ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

SU 490 4414

P2 - 11963

В.П.Зрелов. Я.Ружичка

ИНТЕРФЕРЕНЦИОННЫЕ ЭФФЕКТЫ
В ПЕРЕХОДНОМ ИЗЛУЧЕНИИ
ВБЛИЗИ ПОРОГА
ИЗЛУЧЕНИЯ ВАВИЛОВА-ЧЕРЕНКОВА. V

1978

В П.Зрелов. Я.Ружичка

ИНТЕРФЕРЕНЦИОННЫЕ ЭФФЕКТЫ
В ПЕРЕХОДНОМ ИЗЛУЧЕНИИ
ВБЛИЗИ ПОРОГА
ИЗЛУЧЕНИЯ ВАВИЛОВА-ЧЕРЕНКОВА V

Направлено в "Nuclear Instruments and Methods"

Интерференционные эффекты в переходном излучении вблизи порога излучения Вавилова-Черенхова. V

В работе подробно проанализированы свойства переходного излучения, возникающего при пересечении заряженной частицей гранины вакуум-проэречный диэлектрик, что позволило выявить интерференционные эффекты между переходным и череяковским излучениями в чистом виде, Выявиве необичный вид углового распределения квантов переходного излучения (распределение с минимумом), возникающего вблизи порога излучения Вавилова-Черенкова и направленного в проэрачную среду. Ход полной интенсивности ПИ вследствие наличия минимумов в угловых распределениях квантов ПИ имеет также особенность в допороговой области (полная интенсивность уменьшается с ростом у). Показано, что этот эффект может быть объяснен только с привлечением излучения от заряда-изображения. Суммарное переходное излучение, испущенное в среде частицей с $\beta > n^{-1}$, есть результат интерференции трех вилов излучений: переходного от частицы, гибридного от частицы и переходного (гибрядного) от частицы—изображения,

Преприят Объединенного института ядерных исследований. Дубна 1978

Zrelov V.P., Ružička J.

P2 - 11963

Interference Effects in Transition Radiation Near the Threshold of Vavilov-Cherenkov Radiation, V

The properties of transition radiation (TR) originating in charged particle crossing the vacuum-transparent dielectric boundary has been analysed in detail. This made it possible to observe the interference effect between the transition and Cherenkov radiations in a pure form. An unusual kind of the quantum angular distribution of TR (a distribution with a minimum) arising near the threshold of Vavilov-Cherenkov radiation and directed to a transparent medium has been observed. The shape of the total TR intensity due to the presence of minima in the angular distributions of TR has also a peculiarity in the prethreshold region (the total intensity is decreased with increasing y). It is shown that this effect can be explained only on studying the radiation from the charge-image. The summed TR emitted in a medium by a particle with $\beta > n^{-1}$ is a result of the interference of three radiations: TR from a particle, Hr? from a particle and TR (hybrid) from a particleimage.

Preprint of the Joint Institute for Nuclear Research.

Dubna 1978

1. ВВЕДЕНИЕ

Проведенное в работе $^{\prime 1/}$ * рассмотрение свойств переходного излучения, возникающего на плоской границе металл (Ni) -диэлектрик (SiO $_2$ -плавленный кварц), показало, что в прозрачной среде свойства переходного излучения /при скоростях частиц $\beta > n^{-1}$ / имеют гибридный характер, обусловленный наложением обычного переходного излучения и излучения Вавилова-Черенкова. В той же работе $^{\prime 1/}$ было обращено внимание на сильное взаимовлияние диэлектрических характеристик граничащих сред на свойства переходного и гибридного излучений в них.

Для того, чтобы выявить свойства ГИ в чистом виде, в настоящей работе были рассчитаны характеристики как переходного излучения /ПИ/, так и гибридного излучения /ГИ/, возникающих на границе вакуум - прозрачный диэлектрик.

^{*} Предыдущие работы из этой серии опубликованы в: I - Nucl. Instr. and Meth., 1969, 74, pp.61-69. ОИЯИ, P2-4058, Дубна, 1968. II - Nucl. Instr. and Meth., 1975, 130, p. 513-525. ОИЯИ, P1-7956, Дубна, 1974. III - Nucl. Instr. and Meth., 1978, 151, p. 395-403. ОИЯИ, P1-10915, Дубна, 1977. IV - ОИЯИ, P1-11764, Дубна, 1978.

