ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ дубна messes fi fi bessest SU 490 4414

В.П.Зрелов. Я.Ружичка

ИНТЕРФЕРЕННИОННЫЕ ЭФФЕКТЫ В ПЕРЕХОДНОМ ИЗЛУЧЕНИИ ВБЛИЗИ ПОРОГА ИЗЛУЧЕНИЯ ВАВИЛОВА-ЧЕРЕНКОВА. V

P2 - 11963

P2 - 11963

В П.Зрелов. Я.Ружичка

ИНТЕРФЕРЕНПИОННЫЕ ЭФФЕКТЫ В ПЕРЕХОДНОМ ИЗЛУЧЕНИИ

вблизи порога

ИЗЛУЧЕНИЯ ВАВИЛОВА-ЧЕРЕНКОВА V

Направлено в "Nuclear Instruments and Methods"

Зрелов В.П., Ружячка Я.

Интерференцконные эффекты в переходном колучении вблизи порога излучения Вавилова-Черекхова. V

В работе подробно проанализированы свойства переходного излучения, возникающего при пересечении заряженной частицей границы вакуум-прозрачный диэлектрик, что позволило выявить интерферениконные эффекты между переходным и череяковским излучениями в чистом виде. Выявлее необичный вид углового распределения квантов переходного излучения (распределение с минимумом), возникающего вблизи порога излучения Вавилова-Черенкова и направленного в прозрачную среду. Ход полной интенсивности ПИ вследствие цаличия минимумов в угловых распределениях квантов ПИ имеет также особенность в допороговой области (полная интенсивность уменьшается с ростом у). Показано, чю этот эффект может быть объяснен только с привлечение излучения от заряда-изображения. Суммарное переходное излучение, испущенное в среде частицей с $\beta > n^{-1}$, есть результат интерференции трех вилов излучений: переходного от частицы, гибридного от частицы и переходного (гибряного) от частицы-кзображения.

Преприят Объединенного института ядерных исследований. Дубна 1978

Zrelov V.P., Ružička J.

P2 · 11963

Interference Effects in Transition Radiation Near the Threshold of Vavilov-Cherenkov Radiation. V

The properties of transition radiation (TR) originating in charged particle crossing the vacuum-transparent dielectric boundary has been analysed in detail. This made it possible to observe the interference effect between the transition and Cherenkov radiations in a pure form. An unusual kind of the quantum angular distribution of TR (a distribution with a minimum) arising near the threshold of Vavilov-Cherenkov radiation and directed to a transparent medium has been observed. The shape of the total TR intensity due to the presence of minima in the angular distributions of TR has also a peculiarity in the prethreshold region (the total intensity is decreased with increasing γ). It is shown that this effect can be explained only on studying the radiation from the charge-image, The summed TR emitted in a medium by a particle with $\beta > n^{-1}$ is a result of the interference of three radiations: TR from a particle, Hr? from a particle and TR (hybrid) from a particleimage.

Preprint of the Joint Institute for Nuclear Research. Dubna 1978

1. ВВЕДЕНИЕ

Проведенное в работе $^{/1/*}$ рассмотрение свойств переходного излучения, возникающего на плоской границе металл (Ni) -диэлектрик (SiO 2 -плавленный кварц), показало, что в прозрачной среде свойства переходного излучения /при скоростях частиц $\beta > n^{-1}$ / имеют гибридный характер, обусловленный наложением обычного переходного излучения и излучения Вавилова-Черенкова. В той же работе $^{/1/}$ было обращено внимание на сильное взаимовлияние диэлектрических характеристик граничащих сред на свойства переходного и гибридного излучений в них.

Для того, чтобы выявить свойства ГИ в чистом виде, в настоящей работе были рассчитаны характеристики как переходного излучения /ПИ/, так и гибридного излучения /ГИ/, возникающих на границе вакуум - прозрачный диэлектрик.

^{*} Предыдущие работы из этой серин опубликованы в: I – Nucl. Instr. and Meth., 1969, 74, pp.61-69. ОИЯИ, Р2-4058, Дубна, 1968. II – Nucl. Instr. and Meth., 1975, 130, p. 513-525. ОИЯИ, Р1-7956, Дубна, 1974. III – Nucl. Instr. and Meth., 1978, 151, p.395-403. ОИЯИ, Р1-10915, Дубна, 1977. IV – ОИЯИ, P1-11764, Дубна, 1978.

