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STOCHASTIC ACCELERATION BY HYDROMAGNETIC TURBULENCE
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A peneral theory for particle acceleration by weak hydromagnetic
turbulence with a given spectrum of waves is described. Various limiting
cases, corresponding to Fermi acceleration and magnetic pumping, are dis-
cussed and two numerical examples illustrating them are given, An attempt is

made to show that the expression for the rate of Fermi acceleration is valid
for finite amplitudes.

INTRODOCTION

In astrophysics one finds that whenever ome detects turbulent motion
one finds evidence for emergetic particles. It is as though some engine
exists for turning violence into turbulence and then employing some of
the turbulent energy to create a population of energetic particles. This
mechanism becomes more plausible when aone appreciates that almost all
astrophysical plasmas are embedded in magnetic fields. The turbulent plasma
mations then transport the magnetic field lines back and forth producing
random electric fields. These electric fields can then change particles
energies accelerating them and decelerating them but in the course of these
random processes Iinereasing the energy of at least some to a large extent.

As an example: Considex the interstellar medium. It is filled with
magnetic field lines and we detect fast motion on the largest scale~cloud
motions. These motions give large seale fast moving magnetic f£ields, which
can accelerate either the cosmic rays already present or any mew particles
injected into the interstellar medium, An actual description of accelera
in this framework was given by Ferml in 19489. He pointed out that partic)as
would be reflected off the moving magnetiec clouds paining or losing energy
or. each encounter. He demonmstrated that there is a systematic effect, each
particle tending to gain more energy than it loses because it encounters more
head-on eollisions than collision with receding clouds.

Thus, to second
order in the cloud velocities u the particles systematically gain energy.
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A number of other mechanisms have been proposed for comverting turbulent
energy to energetic particle energy, One is 2 method akin to the betatron
acceleration process, proposed by SwanZ for the sun in 1933, and subsequently
developed by Falthammer™ im 1963 in velationm to the process of magnetic pumping.
The idea is that a particle in a rising magnetic field increases its energy
perpendicular to the field in such a way as to keep all the flux enclosed
by its orbit conserved. The trouble is that when the field decreases again,
as it usually does in a turbulemt situatiom, its energy decreases again and one
igback where one started,

Thic difficulty is inherent in all methods of acceleration by large
scale turbulence. The underlying difficulty lies with the adiabatic invariant

2
m=_s &8)
B

which remains constant for any particle seeing changing magnetic fields which
only change slowly on the scale of its basic cyclotron motion. Thus, as

long as this invariant is preserved, no matter what the fields do. the “per-
pendicular energy" will not change systematically, since B doesn't. For
example, Fermi's mechanism tends to increase P1; but p, does not change,

so that gradually the pitch angle, © = cos—l(pz/p), becomes too small for the
particle to be reflected off magnetic clouds, Thus, stochastic acceleration
does not exist without some additional mechanism which operates on the scale

of the gyration radius of the energetic particles and changes the pitch angle ©.
Fermi, of course, appreciated the point and imvoked thin shocks as a mechanism

for scattering the particles.

Fortunately, there is a simple and natural mechanism to produce such
scattering.A Whenever any momentum space anisotropies are present they lead
to a build up of Alfvén waves on the scale of the cyclotron radius. The
build up mechanism is an inverse Cherenkov effect acting on the cyclotron
resonance between the energetic particles and the doppler shifted frequency
in these Alfvén waves, This resonance occurs between the energe:i& particles
and waves on theiy cyclotron radius scale, thus changing m. Since the waves
are hardly moving, the primary effect of this resonance interaction is a random

scattering in pitch angle with very small change in energy. This instability
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will develop in a natural way in any acreleration situation because, first,
the loss of particles out of the turbulent region is a streaming which builds
up the waves and, second, the acceleration mechanisms themselves act on the

distribution function of the particles in an anisotropic way leading to
build up of the small scale waves,

It is to be emphasized that, from this point on, in discussing accelera-
tion by hydromagnetic turbulence we deal with turbulence on two different
scales: one the original given large scale turbulence and two the small scale
turbulence (on the gyration radius scale) which must arise and provides us
with the necessary amount of pitch angle scattering to complete the accelera-
tion processes.