II. НОРМАЛЬНОЕ ПАДЕНИЕ ЧАСТИЦЫ НА ГРАНИЦУ ВАКУУМ - ПРОЗРАЧНЫЙ ДИЭЛЕКТРИК / КВАРЦ/

1. Излучение "вперед" /в кварце/ до порога возникновения излучения Вавилова-Черенкова

Угловые распределения плотности энергии излучения для частицы, движущейся со скоростью β из вакуума ($\epsilon_1=1$) в кварц ($\epsilon_2=\epsilon_{SiO2}$) при наблюдении излучения в кварце /т.е. "вперед"/, рассчитывались по формулам, приведенным в $^{\prime 2}$ /:

$$\frac{\mathrm{d}^2 I_{\mathrm{g}}^{\mathrm{u}}}{\mathrm{d}\Omega \, \mathrm{d}\omega} = \frac{\mathrm{e}^2 \beta_{\mathrm{g}}^2 \cos^2 \theta_{\mathrm{g}}}{\pi^2 \, \mathrm{c} \sin^2 \theta_{\mathrm{g}}} \left| \frac{\left(\epsilon_{\mathrm{g}} - \epsilon_{\mathrm{f}}\right) \cdot \epsilon_{\mathrm{g}}^{3/4}}{\left(\epsilon_{\mathrm{g}} \sqrt{\left(\epsilon_{\mathrm{f}} - \epsilon_{\mathrm{g}} \sin^2 \theta_{\mathrm{g}}\right)^2} \cdot \epsilon_{\mathrm{f}} \sqrt{\epsilon_{\mathrm{g}}} \cos \theta_{\mathrm{g}}\right)} \right|^2 \times$$

$$\frac{ \langle (1 - \beta_y \sqrt{\epsilon_2} \cdot \cos\theta_y - \beta_z^2, \epsilon_2 - \beta_z \sqrt{(\epsilon_1 - \epsilon_2 \cdot \sin^2\theta_z)} \cdot \sin^2\theta_z + \beta_y \beta_z \sqrt{\epsilon_2} \cdot \cos\theta_y \sqrt{(\epsilon_1 - \epsilon_2 \cdot \sin^2\theta_z)}) }{ [(1 - \beta_y \sqrt{\epsilon_2} \cdot \cos\theta_y)^2 - \beta_z^2 \epsilon_2 \cos^2\theta_z] [1 - \beta_y \sqrt{\epsilon_2} \cos\theta_y - \beta_z \sqrt{(\epsilon_1 - \epsilon_2 \sin^2\theta_z))}] } ^2 .$$

$$\frac{d^2 I_2^{\frac{1}{2}}}{d\Omega d\omega} = \frac{e^2 \beta_y^2 \beta_z^4 \cos^2 \theta_1 \cos^2 \theta_z}{\pi^2 \cdot c \cdot \sin^2 \theta_z} \times \frac{\sqrt{2}}{2}$$

$$\times |-\frac{(\epsilon_2-\epsilon_1)\cdot\epsilon_2^{5/4}}{(\sqrt{(\epsilon_1-\epsilon_2\sin^2\theta_2)+\sqrt{\epsilon_2}\cdot\cos\theta_2}/((1-\beta_2\sqrt{\epsilon_2}\cdot\cos\theta_1)^2-\beta_2^2\epsilon_2\cos^2\theta)}|[1-\beta_2\sqrt{\epsilon_2\cos\theta_2}-\beta_2/(\epsilon_1-\epsilon_2\sin^2\theta_2)]}$$

где

$$\mathbf{T} \mathbf{O} = \sin\theta \, \mathbf{d} \boldsymbol{\theta} \, \mathbf{d} \boldsymbol{\phi}; \ \boldsymbol{\beta}_{\mathbf{y}} = \boldsymbol{\beta} \cdot \sin \boldsymbol{\psi}; \ \boldsymbol{\beta}_{\mathbf{z}} = \boldsymbol{\beta} \cos \boldsymbol{\psi}; \ \cos \boldsymbol{\theta}_{\mathbf{z}} = -\sin \theta \cos \boldsymbol{\phi}; \\ \cos \boldsymbol{\theta}_{\mathbf{y}} = \sin \theta \sin \boldsymbol{\phi}; \cos \boldsymbol{\theta}_{\mathbf{z}} = \cos \boldsymbol{\theta}.$$

На рис. I показаны угловые распределения переходного излучения в кварце для различных γ ($\gamma=\frac{1}{\sqrt{1-\beta^2}}$) ниже порога возникновения излучения Вавилова-Черенкова в кварце ($\gamma=1.336$). При вычислении угловых распределений, приведенных на этом рисунке, диэлектрическая

Рис. 1. Угловые распределения квантов переходного излучения в кварце /т.е. "вперед"/ для различных у и границы вакуум-кварц. 1 - у : 1.01; 2 - у : 1.1 ; 3 - у : 1.2 ; 4 - у 1.3.

проницаемость $(s_{iO_2} - a_{iO_2})$ записывалась в виде $(s_{iO_2} - a_{iO_3})$ где $(a-n^2)(1-\kappa^2)$, $b^2 - 2\kappa n^2$ А зависимость показателя преломления кварца (s_{iO_2}) от длины волны имела такой же вид, как в предыдущей работе (a^2) Обращает на себя внимание необычный вид угловых распределений ПИ при y=1,2 и y=1,3, имеющих глубокие минимумы в области углов $\theta = 33^\circ$ и $\theta = 42^\circ - 43^\circ$ соответственно, а также необычный вид угловых распределений при более низких y (y=1,1, y=1,01). чего не наблюдалось

раньше при расчетах угловых распределений ПИ в вакууме /см., например, расчеты угловых распределений ПИ, испущенного в вакууме "вперед" и "назад" для границы вакуум - Ni/1 \cdots 3//.