НОРМАЛЬНОЕ ПАДЕНИЕ ЧАСТИЦЫ НА ГРАНИЦУ ВАКУУМ - ПРОЗРАЧНЫЙ ДИЭЛЕКТРИК / КВАРЦ/

1. Излучение "вперед" /в кварие/ до порога возникновения излучения Вавилова-Черенкова

Угловые распределения плотности энергии излучения для частицы, движущейся со скоростью β из вакуума ($\epsilon_1 = 1$) в кварц ($\epsilon_2 = \epsilon_{SiO2}$) при наблюдении излучения в кварце /т.е. "вперед"/, рассчитывались по формулам, приведенным в $^{2/2}$:

$$\frac{d^{2}I_{g}^{u}}{d\Omega d\omega} = \frac{e^{2}\beta_{z}^{2}\cos^{2}\theta_{z}}{\pi^{2}\cos^{2}\theta_{z}} + \frac{(\epsilon_{z}-\epsilon_{1})\cdot\epsilon_{z}^{3/4}}{(\epsilon_{z}\sqrt{\epsilon_{1}-\epsilon_{z}}\sin^{2}\theta_{z})\cdot\epsilon_{1}\sqrt{\epsilon_{z}}\cos\theta_{z})} + \frac{(1-\beta_{y}\sqrt{\epsilon_{z}}\cdot\cos\theta_{y}-\beta_{z}^{2}\cdot\epsilon_{z}-\beta_{z}\sqrt{\epsilon_{1}-\epsilon_{z}}\sin^{2}\theta_{z})\cdot\sin^{2}\theta_{z}+\beta_{y}\beta_{z}\sqrt{\epsilon_{z}}\cdot\cos\theta_{y}\sqrt{(\epsilon_{1}-\epsilon_{z}}\sin^{2}\theta_{z})}}{[(1-\beta_{y}\sqrt{\epsilon_{z}}\cdot\cos\theta_{y})^{2}-\beta_{z}^{2}\epsilon_{z}\cos^{2}\theta_{z}][1-\beta_{y}\sqrt{\epsilon_{z}}\cos\theta_{y}-\beta_{z}\sqrt{\epsilon_{1}-\epsilon_{z}}\sin^{2}\theta_{z})]} + \frac{1}{2}$$

$$\frac{d^2 \Gamma_2}{d\Omega d\omega} = \frac{e^2 \beta_y^2 \beta_z^4 \cos^2 \theta_z \cos^2 \theta_z}{\pi^2 \cdot c \cdot \sin^2 \theta_z} \times /2/$$

$$\times \left[\frac{(\epsilon_{\varrho} - \epsilon_{1}) \cdot \epsilon_{\varrho}^{3/4}}{(\sqrt{\epsilon_{1} - \epsilon_{\varrho} \sin^{2} \theta_{z}}) + \sqrt{\epsilon_{2}} \cdot \cos \theta_{z}} \right] \left(1 - \beta_{y} \sqrt{\epsilon_{\varrho}} \cdot \cos \theta_{z} \right)^{2} - \beta_{z}^{2} \epsilon_{\varrho} \cos^{2} \theta_{z} \left[1 - \beta_{y} \sqrt{\epsilon_{\varrho}} \cos \theta_{y} - \beta_{z} \sqrt{(\epsilon_{1} - \epsilon_{\varrho} \sin^{2} \theta_{z})} \right] \right]$$

где

$$\mathbf{\widehat{u}}_{\mathbf{x}} = \sin\theta \, \mathbf{d}\theta \, \mathbf{d}\phi; \quad \beta_{\mathbf{y}} = \beta \cdot \sin\psi; \quad \beta_{\mathbf{z}} = \beta \cos\psi; \quad \cos\theta_{\mathbf{z}} = -\sin\theta \cos\phi;$$
$$\cos\theta_{\mathbf{y}} = \sin\theta \sin\phi; \quad \cos\theta_{\mathbf{z}} = \cos\theta.$$

На рис. I показаны угловые распределения переходного излучения в кварце для различных γ ($\gamma = \frac{1}{\sqrt{1-\beta^2}}$) ниже порога возникновения излучения Вавилова-Черенкова в кварце ($\gamma = 1,336$). При вычислении угловых распределений, приведенных на этом рисунке, диэлектрическая

Рис. 1. Угловые распределения квантов переходного излучения в кварце /т.е. "вперед"/ для различных у и границы вакуум-кварц. 1 - у = 1,01; 2 - у = 1,1; 3 у = 1,2; 4 - у 1,3.

проницаемость c_{SiO_2} записывалась в виде c_{SiO_2} -a-ib, где а $n^2(1-\kappa^2)$, $b^2 - 2\kappa n^2$ А зависимость показателя преломления кварца (SiO₂) от длины волны имела такой же вид, как в предыдущей работе $r^{2/2}$ Обращает на себя внимание необычный вид угловых распределений ПИ при $\gamma = 1,2$ и $\gamma = 1.3$. имеющих глубокие минимумы в области углов $\theta = 33^\circ$ и $\theta = 42^\circ = 43^\circ$ соответственно, а также необычный вид угловых распределений при более низких $\gamma (\gamma = 1,1, \gamma = 1,01)$. чего не наблюдалось

うちちん しきののちののほう し

5

ギノス たいしょう

раньше при расчетах угловых распределений ПИ в вакууме /см., например, расчеты угловых распределений ПИ, испущенного в вакууме "вперед" и "назад" для границы вакуум - Ni /1...3/.