THE EFFICIENCY OF ACCELERATION

Since in general we are dealing with many different emergetic particles,
each being chaotically accelerated in a random way, it is best to employ a

statistical description of them. It turms out that because each particle

changes its momentum p by a large number of small steps it is possible to
write down a Fokker Planck diffusion equation for the time evolution of the

particles in momentum space f. Let E(E)dap be the number of particles in

the momentum box dap about p., We may take f as nearly isotropic because of
the remarks above, Then neglecting space dependence we may write

wo w00 R @
where D is the diffusion coefficient (4p) 2It. and must be determined in
terms of the properties of the turbulence.

Ferrari and the authors have obtained a fairly complete solution for D
in the case where the hydromagnetic turbulence is of small amplitude 8B << B
We employ a double expansion first in the guiding center limit according to

the technique of Chew, Goldberger and Low, and then a quasilirear expansion.
The result is as follows.

We start with the full equation
-§£+v-v ff!—'e(E +VXB).V f=L (\) l.:-\“._z of )
3t = = ===)"p 2 3
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where E and B are the electromagnetiec fields of the turbulence, U = cos 0 =
pzlp, v is the scattering rate due to turbulence on the microscale and it is
assumed that in the lab frame this scattering conserves energy. (Acceleration
due to this process hag been congidered by Skilling and will be discussed later.)
The electromagnetic fields are assumed to congsist of a uniform wmagnetic '
field go, a plasma filling a certain reglon, and superimposed on this uni-
form field and plasma a large number of waves gathered i. .ndomly disposed B
wave packets. Such a situation is best described by the random phase
apprbximation. It turns out we are only interested in variations in the mag-
netic field strength B.

Writing
15=\§_1=n°+31 (&)
and Fourier analyzing Bl
B, = [k du ! ®E 790 g (e,0) )

we find that Bl(}_,m) has an exceedingly wild dependence on k and ® since
it depends on the position of the wave packets. Ensemble averaging over the

positions of these wave packets we have
A 2 - -
<Bl (k™yu7) B, (k,0 )> =B, Iik,w ) 5(k"~k)§ (w”-uw) (6)

where I (k,w) describes the distribution of relative magnetic emergy in k,

and w. For fixed k it will be generally peaked in w near the frequencies of

the natural wave modes W with width comparable to the lifetime of the

corresponding wave packets. The integral of I(k,w) over w, I(k), will have a

smooth dependénce on k and by the Wiener theorem canm be considered to be the

square of the transform of a typical wave packet, Thus, if each wave packet *
is many wave lengths, N, long the functlon I(k) will be peaked about the

principal wave number ko in the wave packet and of width Ak-kolN.’ The nor- '
malization of 1 18 such that
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Each wave packet will interact with the particle by some acceleration
mectandon, fermi, ets., and the particle will random walk in energy &
or ihs wapunltude of mementvu p Ay a vesult of these frequent entounters.

The sum of all :hes» inkeracieions leads to an expression for D

Dip) = DIZ ’i‘;_{f_ dw v (kz,m‘,u) I (k,w) . (8)
Here y repressnts a certain rate of diffusion in p per unit relative ampli-
tuce of B fc¢ each wave pecket, characterized by kz, w, and v the velocity
of the particle «f momeatum p. It can be found from the double expansion-
guiding center and quuuilinear—mentioned above, and its evaluation is
thus reduced to evaiuetion of the integral

2 1 l_uz
L'} Re 1du == z{u) (9

where z(u) satisfies the differential equation in

2
3 ( 1 v 3z )+ ifo-k vu)z=}:_gz .
ou 2 n 2 2

(10)
v, the microscopic scattering rate, will in general depend upon U,
but for simplicity let us consider it to be a constant, In this case Yy can
be evaluated in various limiting cases, Let 2 = v/v denote the mean free

path,
* Then in the strongly collisional limit we have

=1 wdy + 2up
T e % :::Dm e malAY (w
wy = k"; oo, (11a)

This result is valid for waves with wave length much longer than the mean

free path, The first term is the familiar result valid for kz =0, w finite.




It arises as follows: The field compresses, Py, increases, and then a fraction

of the perpendicular energy is removed by collisioms (at least if v<< w ). =T
Then on decompression of the field a smaller amount of p, emergy is removed
and there is a net gain. A similar »rgument applies if w << v and a better
argument gives the formula for w/v any magnitude.