Как видно из формул /1/ и /2/, эти минимумы /в случае нормального падения частицы, ψ - 0/ могут возникать только при обращении в нуль числителей этих формул, т.е. при

$$|1 - \epsilon_2 \beta|^2 - \beta \sqrt{1 - \epsilon_2 \sin^2 \theta_{\min}}| = 0.$$
 /3/

откуда

$$\cos^2 \theta_{\min} = 1 - \frac{1}{\epsilon_2} + \frac{(1 - \beta^2 \epsilon_2)^2}{\epsilon_2 \beta^2}.$$
 /4/

Зависимость угла перемещения минимума θ_{\min} от γ , определяемая /4/, показана на рис. 2.

Как показано ниже, наличие минимумов в угловых распределениях имеет место для излучения не только в среде, но и в вакууме, что следует также из первоначальных формул Гинзбурга-Франка*. в числителе кото-

рых содержится скобка $(1-\beta^2+\beta\sqrt{n^2-\sin^2\theta})$, обращающаяся

в нуль при
$$\beta = \frac{1}{2} (\sqrt{n^2 - \sin^2 \theta} + \sqrt{n^2 + 4 - \sin^2 \theta}).$$
Наличие острых минимумов в угловы (

Наличие острых минимумов в угловых распределениях переходного излучения, несомненно, свидетельствует об интерференционных эффектах. Как показано в работе $\frac{1}{1}$, при скоростях частиц $\beta \cdot n^{-1}$ имеет место интерференция излучений Вавилова-Черенкова и переходного. В этой связи возникает вопрос: какие виды излучений интерферируют, если скорость частицы, пересекающей границу вакуум-кварц, не превышает порога возникновения излучения Вавилова-Черенкова ($\gamma = 1.336$), т.е. если имеется только одно переходное излучение?

Для того, чтобы понять причину возникновения вышеприведенных интерференционных эффектов, воспользуемся формулами переходного излучения, выведенными на The state of the second second

^{*}Гинзбург В.Л. Франк И.М. ЖЭТФ, 1946, 16, с.1.

Рис. 2. Зависимость угла перемещения $\theta_{\min}(\gamma)$ /сплошная кривая/ и зависимость угла "испускания" излучения Вавилова-Черенкова θ^* от скорости β^* /пунктирная кривая/. Стрелкой показан порог черенковского излучения.

основе теории изображений и приведенными $\mathfrak L$ работах $^{/4-6/}$.

Например, согласно работе Франка $^{/5/}$ спектральная плотность энергии переходного излучения в телесном угле $d\Omega$ /в вакууме/ дается выражением, содержащим три члена:

$$\frac{d^{2}I^{\frac{1}{n}}}{d\Omega d\omega} = \frac{e^{2}\beta^{2}}{4\pi c} \sin^{2}\theta \left\{ a_{1} - a_{2}r_{1} - a_{3}\frac{f_{1}}{n} \right\}^{2}, \qquad /5/$$

где θ - угол между направлением нормали и испущенным квантом переходного излучения, v - скорость частицы, e - ее заряд, e - скорость света в вакууме, e - коэффициенты Френеля для отраженных и преломленных воли соответственно, e - показатель

преломления среды, a_1 , a_2 , a_3 - интерференционные множители для излучения в накууме, которые равны:

$$a_{1} = \frac{1}{1 \cdot \beta \cos \theta},$$

$$a_{2} = \frac{1}{1 + \beta \cos \theta},$$

$$a_{3} = \frac{1}{1 - \beta \sqrt{n^{2} - \sin^{2} \theta}}.$$
/6/

Члены, входящие в выражение /5/, обычно интерпретируются следующим образом: a_1 есть амплитуда поля частицы, движущейся в вакууме и внезапно остановившейся на границе среды; $a_2 \, r_r$ - амплитуда поля электрического изображения частицы, движущейся из глубяны среды и останавливающейся на границе

среда - вакуум; $a = \frac{f_{12}}{a_{11}}$ - амплитуда поля частицы,

начавшей свое движение от границы в тот же момент времени в глубь среды.

