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The Graphical Spin Algebra has been shown to be applicable in
a carteaian coordinate system without major modification, Then the
(G.S.A.) allows a new and very easy approach of the usual vector

analysis, Some examples of application are given.
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1. INTRODUCTION

The Graphical Spin Algebra (G.S.A.} (Elbaz and Castel 1972) is now
well-known as a power{ul tool to handle the Racah algebra of the SUZ group.
Different extension have been given for the SU3 group or even for all compact
groups (Agrawala and Belinfante 1968, Guichon 1975, Stedman 1975, 1976).

The (G.S.A.) lies on a one-to-one diagrammatic representation of the elements
of the group and on some fundamental rules of transformation based on the well-
known rotational invariance orthogonality and completeness relations. For the
purpose of this paper only some basic aspects of the (G.S. A.) have to be known

(Elbaz and Castel 1971).

Recently we have shown (Elbaz and Nahabetian 1977} that one could
define a graphical representation of the vectors or vector operators in a spherical
coordinate systern and use the (G. SF.A.) to get very interesting results with the
Wigner-Fckart theorem for instance. We have then been interested in writing :
directly a tensor in a gpherical or in a cartesian basis (Elbaz and Meyer 1978)
and shown that the vector and tensor polarization observables could be obtained

without any difficulty and in a2 systematic way. But appeared then an
interesting feature. When a graphical representation of the metric tensor (Coope
and Snider 1970} E"(rl s} was given one could use the (G.S.A.) without im-
portant alteration in a gpherical coordinate system as usual or even in a cartesian
system,

The choice of a proper convention to link cartesian and spherical aystenﬁ
was then important and it appeared that the use of the Biedenharn-Rose convention
allowed and identical graphical representation of the scalar and dot products of
two vector operators, Moreover since the '" 3nj " coefficients are scalars ,
independent of the coordinate system one could uge the (G.S.A.) without specifying

the reference frame and defining it only at convenience,

Such a result was sufficiently importaat to reconsider the graphical repre-
sentation of the vector operators, It appeared eflactively that the usual graphical
rules of the (G.S.A.)}and the knowledge of two special carteaian Clebsch-Gordan
coefficients gave immediately all the usual results known as the vector analysis
and allowed the obtention of a lat of new relations in that field. In a didactic

point of view the method allowed to get easily some well-known results tedious



to establish and difficult to remember.

In the first part of this paper we shall recall the relation between cartesian
and spherical coordinates and the graphical representation of the corresponding
vectors (or vector operators). Then we shall introducethe cartegian Clebsch-Gorden
coefficients and evaluate two simple cases. It will f:leﬁne the proper convention as to
obtain identical representation of the scalar and dot products in cartesian or

spherical coordinates. We shall then show how to use these results in the vector

analysis.

2, STANDARDIZATION OF VECTOR OPERATORS

An infinitesimal rotation @ around an Ou axis transforms the &
unitary vector of a cartesian coordinate system into a' with

T =3 +eula (2.1)
A vector operator A thus becomes
A=K & =A.(F+0UAT) = A+aA.(arD) (2.2)
As an operator ry transforms into
A, DlA D = (1+iaT) A, (1-ia7) (2.3)
a comparison between (2,2)and (2.3) gives the commutator
3,4, = 12 . (Wna) (e 4)

i the u unitary vector is chosen as 'e'3 unitary vector along the

Oz axis in a carteaian coordinate system and Z alongthe Ox, Oy, Oz

axis , one finds immediately that
[Jz.Ax] = iAY
[Jz,Ay‘l = -iA (2.5)

[Jz.Az] =0

We note on the other Lund that

—

]

U= o159
a="e 6 F, {2. 6)
=7




leads to the usual commautation relations

TAT =T 2.7

Let us now consider the transformation by rotation of an irreducible

tensor operator {I. T.O.} qu

+ k
W =RT, R =T T D (R 2.B
kq kq p @ pq( ) (2. 8)
An infinitesimal rotation ¢ around the Ou axis gives the Racah's
definition
[Ju. qu] = §<kp|Ju]kq> Tkp 2. 9)

Such an expression can then be evaluated by setting the Ou axis

along the cartesian axis and we get the well-known relations

[Jz' qu] =9 qu
R (2.10)
(31, qu] = qutl {(kZq+1) (x¥q)]
with J+ = J_tig
- x y
If we now compare the commutators
- r -
15,4,1=0 ana {35,711 =0
it becomes natural to set a linear relation between them
Tm= cAz (2.11)
Substituting this value into (2.10) gives
C'[Jt- Az] = {2 Tltl
or equivalently
[ - T +.
Tigg = 73 { [Jx.Az]-A[Jy.Az]} (2.12)
The above commutators are easily determined with (2. 4}
[Jx. Az] = - lAv
(2.13)
[.Ty. Az] =14,
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We now obtain a linear relation between the cartesian (Ax Ay_ Az)
components of the A vector operator and the qu components of an