The second term applies to a different process of avoiding full de-~
compression, which we denote as inhomogeneous magnetic pumping. Here,
energy is removed from p, by diffusion to a part of the field line which
is not expanding.

It turns out that the second term always predominates if v is larger
than the phase velocity of the wave m/kz. This is always the casé for really
energetic particles, so in calculating the amount of magnetic pumping care
must be taken to employ the second more important term, Otherwise the actual
efficiency of magnetic pumping will be seriously underestimated.

Next let us consider the collisionless limit k& >> 1, Here there are

two cases v > w/k or v < w/k, For the first case we have

(1 ) TV, W1 . (12)
A

Tkis is the low amplitude limit for Fermi acceleration as shown by Sturrock

and Hall.6 Since the waves propagate at slower speed (in cases of interest

much slower speed) than that of the particle, there exists a certain pitch

angle at which the particle travels with the same speed as the wave along

BD. For this pitch angle it suffers a resonance interaction with the wave

exchanging energy with the wave, Particles travelling at other pitch angles

are occaslonally scattered into this resonant region of pitch angle space

also getting accelerated or decalerated, y thus represents the mean effi-

ciency for acceleration. It is of interest that y is independent of v to t
lowest order. The reason for this will be discussed later when we discuss

nonlinear effects but Sturrock and Hnilﬁderived the identical result from .
a collisionless theory. (There are essential differences between the colli-

sional and collisionless theory when.higher order non-linear effects are in-

cluded.)
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We can see the regions of applicability of our results from the log k& ~
loz w/v diagram of Fipore 1,

I st. Term ®

Magnetic / Fumping <«

2nd Term

Figure 1
The right hand lower side 1s the region of collisionless theory where Fermi
acceleration is applicable, The left hand aide is the repion of magnetic
pumping. TFor the upper left hand side the first term for homogeneous m#gnetic
pumping predominates, On the left hand lower side the second term, inhomogeneous
magnetic pumping, applies, As oneincreases k assuming v o 2 w/k 15 a constant
one proceeds along a line with 45° slope directed toward the upper right hand
corner of the diagram. One can show that if w/k < v and fixed, Yy increases
monotonically with k.




For very small k (very long wave lengths) the diffusion time w_ is

D
small compared to w and one has
w. 292
D keg Yﬂ_
— ) —— < <
Y & 27 27 Vo, kR . ) (13)
At intermediate values Uy > w and
2 2
. W _ v v,
YR == =% v, 9 <k< 1 . (1&)
¥ W v
At large values of k we have
2
. I w? _1 v ,
Y a_m—;kz%—v, 1< ke . BN GL))

Thus, Fermi acceleration 1s the most efficient type of acceleration for
the same amplitude, However, it applies only to shorter wave length waves
whare in gengral the energy density I‘k ia smaller. For a Kolmogoroff
spectrTum

k—-Zl 3 ,

ka N (16)

/3‘ k-2/3’ 1t\ll:'\.

Thus for such a spectrum a peak occurs in the effective acceleration rate

so the effective acceleration of each region goes as k4

when By ~ W and then another near the cutoff point for the inertial range of
the Kolomogoroff spectrum, Hence it is not possible to say in general that
Fermi acceleration dominates magnetic damping but my impression is that it
usually does,

Now consider the energy diffusion by the microscopic turbulence on the
scale of the gyration radius of the energetic particles. Skilling7 has
shovm that if the Alfvén waves propagate with equal energy back and forth

then

¥ =V o {17)
¥
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It 1s unlikely that such waves would be set up by the cosmic rays themselves
as this would imply energy flow ito the waves. It 1s clear that for these
waves k? >> 1, so it is approprilate to compare this with Fermil acceleration
the ratio being k% in favor of Fermi, Thus, one can probably disregard
acceleration in this regime unless for some reason the wave amplitude ies
very large.