Для нашего случая, т.е. при рассмотрении переходного излучения в среде, формула /5/ принимает вид:

$$\frac{\mathrm{d}^{2}I^{\parallel}}{\mathrm{d}\Omega\,\mathrm{d}\omega} = \frac{\mathrm{e}^{2}\beta^{2}\mathrm{n}}{4\pi^{2}\mathrm{c}} \cdot \sin^{2}\theta |a'_{1} + a'_{2} \cdot \Gamma'_{1} - a'_{3} \cdot \Gamma'_{1} - \mathrm{n}|^{2}.$$
 (7)

где интерференционные множители для излучения в среде "аперед" a'_1 , a'_2 , a'_3 выражаются следующим образом:

$$a'_{1} = \frac{1}{1 \cdot \beta n \cos \theta},$$

$$a'_{2} = \frac{1}{1 + \beta n \cos \theta},$$

$$a'_{3} = \frac{1}{1 - \beta \sqrt{1 - n^{2} \sin^{2} \theta}},$$
/8/

а коэффициенты Френеля для излучения, распространяющегося из среды в вакуум, равны

$$\mathbf{r}' = \frac{\cos\theta \cdot \mathbf{n} \sqrt{1 - \mathbf{n}^2 \sin^2\theta}}{\cos\theta \cdot \mathbf{n} \sqrt{1 - \mathbf{n}^2 \sin^2\theta}},$$

/9/

$$f' = \frac{2n\cos\theta}{\cos\theta + n\sqrt{1 - n^2\sin^2\theta}}$$

Нетрудно показать, что, подставляя /8/ и /9/ в /7/, получим формулу

$$\frac{\mathrm{d}^2 T^{\parallel}}{\mathrm{d}\Omega\,\mathrm{d}\omega} = \frac{\mathrm{e}^2 \beta \, \frac{2}{\cos^2 \theta}}{\mathrm{e}^2 \cos^2 \theta} = \frac{(\mathrm{n}^2 + 1) \cdot \mathrm{n}^{(3/2)}}{\mathrm{e}^2 \sin^2 \theta} = \frac{2}{\mathrm{n}^2 \cos^2 \theta} + \mathrm{n} \cos \theta$$

$$\frac{(1-\beta^2n^2-\beta\sqrt{1-n^2\sin^2\theta})\sin^2\theta}{(1-\beta^2n^2\cos^2\theta)(1-\beta\sqrt{1-n^2\sin^2\theta})} + \frac{1}{2}, \qquad /10/$$

которая является частным случаем формулы /1/ для $\psi = 0$ и совпадает с формулой Тер-Микаеляна 7/при $\epsilon_1 = 1$.

Таким образом, на основании формулы /7/ суммарное переходиое излучение в среде разбивается на три части с амплитудами a_1' , a_2' r_1' и a_3' r_2' r_3' которые взаимно интерферируют, что и приводит к образованию минимумов, подобных приведенным на рис. 1.

Зависимости отдельных составляющих реальных частей амплитуд, входящих под модуль в выражение /5/, от угла наблюдения θ для y 1,2 /скорость частицы ниже порога возникновения излучения Вавилова-Черенкова/ представлены на рис. 3, из которого видно, что в угловой зависимости члена $\alpha_2 \cdot r_x \cdot \sin \theta$ имеется глубокий минимум при угле θ = 43°. Вблизи углов θ = 30°и θ = 52° амплитуды $\alpha_1 \sin \theta$ и $\alpha_3 \cdot f_1 \cdot r \cdot \sin \theta$ точно равны друг другу /на рис. 3 они пересекаются/, но имеют

Рис. 3. Угловые зависимости отдельных составляющих реальных частей амплитуд общего выражения для интенсивности ПИ "вперед" /см. выражение /5.1/ для случал излучения в $\sin 2$ при $\gamma = 1.2$. $1 - a_1 \sin \theta_2$; $2 - a_2 \tan \theta_2$; $3 - a_3 \sin \theta_2$;

разные знаки, благодаря чему минимум члена $a_2 \cdot r_n \cdot \sin\theta$ отчетливо проявляется. Все особенности в поведении члена $a_2 \cdot r_n \cdot \sin\theta$ обусловлены сложной зависимостью коэффициента отражения Френеля r_n от угла θ .

Сопоставление распределения на рис. Зи кривой для y=1,2, приведенной на рис. I, позволяет понять причину образования необычного минимума.

При у выше порога возникновения излучения Вавилова-Черенкова характер кривых, изображенных на рис. 3, существенно изменяется и приобретает вид, представленный на рис. 4. Сравнивая рисунки 3 и 4, можно заметить, что зависимость амплитуды переходного излучения $a_1 \cdot \sin \theta_2$ претерпела разрыв, образуя большой максимум, соответствующий углу испускания излучения Вавилова-Черенкова. Таким образом, к переходному излучению добавилось черенковское и образовалссь гиб-

Рис. 4. То же, что и на рис. 3, но для y=27.5 ж.е. для y выше порога возникновения излучения Вавилова-Черенкова.

ридное излучение /ГИ, см. работу / 1/ /, процесс образования которого теперь уточнился: гибридное излучение есть сумма излучения Вавилова-Черенкова и той части переходного излучения, которое было испущено в среду.

Угловая зависимость a_2 г, $\sin\theta$ при γ – 27,5 по форме практически не изменилась, а незначительно изменилась лишь величина этой амплитуды.