Как видно из формул /1/ и /2/, эти минимумы /в случае нормального падения частицы, $\psi = 0 / могут возни$ кать только при обращении в нуль числителей этих формул, т.е. при

$$|1 - \epsilon_2 \beta^2 - \beta \sqrt{1 - \epsilon_2 \sin^2 \theta_{\min}}| = 0,$$
 /3/

откуда

$$\cos^2 \theta_{\min} = 1 - \frac{1}{\epsilon_2} + \frac{(1 - \beta^2 \epsilon_2)^2}{\epsilon_2 \beta^2}.$$
 /4/

Зависимость угла перемещения минимума θ_{\min} от у, определяемая /4/, показана на рис. 2.

Как показано ниже, наличие минимумов в угловых распределениях имеет место для излучения не только в среде, но и в вакууме, что следует также из первоначальных формул Гинзбурга-Франка^{*}. в числителе кото-

рых содержится скобка $(1-\beta^2+\beta\sqrt{n^2-\sin^2\theta})$, обращающаяся

в нуль при $\beta = \frac{1}{2} (\sqrt{n^2 - \sin^2 \theta} + \sqrt{n^2 + 4} - \sin^2 \theta).$

Наличие острых минимумов в угловых распределениях переходного излучения, несомненно, свидетельствует об интерференционных эффектах. Как показано в работе $^{/1/}$, при скоростях частиц $\beta \cdot n^{-1}$ имеет место интерференция излучений Вавилова-Черенкова и переходного. В этой связи возникает вопрос: какие виды излучений интерферируют, если скорость частицы, пересекающей границу вакуум-кварц, не превышает порога возникновения излучения Вавилова-Черенкова ($\gamma = 1.336$), т.е. если имеется только одно переходное излучение?

Для того, чтобы поиять причину возникновения вышеприведенных интерференционных эффектов, воспользуемся формулами переходного излучения, выведенными на

*Гвнзбург В.Л. Франк И.М. ЖЭТФ, 1946, 16, с.1.

6

Рис. 2. Зависимость угла перемещения $\theta_{\min}(y)$ /сплошная кривая/ и зависимость угла "испускания" излучения Вавилова-Черенкова θ^* от скорости β^* /пунктирная кривая/. Стрелкой показан порог черенковского излучения.

основе теории изображений и приведенными г работах^{/4-6/}.

Например, согласно работе Франка ^{/5/} спектральная плотность знергии переходного излучения в телесном угле dΩ /в вакууме/ дается выражением, содержащим три члена:

$$\frac{\mathrm{d}^2 \mathbf{I}^{\mathrm{H}}}{\mathrm{d}\Omega \,\mathrm{d}\omega} = \frac{\mathrm{e}^2 \beta^2}{4\pi c} \sin^2 \theta \,|a_1 - a_2 \mathbf{r}_{\mathrm{h}} - a_3 \frac{\mathbf{f}_{\mathrm{H}}}{3n}|^2, \qquad /5/$$

где θ - угол между направлением нормали и испущенным квантом переходного излучения, V - скорость частицы, е - ее заряд, с - скорость света в вакууме, г и f - коэффициенты Френеля для отраженных и преломленных волн соответственно, п - показатель

преломления среды, *a*₁, *a*₂, *a*₃ - интерференционные множители для излучения в вакууме, которые равны:

$$a_{1} = \frac{1}{1 - \beta \cos \theta},$$

$$a_{2} = \frac{1}{1 + \beta \cos \theta},$$

$$a_{3} = \frac{1}{1 - \beta \sqrt{n^{2} - \sin^{2} \theta}}.$$
(6)

Члены, входящие в выражение /5/, обычно интерпретируются следующим образом: есть ампли a_1 туда поля частицы, движущейся в вакууме и внезапно остановившейся на границе среды; и.г. - амплитуда поля электрического изображения частицы, движущейся из глубины среды и останавливающейся на границе ť " - амплитуда поля частицы, среда - вакуум; α₃.

начавшей свое движение от границы в тот же момент времени в глубь среды.

Для нашего случая, т.е. при рассмотрении переходного излучения в среде, формула /5/ принимает вид:

$$\frac{d^{2}I^{"}}{d\Omega d\omega} = \frac{e^{2}\beta^{2}n}{4\pi^{2}c} \cdot \sin^{2}\theta |a_{1}' + a_{2}'r' - a_{3}' f' + n|^{2}.$$
 (7/

где интерференционные множители для излучения в среде "вперед" a', a', выражаются следующим образом:

$$a'_{1} = \frac{1}{1 \cdot \beta n \cos \theta},$$

$$a'_{2} = \frac{1}{1 + \beta n \cos \theta},$$

$$a'_{3} = \frac{1}{1 - \frac{1}{1 - \beta n \cos \theta}},$$

$$\int_{3}^{\prime} = \frac{1}{1 - \beta \sqrt{1 - n^2 \sin^2 \theta}}$$

8

「おおいちのないない」、、、、こことのないのである

/8/

а коэффициенты Френеля для излучения, распространяющегося из среды в вакуум, равны

$$\mathbf{r}'_{1} \sim \frac{\cos\theta \cdot \mathbf{n} \sqrt{1 - \mathbf{n}^{2} \sin^{2}\theta}}{\cos\theta \cdot \mathbf{n} \sqrt{1 - \mathbf{n}^{2} \sin^{2}\theta}}$$