TWO NUMERICAL EXAMPLES

To put these results into perspective let us consider two nomerical
examples, with a rather hypothetical choice of parameters:

First, let us examine acceleration of cosmic rays v * ¢, by hydromag-
netic turbulence in the interstellar medium (ISM). As a rough value for
the pitch angle scattering let us choose a mean free path of 1 pc., a mean
intercloud density of ,2H atoms per cm3 and a magnetic field B of 3 x l()"—6
gauss. All the waves will propagate at the Alfvén speed

VA= Yy m 1.5 % 106 em/s (18)

so vd> 1s very small compared to c. Expressing k in units of pc_l, kpc
we find

- -13 -1
w=15x10 kpc s (19)
v =108 oL (20)
2 2 .,.=8 -1
wy = ®R)° v = kpc 10 8 (21)
Thus, for kpc <1, up Guy v >
and, ) 2
W w
- N 1
Yol Ty e
= 1.8 x 1077 kpcz +8x108 1 (22)

so the second term is clearly predominant., Thus
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v 24 (23

H
where TH is the Hubble time. Since Yy must be multiplied by ka << 1,
acceleration by mapgnetic pumping is clearly negligible.
For Fermi acceleration we have
< Le? 10718 | -1
Y =R x pc S . (24)

However, when k& >> 1 the charged part of the ISM separates from the neutral
part and only this part enters into the Alfvén speed. Assuming the ISM to
be 10% ionized, VAZ i1s about ten times larger and we have

v=6x10 Koo st (25)

For k ® 1()_]'6 cmﬁl. say, kpc = 300 and

v=28xw Mt L (26)

10" yr

Thus, if kawere of order unity in this range then Fermi acceleration could
sustain the cosmic rays and provide a good origin theory. However ka - k'2/3
50 ka < .02 if ka ~1 at k = (lpc)_l. Thus, it is unlikely that Fermi

acceleration in the 1SM produces cosmic rays.

SOLAR FLARES
Let us consider acceleration of MeV protons in the solar chromosphere
produced by turbulence in a solar flare.
We take rather arbitrarily, % = logcm

B = 10g
n =100 o2

My = 2.2 % 107 cm/s . 27)
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Let us take v =3 x 109 cm/s, corresponding to 5 MeV proton, Again v

A << V.
Now choose k in units of 107 cmfl, kys
. w=22x107%ky st (28)
2 -1
) wy = 3 ky s (29)
v=3 gt 30
and if kg <1,
2 2
W 1w -6, 2 -4 -1
Y = 350 * —5—-mD =1,2x10 k9 + 1.6 x 10 5
S S
6200 s * (310
Again only inhomogeneous magnetie pumping is important.
For Fermi acceleration kg > 1
. s v 2
B 0w A -4 -1
v=—g —=—5ku=1,6x10 Lk s (32)
Ku 2 9
For k=100, ky = 10 and
1
Y = €0 s . (33)

It is not unreasonable to expect ka *Jdatks= 10.'8 t:nf-1 so that
we expect an acceleration time of 6000s = 1-1/2 hrs.

<

NONLINEAR ESTIMATES
The results described so far are based on a quasilinear theory, whose
applicability is only guaranteed when the wave amplitudes in the *.rbulence
- are sufficiently small. Let us consider the most important acceleration

process, Fermi acceleration, more closely to see at what point the small
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amplirude theory breaks down. In order to do this let us first give a
qualitative derivation for the effective frequency vy in the small amplitude
limit, Eq. (12). From guiding center theory the equation for the component

of the momentum parallel to P, is: ¢
dp
2 _ ¥, 3
reall o kA LI (34

Also Ag = Y Apz from a simple frame transformation argument. If t is the
time for the particle to cross a wave packet, and if the perturbed Force

does not average to zero (some resonance effect), then

dpz . dpz
bp, =t g ° t( dt )max . (3%)

But Apz and Ae are of random sign, and t is also roughly the time batween

encounters of wave packets so we have

ae)? v‘bz(Apz)2 i vq[f(up)2 k2B %t

te? ve pet o (up)©
B 2 B 2
s 32, 2 2
kv, tBo_ W tijz (36)

for quasiresonant particles.

If collisions are neglected, we have t ~ 1/w, Also the parallel velo-
city vz must.be comparable to v¢ in order to avoid cancellation of the
force so only v¢/v particles are being accelerated at one time, Thus,

B2 ww B2
_1._=__9.__L.