Претерпела существенное изменение гакже левая ветвь $(\theta < 42,5^\circ)$ амплитуды $a_3 \cdot n \cdot f \cdot \sin \theta$, а правая ее ветвь осталась без изменений. Из этого следует, что переходное излучение при высоких у. испущенное "вперед" в среду в основном представляет собой излучение, испущенное в "вакууме" и проникшее в среду. Это свидетельствует, кстати, о доминирующей роли части переходного излучения, которое возникает в вакууме на границе вакуум-диэлектрик.

Вид зависимостей реальных частей этих же амплитуд для излучения назад в "среде" показан на рис. 5 и б.

Несмотря на то, что все особенности ПИ в среде, отмеченные выше, находят свое объяснение на основе интерференционных эффектов и разбиения общей формулы переходного излучения на слагаемые /8/, представляет интерес и иной подход к объяснению минимумов, представленных на рис. I /и других особенностей ПИ/, связанный с расширением функции зарядов-изображений. Мы хотим приписать зарядам-изображениям не только роль источников ПИ, но и излучения Вавилова-Черенкова.

В самом деле, по самой логике введения зарядовизображений, они двигаются со скоростями от О до β β . Если β выше порога испускания излучения Вавилова-Черенкова, то и β выше порога. Поэтому правомерно говорить не только о переходном излучении зарядаизображения, но и о его черенковском, а также гибридном излучениях. Более того, связь между скоростями заряда β и заряда-изображения β * не является такой простой. Как впервые показал Пафомов β 0 и β 1 связаны зависимостью

$$\theta^* = \frac{\beta}{\sqrt{1 + \beta^2 - \beta^2 n^2}} .$$
 /11/

Рис. 5. То же, что и на рис. 3, но для случая испускания излучения "назад" / в квару/ для y=1.2

Тогда зависимость угла испускания излучения Вавилова-Черенкова от заряда-изображения будет равна

$$\cos\theta^* = \frac{1}{n\beta^*}, \qquad /12/$$

и пороговое условие примет вид $n \beta^* \ge 1$.

С учетом /11/ скорость реального заряда, при которой заряд-изображение будет давать излучение Вавилова-Черенкова, равна

$$\beta_0 = \frac{1}{\sqrt{2n^2 - 1}} \,. \tag{13}$$

Рис. 6. То же, что и на рис. 3, но для случая испускания излучения "назад" /в квари/ для y = 27.5.

Скорость β_0 при $n \ge 1$ всегда меньше пороговой скорости испускания излучения Вавилова-Черенкова реальным зарядом ($\beta > 1/n$) на величину

$$\Delta\beta = \beta_0 - \beta = \frac{\sqrt{2n^2 - 1} - n}{n\sqrt{2n^2 - 1}}$$
. (14/

Для n_{SiO_2} — 1.47 /для λ = 4000 A / $\Delta\beta$ = 0.131. Зависимость угла испускания $\theta^*(\beta^*)$ согласно /12/ будет иметь вид, представленный на рис. 2/пунктирная кривая/, из которого видно, что до порога возникновения излучения Вавилова-Черенкова от реальной частицы она близка к зависимости /4/, т.е. к той зависимости, которая определяет положение интерференционных минимумов.

Отметим, что на возможность "испускания" зарядомизображением излучения Вавилова-Черенкова указывал в свое время Пафомов /8/.

Это совпадение наводит на мысль о том, что появление минимума /puc. I/ в угловом распределении ПИ можно интерпретировать, как "испускание" излучения Вавилова-Черенкова от заряда-изображения.

В связи с тем, что ниже в работе особенности ПИ в прозрачной среде часто связываются с излучением Вавилова-Черенкова от заряда-изображения, мы хотели бы изложить нашу точку зрения на роль зарядов-изображений в рассмотренном процессе.

При подлете к границе раздела вакуум-среда частица своим электрическим полем поляризует атомы среды. Смещения атомных электронов в сторону частицы с положительным зарядом /или в обратную сторону от частицы с отрицательным зарядом/ могут создавать в среде поляризацию, совпадающую с той, которая имела бы место от встречного движения частицы с противоположным зарядом и со скоростью выше порога излучения Вавилова-Черенкова, т.е. реакция среды на приближение частицы проявляется как имитация процесса возникновения излучения Вавилова-Черенкова. Таким образом, этот эффект может быть интерпретирован как ответное когерентное излучение среды на возмущение от поля частицы.

Теперь продолжим описание свойств излучения, наблюдавшегося в среде при нормальном падении частицы, движущейся со скоростью ниже порога возникновения излучения Вавилова-Черенкова, но для излучения в среде "назад".

Вид угловых распределений квантов переходного излучения для праницы SiO_2 -вакуум, испущенных "назад", т.е. в SiO_2 , для различных γ показан на рис. 7, где так же, как и на рис. 1, отчетливо видны интерференционные минимумы. В отличие от случая вакуум-среда /излучение "вперед"/ эти минимумы возникают сразу в области больших углов и с увеличением γ перемещаются в сторону меньших углов, следуя зависимости, приведенной на рис. 2/спадающая часть кривой/. Таким

Рис. 7. Вид угловых распределений квантов ПИ, испущенных "назад" / т.е. в SiO_2 / для различных γ . I γ : 1,1; 2 - γ - 1,2; 3 - γ - 1,25: 4 - γ - 1,30; 5 - γ - 1.35 .

