a - nx)|A(A2 + A2) + B | a \/B(l - a - n£) vfr (o± + 

(A4) 

where A and B are given in Eq. (3), and the last form is obtained by 

using the expressions for A^ in Eq. (15). Using Eqs. (18) and (A2) t 

second square bracket in Eq. (A3) can be written as 

vJ*(uJ) ' + vj*(uj3) ' = ia(l - a - n 2) (1 - o)(l - 3)A' 

- (1 - a)(l - a - 6) + (1 - a)(l - B)nM K + 2 n/B(1 - ot) (1 - B)A.(A.) ' x 1 J J 

- f23(1 - a)A2 - 26(1 - a - n 2 ) U ] = ia(l - a - n 2) - \ a3n2K 
[ J X J J X 1 FA X 

a, a. i 
+ V5 k + N/B ̂  (V5) ') (A5) 

where the last form is obtained using the dispersion relation and the 

expression for 

W a r -
9 /-B + O. V5 \ 1 , r 

= ac \ 2A ) = 2(1 - a)(l - B) 1" ^ K ( 4 ( 1 " a ) 

- 2(2 - a)n^ + 4(1 - ot) VB + '} 

Using Eqs. (A4) and (A5) and defining D0 by \/d = \/(f D0 gives Eq. (27). 
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FIGURE CAPTIONS 

FIG. 1. Cross section in the equatorial plane of an EBT sector. 

FIG. 2. (a) Fraction of incident extraordinary mode power reflected or 

converted to ordinary mode; (b) transmitted to the high field 

region. Parameters are a = 0.04, K = 8ir/ko. 
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