191

$$\int_{0}^{2n} \cos \theta$$

$$\int_{0}^{2n} \cos \theta + n \sqrt{1 - n^2 \sin^2 \theta}$$

Нетрудно показать, что, подставляя /8/ и /9/ в /7/, получим формулу

 $\frac{\mathrm{d}^2 \Gamma^{\parallel}}{\mathrm{d}\Omega \,\mathrm{d}\omega} = \frac{\mathrm{e}^2 \beta \frac{\mathrm{e}^2 \cos^2 \theta}{\mathrm{cos}^2 \theta}}{\pi^2 \mathrm{c} \sin^2 \theta} = \frac{(\mathrm{n}^2 - 1) \cdot \mathrm{n}^{3/2}}{\mathrm{n}^2 \sqrt{1 - \mathrm{n}^2 \sin^2 \theta}} + \mathrm{n} \cos \theta$

$$\frac{(1 - \beta^2 n^2 - \beta \sqrt{1 - n^2 \sin^2\theta})\sin^2\theta}{(1 - \beta^2 n^2 \cos^2\theta)(1 - \beta \sqrt{1 - n^2 \sin^2\theta})} + \frac{2}{(1 - \beta^2 n^2 \cos^2\theta)(1 - \beta \sqrt{1 - n^2 \sin^2\theta})}$$

которая является частным случаем формулы /l/ для ψ 0 и совпадает с формулой Тер-Микаеляна 7/при ср. 1.

Таким образом, на основании формулы /7/ суммарное переходное излучение в среде разбивается на три части с амплитудами a'_1 , $a'_2 \cdot r'_1$ и $a'_3 \cdot i'_2 \cdot n$, которые взаимно интерферируют, что и приводит к образованию минимумов, подобных приведенным на *рис. 1*.

Зависимости отдельных составляющих реальных частей амплитуд, входящих под модуль в выражение /5/, от угла наблюдения θ для у 1.2 /скорость частицы ниже порога возникновения излучения Вавилова-Черенкова/ представлены на *рис.* 3, из которого видно, что в угловой зависимости члена $a_2 \cdot r_x \cdot \sin \theta$ имеется глубокий минимум при угле $\theta = 43^\circ$. Вблизи углов $\theta = 30^\circ$ и $\theta = 52^\circ$ амплитуды $a_1 \sin \theta$ и $a_3 \cdot f_x \cdot n \cdot \sin \theta$ точно равны друг другу /на *рис.* 3 они пересекаются/, но имеют

9

Andrew State Street and a second state and second state and second second second second second second second s

Рис. 3. Угловые зависимости отдельных составляющих реальных частей амплитуд общего выражения для интенсивности ПИ "вперед" /см. выражение /5.1/ для случая излучения в SiO₂ при $\gamma = 1,2/.$ I - $a_1 \sin \theta_2$; 2 - $a_2 \tan^2 \sin^2 \theta_2$; 3 - $a_3 \tan^2 \sin^2 \theta_2$.

разные знаки, благодаря чему минимум члена $a_2 \cdot r_{_{\parallel}} \cdot \sin\theta$ отчетливо проявляется. Все особенности в поведении члена $a_2 \cdot r_{_{\parallel}} \cdot \sin\theta$ обусловлены сложной зависимостью коэффициента отражения Френеля $r_{_{\parallel}}$ от угла θ .

Сопоставление распределения на *рис.* Зи кривой для *γ* = 1, 2, приведенной на *рис. 1*, позволяет понять причину образования необычного минимума.

При у выше порога возникновения излучения Вавилова-Черенкова характер кривых, изображенных на рис. 3, существенно изменяется и приобретает вид, представленный на рис. 4. Сравнивая рисунки 3 и 4, можно заметить, что зависимость амплитуды переходного излучения $a_1 \cdot \sin \theta_2$ претерлела разрыв, образуя большой максимум, соответствующий углу испускания излучения Вавилова-Черенкова. Таким образом, к переходному излучению добавилось черенковское и образовалсь гиб-

Рис. 4. То же, что и на рис. 3, но для у = 27.5. н.е. для у выше порога возникновения излучения Вавилова-Черенкова.

11

ридное излучение /ГИ, см. работу /1//, процесс образования которого теперь уточнился: гибридное излучение есть сумма излучения Вавилова-Черенкова и той части переходного излучения, которое было испущено в среду.

Угловая зависимость $a_2 \cdot r_{\pm} \sin \theta$ при у – 27,5 по форме практически не изменилась, а незначительно изменилась лишь величина этой амплитуды.