DI=YB2 v 52 37
o 0

in agreement (up to a nﬁmerical factor) with Eq. (12).

On the other hand, if collisions are fncluded, the velocity with which i
a patrticle traverses the wave packet is spread out stochastically by small
angle collisions. The spread of velocities in a time t is
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- small coapared to v¢ for collisions to be neglected.
‘his condition is violated when
v 1 V. \3
3 — (Je..)
> b or &2 > - . (38)

ir numerical example for the ISM we see this implies k& >
effect all Fermi interaction in the ISM should be colli-

ligional limit the condition that a particle in crossing a

8 not see Fz average to zero, is clearly that it changes
ibstantially during the time t iIn which it manages to cross a
‘hen it spends different times in regions with positive and

1 the cancellation must be incomplete, There is a velocity Ve

article with v, less the V. diffuses up this velocity vcin

(kv )™t (39)

to cross the wave packet at velocity vc. From this and

juation,

o ey M3 : (0)
T the particles are being accelerated at any one time. Sub=
zxpression for t in our expression for (AE)Z/tEZ and multi-

we again get our same expression for Fermi acceleration,

he asbove derivation we tacitly assume the particle crosses
t at a rate unaffected by the wave packet itself, and merely
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add up the perturbed force it sees. When the wave amplitude becomes large
enough this will no longer be the case and the limit of the small ampli-

tude theory will be reached. We would expect this to happen when the wave
amplitude is big enough that the particle changes its parallel momantum by

a substantial amount, for example, when it is "mirrored.”

We take as the breakdown in linear theory, the wave amplitude for which
a particle with parallel velecity

1/3

vc =v/ (ki) (41)
mirrors, or when
(2" -
B, T ) . (42)

For smaller amplitudes, particles in the mirror regiom p < (B /B)l’2

will diffuse to velocities v e? and 1y of order of r ‘(kl) ’3, and thus not
be mirrored. For larger amplitudes particles throughaout the mirroring region
can only diffuse through an angle smaller than or equal to l/(kﬂ)lla and

will thus remain in the mirroring region.

For amplitudes larger tham Egq. {42) the idea of particles being near
resonance or collisional resonance and passing through essentially undis-
turbed by the wave no longer holds. Such particles are easily mirrored
being reflected back. Thus, in this limit we are cleser to the idea of
Fermi of particles being scattered by moving magnetic mirrors. The princie
pal differences are: when Bl «B only a fraction of order (B /B)ll2 of
all particles are mirrored and accelerated at any one time. Also these
particles have very small parallel velocities of order (B]_IB)]"2 v, so the
rate at which they encounter magnetic mirrors is considerably reduced.

Let us attempt to estimate the rate of diffusion of energy in this
1imit. Consider only broad band turbulence so each wave packet is approxi-

mately one wave length long. Then as before . -
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1/2
de = v¢Apz = v¢p(BIIBO) / . (43)
The time between encounters is
1
t = —— (ad)
1/2
k(B]_/Bo) v
and so
1/2 12 2.3 1/2
) G T ()
B te Bo v2 p2 \By B
2 B 2
- b k,,( i) .
2 B
v <}

This agrees with the linear result in Eq. (12) up to a numerical fact?r.
Thus, although the mechanism is quite different the actual formula for
acceleration is nearly identical with the linear one.

Finally, when BllB is of order unity the factor BllB can be dropped
and we recover Fermi's original result, Thus, although breakdown in

linear theory ocecurs at relatively swall amplitudes, the linear formulas
still seem to be applicable. '

CONCLUSTION
I have described a theory which gives the stochastiec behavior of
energetic particles in a turbulent medium.

on the turbulent spectrum Ik of the fluctuating magnitude of the magnetic

field. The diffusion roefficlent is proportiomal to Ik with a frequency

factor y expressing the efficiency of acceleration. In various limiting cases

The diffusion in energy depends

the familiar acceleration processes of magnetic pumping and Fermi accelera-
tion emerge naturally,

The relative importance of these processes is illustrated by two
nunmerical examples,
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The theory while systematic is really only valid for sufficiently smull
amplitudes. However, reasons are given for belleving the same results are
applicable even for reasonably finite amplitudes, at least for the case of

Fermi acceleration.
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