образом, мы видим, что характеры изменения скорости заряда-изображения в зависимости от скорости частицы различны для случая влета частицы и ее вылета.

Отметим также, что на кривой 5 этого рисунка еще не виден пик излучения Вавилова-Черенкова несмотря на то, что $\gamma=1.35$ выше $\gamma_{\text{HOD}}=1.336$ для SiO $_2$.

2. Свойства излучений "вперед" и "назад" /наблюдаемых в среде/ при скоростях частицы выше порога возникновения излучения Вавилова-Черенкова

На рис. 8 приведены угловые распределения квантов переходного излучения, испущенных в среду /т.е. в SiO_2 /"вперед", на границе вакуум - SiO_2 при двух значениях y: y=1.4.1,5: а на рис. 9 - то же для границы SiO_2 -вакуум /т.е. в среде для случая "назад"/.

Рис. 8. Угловые распределения квантов ПИ, испущенных в кварц /т.е. "вперед"/ на границе вакуум - SiO_2 при двух значениях у. I - y - 1,4; 2 - y - 1,5.

Рис. 9. То же, что и на рис. 8, но для случая излучения "назад" и других γ . 1 - γ = 1,4; 2 - γ = 1,7; 3 - γ = 2.

Острые максимумы на этих рисунках есть пики излучения Вавилова-Черенкова /точнее, гибридного излучения/. Интересно отметить, что эти пики с увеличением у перемещаются в сторону больших углов в соответствии с законом $\cos\theta = 1/\beta \cdot n$, постепенно проходя весь глубокий интерференционный минимум, который для этих у почти "неподвежен". Это особенно заметно на рис. 9.

В случае излучения "вперед" /т.е. в ${
m SiO}_2$ / при высоких γ пик гибридного излучения, как это видно из ρ рис. 10, перемещается до предельного угла $\theta_{{
m HPER}}$ =42° /для ${
m SiO}_2$ /. Начиная примерно с γ 5 в угловом распределении появляется новый пик, который с увеличением γ растет по величине и перемещается по θ к направлению скорости частицы. В нем нетрудно опознать пик "чистого" переходного излучения /напомним, что максимум переходного излучения при высоких γ ведет

Рис. 10. То же, что и на рис. 8, но для высоких y. 1 - y = 1,35; 2 - y = 1,5; 3 - y - 2; 4 - y = 5; 6 - y = 27,5.

себя как $-y^{-1}$ /. Следует здесь заметить, что для случая границы $\mathrm{Ni}-\mathrm{SiO}_2$ при расчетах угловых распределений пик переходного излучения в кварце в области малых углов и высоких y не проявляется 17 .

Это еще раз подтверждает вывод, сделанный в этой же работе, о сильном влиянии второй среды с ι_1 1 на свойства ГИ в первой среде с ι_2 .

3. Переходное излучение в прозрачной среде с высоким показателем преломления /n = 2,4 - алмаз/

В связи с тем, что амплитуды полей переходного излучения от заряда и его изображения противоположны по знаку, имеет место, как это уже отмечалось выше, деструктивная интерференция. Однако при углах θ , больших угла полного внутреннего отражения θ , должно происходить изменение фазы переходного излучения от заряда-изображения в соответствии с формулами Френеля. Это изменение фазы переходного излучения видно уже на *рис. I* /кривая для у 1.01/. Деструктивная ннтерференция здесь происходит до угла $\theta = 42$, выше коизлучение от заряда-изображения торого переходное складывается с переходным излучением от реального заряда, в результате чего образуется необычного вида пик /срезанный со стороны малых углов/.

С увеличением показателя преломления, например до n=2.4 / алмаз - C^* / угол полного внутреннего отражения уменьшается $(\sin\theta^*-1/n)$, поэтому расширяется область углов, больших угла θ^* , что позволяет более отчетливо выявить положительную интерференцию.

Угловые распределения квантов переходного излучения, испущенные "вперед", т.е. в алмаз, для границы вакуум-алмаз, приведены на puc.~II. На этом рисунке, во-первых, виден отчетливый пик переходного излучения от реальной частицы в области малых углов $(\theta-1/y)$. Во-вторых, под углом $\theta-63^\circ$ выступает пик гибридного излучения - также от реальной частицы. Между этими пиками виден третий, небольшой пик, который представляет собой часть максимума гибридного излучения от

Рис. 11. Угловые распределения квантов ПИ, испущенных "вперед" в среду с высоким п /алмаз - С* /,для разных γ . I - γ = 1,01; 2 - γ = 1.1; 3 - γ = 1.2; 4 - γ = 2.4; 5 - γ = 3; 6 - γ = 10.