Претерпела существенное изменение гакже левая ветвь ($\theta < 42,5^{\circ}$) амплитуды $a_3 \cdot n \cdot f = \sin \theta$, а правая ее ветвь осталась без изменений. Из этого следует, что переходное излучение при высоких у. испущенное "вперед" в среду в основном представляет собой излучение, испущенное в "вакууме" и проникшее в среду. Это свидетельствует, кстати, о доминирующей роли части переходного излучения, которое возникает в вакууме на границе вакуум-диэлектрик.

Вид зависимостей реальных частей этих же амплитуд для излучения назад в "среде" показан на рис. 5 и б.

Несмотря на то, что все особенности ПИ в среде, отмеченные выше, находят свое объяснение на основе интерференционных эффектов и разбиения общей формулы переходного излучения на слагаемые /8/, представляет интерес и иной подход к объяснению минимумов, представленных на *рис. 1* /и других особенностей ПИ/, связанный с расширением функции зарядов-изображений. Мы хотим приписать зарядам-изображениям не только роль источников ПИ, но и излучения Вавилова-Черенкова.

В самом деле, по самой логике введения зарядовизображений, они двигаются со скоростями от О до β^* β . Если β выше порога испускания излучения Вавилова-Черенкова, то и β^* выше порога. Поэтому правомерно говорить не только о переходном излучении зарядаизображения, но и о его черенковском, а также гибридном излучениях. Более того, связь между скоростями заряда β и заряда-изображения β^* не является такой простой. Как впервые показал Пафомов β^* , β и β^* связаны зависимостью

$$\beta^* = \frac{\beta}{\sqrt{1 + \beta^2 - \beta^2 n^2}}$$
 /11/

Рис. 5. То же, что и на рис. 3, но для случая испускания излучения "назад" / в кварц/ для у 1.2

Тогда зависимость угла испускания излучения Вавилова-Черенкова от заряда-изображения будет равна

$$\cos\theta^* = \frac{1}{n\beta^*}$$
, /12/

и пороговое условие примет вид $n\beta^* \ge 1$.

С учетом /11/ скорость реального заряда, при которой заряд-изображение будет давать излучение Вавилова-Черенкова, равна

$$\beta_0 = \frac{1}{\sqrt{2n^2 - 1}} .$$
 /13/

Рис. 6. То же, что и на рис. 3, но для случая испускания излучения "назад" /в кварц/ для у 27.5.

Скорость β_0 при n > 1 всегда меньше пороговой скорости испускания излучения Вавилова-Черенкова реальным зарядом ($\beta > 1/n$) на величину

$$\Delta \beta = \beta_0 - \beta = \frac{\sqrt{2n^2 - 1} - n}{n\sqrt{2n^2 - 1}} .$$
 /14/

Для $n_{SiO_2} = 1.47$ /для $\lambda = 4000$ Å/ $\Delta\beta = 0.131$. Зависимость угла испускания $\theta^*(\beta^*)$ согласно /12/ будет иметь вид, представленный на *рис.* 2/пунктирная кривая/, из которого видно, что до порога возникновения излучения Вавилова-Черенкова от реальной частицы она близка к зависимости /4/, т.е. к той зависимости, которая определяет положение интерференционных минимумов.

Отметим, что на возможность "испускания" зарядомизображением излучения Вавилова-Черенкова указывал в свое время Пафомов ^{/6/}.

Это совпадение наводит на мысль о том, что появление минимума /puc. I/ в угловом распределении ПИ можно интерпретировать, как "испускание" излучения Вавилова-Черенкова от заряда-изображения.

В связи с тем, что ниже в работе особенности ПИ в прозрачной среде часто связываются с излучением Вавилова-Черенкова от заряда-изображения, мы хотели бы изложить нашу точку зрения на роль зарядов-изображений в рассмотренном процессе.

При подлете к границе раздела вакуум-среда частица своим электрическим полем поляризует атомы среды. Смещения атомных электронов в сторону частицы с положительным зарядом /или в обратную сторону от частицы с отрицательным зарядом/ могут создавать в среде поляризацию, совпадающую с той, которая имела бы место от встречного движения частицы с противоположным зарядом и со скоростью выше порога излучения Вавилова-Черенкова, т.е. реакция среды на приближение частицы проявляется как имитация процесса возникновения излучения Вавилова-Черенкова. Таким образом, этот эффект может быть интерпретирован как ответное когерентное излучение среды на возмущение от поля частицы.

オリー・

Теперь продолжим описание свойств излучения, наблюдавшегося в среде при нормальном падении частицы, движущейся со скоростью ниже порога возникновения излучения Вавилова-Черенкова, но для излучения в среде "назад".