заряда-изображения, которое проинтерферировало положительным образом с излучением от реальной частицы.

Вид угловых распределений квантов ПИ, испущенных "назад" на границе алмаз-вакуум /т.е. в алмаз/ для y=3 представлен на рис. 12. Отметим, что в этом случае пик "чистого" ПИ, который должен быть под углом $\theta \approx 10^\circ$ /как он виден на рис. 11 при том же y/, от-

Puc. 12. То же, что и на рис. 11, но для случая излучения "назад" при $\gamma=3$.

сутствует, благодаря чему и пик от положительной интерференции выступает более отчетливо.

111. СВОЙСТВА ИЗЛУЧЕНИЯ В ВАКУУМЕ ДЛЯ НОРМАЛЬНОГО ПАДЕНИЯ ЧАСТИЦЫ НА ГРАНИЦУ КЗАРЦ-ВАКУУМ

Этот случай при низких γ представлен на puc.~13, из которого видно, что до $\gamma=1,16$ угловые распределе-

Рис. 13. Угловые распределения квантов ПИ в вакууме для границы квару-вакуум /т.е. испущенных "вперед"/ при допороговых γ . $I - \gamma = 1,16$; $2 - \gamma = 1,14$; $3 - \gamma = 1,12$; $4 - \gamma = 1,18$; $5 - \gamma = 1,20$.

ния ПИ вмеют обычный вид с широким максимумом около $\theta = 60^\circ$. С увеличением γ появляется также глубокий минимум, перемещающийся в сторону больших углов θ . Положение этого минимума в угловом распределении переходного излучения в вакууме с учетом преломления на границе вакуум-кварц, совпадает с положением минимума гибридного излучения от заряда-изображения в среде /см. кривые для $\gamma = 1.2$ на рис. I и 13/.

Совгадение минимумов в вакууме и в среде /с учетом преломления/ указывает на общую причину их возникновения: источником их является заряд-изображение.

Обращает на себя внимание то, что число квантов ПИ под всеми углами, начиная с y=1.19. не увеличивается с ростом y=/как обычно, это имеет место для ПИ/, а, наоборот, уменьшается. Эта аномалия так же хорошо видна в поведении полной интенсивности ПИ в завысимости от y/см. рис. 14/.

При превышенни порога излучения Вавилова-Черенкова из кварца выходит пик ГИ, испытавшего преломление /см. кривую для у 1.4 /. С дальнейшим ростом; пик уходит в область больших углов, и при у 5 он уже исчезает /испытывает полное внутреннее отражение/. С последующим ростом у увеличивается только пик "чистого" ПИ.

Рис. 14. Зависимость от у полной интенсивности ГИ, испущенного "вперед" /т.е. в вакуум/ на границе кварцвакуум.

Этот же пик отчетливо виден и в угловом распределении ПИ "назад", т.е. в вакуум /рис. 16/. Отсутствие пика излучения Вавилова-Черенкова в этом случае понятно /черенковское излучение направлено вперед, в глубь среды/.

При высоких у / рис. 15/ минимумы в соответствии со сплошной кривой, приведенной на рис. 2, исчезают.

Рис. 15. Угловые распределения квантов ПИ и 1 $^{\prime}$ И, испущенных в вакуум /м.е. "вперед"/ на границе SiO_2 - вакуум для разных y. I - y=1,3;2-y=1,4;3-y=1,7;4-y=2,0;5-y=5;6-y=10;7-y=27,5.

Рис. 16. Угловое распределение квантов ПИ, испускаемых "назад" /т.е. в вакуум/ на границе вакуум — SiO_g частицами с разными у. I=y=1,1; 2=y=1,3; 3=y=2,0; 4=y=5; 5=y=10; 6=y=27,5.

СВОЙСТВА "ПИ" И "ГИ" ИЗЛУЧЕНИЙ ПРИ НАКЛОННОМ ПАДЕНИИ ЧАСТИЦЫ НА ГРАНИЦУ ${
m SiO}_2$ - ВАКУУМ /ВАКУУМ - ${
m SiO}_2$ /

Общие формулы /1/ и /2/ дают возможность рассчитать свойства ПИ и ГИ в среде при разных углах паде-

Рис. 17. Угловое распределение квантов ПИ в ${
m SiO}_2$, испускаемых на граниче вакуум - ${
m SiO}_2$ частицами при разных углах падения ψ для $\gamma=1,2$. I - ψ - 5° ; 2 - ψ = 10° ; 3 - ψ = 25° , отсчет угла ψ на этом рисунке ведется по правой части оси θ_2 .

ння ψ . На рис.17 показаны угловые распределення ПИ в SiO_2 прв $\psi=5^\circ$, $1O^\circ$ н 25° для $\gamma=1.2$ /для сравнення см. кривую для $\psi=0^\circ$ на рис.1/. Минимумы на этом рисунке соответствуют гибридному излучению от заряданзображения, отраженному от границы SiO_2 -вакуум в среду и деструктивно проинтерферировавшему с излучением от реального заряда. По положению минимумов

относительно вектора скорости частицы можно приблизительно определить направление скорости заряда-изображения. Так, глубокий минимум при $\theta = 28^\circ$ соответствует правой ветви ГИ /если смотреть по направлению скорости заряда-изображенья/, а другой минимум при $\theta = 32^\circ$ - его левой ветви /см. кривую для $\psi = 5$ /.

Интересно проследить деформацию углового распределения ПИ с изменением угла чаклона ψ /рис. 17/. С увеличением ψ глубокие минимумы А и В сближаются, а центральный минимум C следует за частицей.

Рис. 18. То же, что и на рис. 17, но для углов $\psi \sim 25$. 1 - $\psi = 32^\circ$; 2 - $\psi = 37^\circ$.

Рис. 19. То же, что и на рис. 17, но для больших углов ψ . 1 - ψ = 40°; 2 - ψ = 55°; 3 - ψ = 70°.

При $\psi=22^\circ$ минимум С уже сливается с минимумом В, образуя правый минимум D. С дальнейшем увеличением ψ минимум D постепенно исчезает /см. рис. 18 и 19/.

В заключение отметим, что при $\gamma=1,2$ глубокий минимум появляется под углом $\theta=32^\circ$ при нормальном падении частицы. Тогда казалось бы, что если направить частицу под углом $\psi=32^\circ$. то минимум одной из ветвей должен быть при $\theta=0^\circ$. Однако, как показывают расчеты, этого не происходит, минимум появляется при $\theta=8^\circ$. Это говорит о том, что "траектория"

заряда-изображения в среде не является зеркальным отображением траектории реального заряда, движущегося в вакууме, и существенно зависит от характеристик среды, скорости реального заряда и угла входа частицы в среду.

ВЫВОДЫ

- і. Впервые показано, что при влете частицы в прозрачный диэлектрик угловые распределения квантов ПИ, испущенных в среду, имеют особенности в виде глубоких интерференционных минимумов.
- 2. Выявленные особенности ПИ возникают в узкой области энергий частицы вблизи порога возникновения излучения Вавилова-Черенкова.
- 3. В этой аномальной области энергий околопороговый интерференционный эффект проявляется также в виде минимума в зависимости полной интенсивности от у.
- 4. Эти особенности могут быть интерпретированы на основе двух подходов:
- а/ как результат интерференционных эффектов от излучений реального заряда и заряда-изображения;
- б/ как ответное когерентное излучение среды на возмущение, наводимое электрическим полем частицы, приближающейся к границе раздела, которое имитирует излучение Вавилова-Черенкова от заряда-изображения, движущегося навстречу реальной частице.
- В заключение благодарим академика И.М.Франка и А.П.Кобзева за полезные обсуждения результатов настоящей работы.

JUTEPATYPA

1. Зрелов В.П., Ружичка Я. ОИЯН, P1-11764, Дубна, 1978.

- Zrelov V.P., Ružička J. Nucl. Instr. and Meth., 1978, v.151, p. 395-403,
 ОИЯИ, P1-10915, Дубна, 1977.
- 3. Зрелов В.П., Павлович П., Ружичка Я. ОИЯИ, P1-7956, Дубна, 1978.
- 4. Франк И.М. Препринт ФИАН СССР, А-64, М., 1965.
- Корхмазян Н.А. Изв. АН АрмССР, 1957, п.10, №4, с.29.
- 6. Пафомов В.Е. Труды Физ. ин-та им. Лебедева АН СССР, т.44. "Наука", М., 1969, с.63. 7. Тер-Микаелян М.Л. Влияние среды на электромаг-
- 7. Тер-Микаелян М.Л. Влияние среды на электромагнитные процессы при высоких энергиях. Изд-во АН АрмССР, Ереван, 1969, с.223.

Рукопись поступила в издательский отдел 19 октября 1978 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс

Тематика

- 1. Экспериментальная физика высоких энергий
- 2. Теоретическая физика высоких энергий
- 3. Экспериментальная нейтронная физика
- 4. Теоретическая физика низких энергий
- 5. Математика
- 6. Ядерная спектроскопия и радиохимия
- 7. Физика тяжелых ионов
- 8. Криогеника
- 9. Ускорители
- Автоматизация обработки экспериментальных данных
- 11. Вычислительная математика и техника
- 12. Химия
- 13. Техника физического эксперимента
- Исследования твердых тел и жидкостей ядерными методами
- Экспериментальная физика ядерных реакций при низких энергиях
- 16. Дозиметрия и физика защиты
- 17. Теория конденсированного состояния
- Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники

Издательский отдел Объединенного института ядерных исследований. Заказ 25703. Тираж 650. Уч.-изд. листов 1,62. Редактор Н.Н.Зрелова. Подписано к печати 29.11.78 г. Корректор Т.Е.Жильдова.