Вид угловых распределений квантов переходного излучения для ораницы SiO_2 -вакуум, испущенных "назад", т.е. в SiO_2 , для различных γ показан на *рис.* 7, где так же, как и на *рис.* 1, отчетливо видны интерференционные минимумы. В отличие от случая вакуум-среда /излучение "вперед"/ эти минимумы возникают сразу в областы больших углов и с увеличением γ перемещаются в сторону меньших углов, следуя зависимости, приведенной на *рис.* 2/спадающая часть кривой/. Таким

Рис. 7. Вид угловых распределений квантов ПИ, испущенных "назад" / т.е. в SiO₂ / для различных γ . I - $\gamma = 1,1$; 2 - $\gamma = 1,2$; 3 - $\gamma = 1,25$: 4 - $\gamma = 1,30$; 5 - $\gamma = 1.35$.

образом, мы видим, что характеры изменения скорости заряда-изображения в зависимости от скорости частицы различны для случая влета частицы и ее вылета.

Отметим также, что на кривой 5 этого рисунка еще не виден пик излучения Вавилова-Черенкова несмотря на то, что $\gamma = 1.35$ выше $\gamma_{\rm HOD}$. - 1.336 для SiO ₂.

2. Свойства излучений "вперед" и "назад" /наблюдаемых в среде/ при скоростях частицы выше порога возникновения излучения Вавилова-Черенкова

На рис. 8 приведены угловые распределения квантов переходного излучения, испущенных в среду /т.е. в SiO₂ /"вперед", на границе вакуум - SiO₂ при двух значениях y: y 1.4: 1.5: а на рис. 9 - то же для границы SiO₂ -вакуум /т.е. в среде для случая "назад"/.

Рис. 8. Угловые распределения квантов ПИ, испущенных в квари /т.е. "вперед"/ на границе вакуум - SiO_2 при двух значениях у. 1 - у - 1,4; 2 - у - 1,5.

Рис. 9. То же, что и на рис. 8, но для случая излучения "назад" и других у. 1 - $\gamma = 1,4; 2 - \gamma = 1,7; 3 - \gamma = 2.$

Острые максимумы на этих рисунках есть пики излучения Вавилова-Черенкова /точнее, гибридного излучения/. Интересно отметить, что эти пики с увеличением у перемещаются в сторону больших углов в соответствии с законом $\cos\theta = 1/\beta \cdot n$, постепенно проходя весь глубокий интерференционный минимум, который для этих у почти "неподвижен". Это особенно заметно на рис. 9.

A REAL PROPERTY AND

В случае излучения "вперед" /т.е. в SiO 2 / при высоких у пик гибридного излучения, как это видно из *рис. 10*, перемещается до предельного угла $\theta_{\text{пред.}}$ #42 /для SiO₂ /. Начиная примерно с у 5 в угловом распределении появляется новый пик, который с увеличением у растет по величине и перемещается по θ к направлению скорости частицы. В нем нетрудно опознать пик "чистого" переходного излучения /напомним, что максимум переходного излучения при высоких у ведет

1、「ころろのころにない」

Рис. 10. То же, что и на рис. 8, но для высоких γ . 1 - $\gamma = 1,35$; 2 - $\gamma = 1,5$; 3 - $\gamma - 2$; 4 - $\gamma = 5$; 6 - $\gamma = 27,5$.

себя как $-\gamma^{-1}$ /. Следует здесь заметить, что для случая границы Ni – SiO₂ при расчетах угловых распределений пик переходного излучения в кварце в области малых углов и высоких γ не проявляется 1^{7} .

Это еще раз подтверждает вывод, сделанный в этой же работе, о сильном влиянии второй среды с г 1 на свойства ГИ в первой среде с год.

3. Переходное излучение в прозрачной среде с высоким показателем преломления /n = 2,4 - алмаз/

В связи с тем, что амплитуды полей переходного излучения от заряда и его изображения противоположны по знаку, имеет место, как это уже отмечалось выше, деструктивная интерференция. Однако при углах (), больших угла полного внутреннего отражения 0°, должно происходить изменение фазы переходного излучения от заряда-изображения в соответствии с формулами Френеля. Это изменение фазы переходного излучения видно уже на рис. І /кривая для у 1.01/. Деструктивная ннтерференция здесь происходит до угла $\theta=42$, выше коизлучение от заряда-изображения торого переходное складывается с переходным излучением от реального заряда, в результате чего образуется необычного вида пик /срезанный со стороны малых углов/.

С увеличением показателя преломления, например до n = 2,4 / алмаз - С^{*} / угол полного внутреннего отражения уменьшается (sin θ^* 1/n), поэтому расширяется область углов, больших угла θ^* , что позволяет более отчетливо выявить положительную интерференцию.

Угловые распределения квантов переходного излучения, испущенные "вперед", т.е. в алмаз, для границы вакуум-алмаз, приведены на *рис. 11.* На этом рисунке, во-первых, виден отчетливый пик переходного излучения от реальной частицы в области малых углов $(\partial -1/\gamma)$. Во-вторых, под углом $\partial - 63^\circ$ выступает пик гибридного излучения - также от реальной частицы. Между этими пиками виден третий, небольшой пик, который представляет собой часть максимума гибридного излучения от

Рис. 11. Угловые распределения квантов ПИ, испущенных "вперед" в среду с высоким п /алмаз - С* /для разных y. I - y = 1,01; 2 - y = 1.1; 3 - y = 1,2; 4 - y = 2,4; 5 - y = 3; 6 - y = 10.

заряда-изображения, которое проинтерферировало положительным образом с излучением от реальной частицы.

Вид угловых распределений квантов ПИ, испущенных "назад" на границе алмаз-вакуум /т.е. в алмаз/ для y-3 представлен на *рис. 12.* Отметим, что в этом случае пик "чистого" ПИ, который должен быть под углом $\theta \simeq 10^{\circ}$ /как он виден на *рис. 11* при том же y/, от-

Рис. 12. То же, что и на рис. 11, но для случая излучения "назад" при $\gamma = 3$.

сутствует, благодаря чему и пик от положительной интерференции выступает более отчетливо.

III. СВОЙСТВА ИЗЛУЧЕНИЯ В ВАКУУМЕ ДЛЯ НОРМАЛЬНОГО ПАДЕНИЯ ЧАСТИЦЫ НА ГРАНИЦУ КЗАРЦ-ВАКУУМ

Этот случай при низких у представлен на рис. 13, из которого видно, что до y = 1,16 угловые распределе-

Рис. 13. Угловые распределения квантов ПИ в вакууме для границы квари-вакуум /т.е. испущенных "вперед"/ при допороговых γ . I - $\gamma = 1, 16$; Z - $\gamma = 1, 14$; 3 - $\gamma = 1, 12$; 4 - $\gamma = 1, 18$; 5 - $\gamma = 1, 20$.

них ПИ вмеют обычный вид с широким максимумом около $\theta = 60^{\circ}$. С увеличением у появляется также глубокий минимум, перемещающийся в сторону больших углов θ . Положение этого минимума в угловом распределении переходного излучения в вакууме с учетом преломления на границе вакуум-кварц, совпадает с положением минимума гибридного излучения от заряда-изображения в среде /см. кривые для $\gamma = 1.2$ на рис. 1 и 13/.

LAT. B. L. S. C. MAR. MAR.

Совгадение минимумов в вакууме и в среде /с учетом преломления/ указывает на общую причину их возникновения: источником их является заряд-изображение.

Обращает на себя внимание то, что число квантов ПИ под всеми углами, начиная с y = 1, 19. не увеличивается с ростом y = /как обычно, это имеет место для ПИ/, а, наоборот, уменьшается. Эта аномалия так же хорошо видна в поведении полной интенсивности ПИ в зависимости от y /см. рис. 14/.

При превышенни порога излучения Вавилова-Черенкова из кварца выходит пик ГИ, испытавшего преломление /см. кривую для у 1.4 /. С дальнейшим ростом у пик уходит в область больших углов, и при у 5 он уже исчезает /испытывает полное внутреннее отражение/. С последующим ростом у увеличивается только пик "чистого" ПИ.

Рис. 14. Зависимость от у полной интенсивности ГИ, испущенного "вперед" /т.е. в вакуум/ на границе кварцвакуум.

Этот же пик отчетливо виден и в угловом распределении ПИ "назад", т.е. в вакуум / рис. 16/. Отсутствие пика излучения Вавилова-Черенкова в этом случае понятно /черенковское излучение направлено вперед, в глубь среды/.

При высоких у /рис. 15/ минимумы в соответствии со сплошной кривой, приведенной на рис. 2, исчезают.

Рис. 15. Угловые распределения квантов ПИ и 1И, испущенных в вакуум /м.е. "вперед"/ на границе SiO_2 вакуум для разных у. I - y = 1,3; 2 - y = 1,4; 3 - y = 1,7; 4 - y = 2,0; 5 - y = 5; 6 - y = 10; 7 - y = 27.5.

Рис. 16. Угловое распределение квантов ПИ, испускаемых "назад" /т.е. в вакуум/ на границе вакуум - SiO_g частицами с разными у. I - y = 1,1; 2 - y - 1,3;3 - y - 2,0; 4 - y = 5; 5 - y = 10; 6 - y = 27,5.

СВОЙСТВА "ПИ" И "ГИ" ИЗЛУЧЕНИЙ ПРИ НАКЛОННОМ ПАДЕНИИ ЧАСТИЦЫ НА ГРАНИЦУ SiO₂ - ВАКУУМ / ВАКУУМ - SiO₂ /

Общие формулы /1/ и /2/ дают возможность рассчитать свойства ПИ и ГИ в среде при разных углах паде-

Рис. 17. Угловое распределение квантов ПИ в SiO₂, испускаемых на граниче вакуум - SiO₂ частицами при разных углах падения ψ для $\gamma = 1,2$. $I - \psi = 5^{\circ}$; 2 - $\psi = 10^{\circ}$; 3 - $\psi = 25^{\circ}$, отсчет угла ψ на этом рисунке ведется по правой части оси θ_2 .

ння ψ . На рис.17 показаны угловые распределения ПИ в SiO₂ при $\psi = 5^{\circ}$, 10° и 25°для $\gamma = 1.2$ /для сравнения см. кривую для $\psi = 0^{\circ}$ на рис.1/. Минимумы на этом рисунке соответствуют гибридному излучению от зарядаизображения, отраженному от границы SiO₂ -вакуум в среду и деструктивно проинтерферировавшему с излучением от реального заряда. По положению минимумов относительно вектора скорости частицы можно приблизительно определить направление скорости заряда-изображения. Так, глубокий минимум при () ≈ 28° соответствует правой ветви ГИ /если смотреть по направлению скорости заряда-изображенкя/, а другой минимум при 0^{-≈} 32°- его левой ветви /см. кривую для 0 5 /.

Интересно проследить деформацию углового распределения ПИ с изменением угла наклона ψ / рис. 17/. С увеличением ψ глубокие минимумы А и В сближаются, а центральный минимум С следует за частицей.

Рис. 18. То же, что и на рис. 17, но для углов $\psi \sim 25^{\circ}_{-}$ 1 - $\psi = 32^{\circ}$; 2 - $\psi = 37^{\circ}_{-}$.

Рис. 19. То же, что и на рис. 17, но для больших углов ψ . 1 - $\psi = 40^{\circ}$; 2 - $\psi = 55^{\circ}$; 3 - $\psi = 70^{\circ}$.

При $\psi = 22^{\circ}$ минимум С уже сливается с минимумом В, образуя правый минимум D. С дальнейшым увеличением ψ минимум D постепенно исчезает /см. рис. 18 и 19/.

В заключение отметим, что при $\gamma = 1,2$ глубокий минимум появляется под углом $\theta = 32^{\circ}$ при нормальном падении частицы. Тогда казалось бы, что если направить частицу под углом $\psi = 32^{\circ}$. то минимум одной из ветвей должен быть при $\theta = 0^{\circ}$. Однако, как показывают расчеты, этого не происходит, минимум появляется при $\theta = 3^{\circ}$. Это говорит о том, что "траектория"

заряда-изображения в среде не является зеркальным отображением трасктории реального заряда, движущегося в вакууме, и существенно зависит от характеристик среды, скорости реального заряда и угла входа частицы в среду.

выводы

1. Впервые показано, что при влете частицы в прозрачный диэлектрик угловые распределения квантов ПИ, испущенных в среду, имеют особенности в виде глубоких интерференционных минимумов.

2. Выявленные особенности ПИ возникают в узкой области энергий частицы вблизи порога возникновения излучения Вавилова-Черенкова.

3. В этой аномальной области энергий околопороговый интерференционный эффект проявляется также в виде минимума в зависимости полной интенсивности от у.

4. Эти особенности могут быть интерпретированы на основе двух подходов:

а/ как результат интерференционных эффектов от излучений реального заряда и заряда-изображения;

б/ как ответное когерентное ызлучение среды на возмущение, наводимое электрическим полем частицы, приближающейся к границе раздела, которое имитирует излучение Вавилова-Черенкова от заряда-изображения, движущегося навстречу реальной частице.

В заключение благодарим академика И.М.Франка и А.П.Кобзева за полезные обсуждения результатов настоящей работы.

ЛИТЕРАТУРА

1. Зрелов В.П., Ружичка Я. ОИЯИ, Р1-11764, Дубна, 1978.

ł

- Zrelov V.P., Ružička J. Nucl. Instr. and Meth., 1978, v.151, p. 395-403,
 - ОИЯИ, РІ-10915, Дубна, 1977.

ţ

- 3. Зрелов В.П., Павлович П., Ружичка Я. ОИЯИ, P1-7956, Дубна, 1978.
- 4. Франк И.М. Преприня ФИАН СССР, А-64, М., 1965.
- 5. Корхмазян Н.А. Изв. АН АрмССР, 1957, ∎.10, №4, с.29.
- 6. Пабомов В.Е. Труды Физ. ин-та им. Лебедева АН СССР, т.44. "Наука", М., 1969, с.63. 7. Тер-Микаелян М.Л. Влияние среды на электромаг-
- 7. Тер-Микаелян М.Л. Влияние среды на электромагнитные процессы при высоких энергиях. Изд-во АН АрмССР, Ереван, 1969, с.223.

Рукопись поступила в издательский отдел 19 октября 1978 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индеі	кс Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5,	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых нонов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	XHMER
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники

an and Million and a

Издательский отдел Объединенного института ядерных исследований. Заказ 25703. Тираж 650. Уч.-изд. листов 1,62. Редактор Н.Н. Зрелова. Подписано к лечати 29.11.78 г. Корректор Т.Е.Жильцова.

٢

· VI COMPLETENCE :