I.T.O, . One de{ine sthe standard components A of the x vector

1
operator
c ic
= - o\ A
u {z V2 "\\
Al = 0 0 c Ay (2.14)
c ic
A = - 0 A
1.1 vz Jz z

Note that two conventions are usually chosen to determine
the c¢ coelficients
Edmonds (1967) ¢ =+ 1

(2.15)
Biedenharn and Rose(1953)c = + i

We can finally note that the standardization of the kinetic momen-
tun J allows an easy graphical expression of Racah’s definition of the
ITO s&ince the Wigner-Eckart theorem applied to the Jlu matrix element
gives

<kp | Jlu[ kq> = Z (2.16)

where the marking circle brings the <k} J§ k> value,

We introduce (2.16) into (2.9) to get after summation over the

magnetic quantum numbers

Tu
[Ju. Tl - - (2.17)
kg

and gince

<k |jI[ k> = c Yk (k+1) 2k+1) (2. 18)

1k
[J“. qu] S Ty g, © VKO @K (q;"‘ - (2.19)

a result already mentioned by Brink and Satchler{1971)



3.

DIAGRAMMATIC REPRESENTATION OF VECTOR OPERATORS

3.1 Spherical (standard) coordinates.

Using the(G. S.A,) diagrams (Elbaz and Nahabetian 1977), we

define a spherical, or standard basis

Tu

> =
T (3.1)
<l = Fw—

which verifies completness and orthonormalization relationa

gl <yl = —e— =1 (3.2)
1
? 1d' ! la’
<l {1 > AL UL M , (3.3)
(11}

In such a basis a vector operator A will be defined by its

components (18]

<

A A Tu . Tu
Alu = <Al s = e o A (3. 4)
+ A A Ta . Ty
Allb =<lplA> = et p—e— = At (3.5)

The scalar product is introduced through

!

<'R\'B> RV - SO <ﬁ\lu><lu\%> sA—e—y §

A
A

" (3. 6)
=t A B =z ())*a B
[T ] [V
B 13
I%>=(A,B +A B -A.B) (3.7)
17 171 070 .

The standardization (2,4} finally gives
<235 - -FEB (3.8)
As previously mentioned Edmond's convention gives

ALA -
<AlB>=-4.B (3.9)



while the Biedenharn's convention leads to

A A -
<A |B> =% F (3.10)

|
i
3.2 Cartesian coordinates, l(

One introduces the cartesian vector basis ?r and for the sake

of simplicity we set

e, Ar

|er>= [tr> (3.11)

with r=1,2,3= x,y,z. They form a complete orthonormal basis

£ l1r> <1zl = p—— =1
1 4
(3.12)
Adr Aa
<lr]1s®» = —spfim =8

At this stage one must point out that the above relationa are particular
cases of the description of tensors in cartesian caordinates.

m
If A I(ml) defines a tensor of rank m, (3 1 components)

and of order jl«zjl + 1) independent components), a Cartesian Clebsch-
Gordan coefficient defines the decomposition of two irreducible spaces

J
H ! and HJZ into a sum of subspace H"3 (Coope and Snider 1970)

jl jZ Jap £ jl jZ,
= ) € j j.m_ >
(A (m)® B (m,)) A (m} B ) <jm j,m, | m,
3 mm P
172
(3.13)
m, + mZ m3
where 3 = 3 is the dimension of the product space, and p
ie the multiplicity,
One then define the metric tensor
E 3 ! .
S F J3
Pp———p— = E “(t]|t') (3.14)

and the more general completencss relation becomes

U —



R e N .

. EJf(r‘r,)é.Jad,;)(a. 15)
P ————
4 g A

Since E' (rls)= 6.1_ g e lind the above mentioned relation.

The cartesian components of vector operators are then

A
A A A 1r Lo Ar
Ar=<A|1r>=<A|er>=-»-l—>—-ﬂl——)—- (3.16)
with r=x,y,2z = 1,2,3,
The scalar product is now
AN A A ” A A
<A18> -z <Al1i><1ilB>=A b——— B = 54 B
i i {3.17)
when dealing with hermitian operators B: = Bi and
AN - -
<A|B> = A.B (3.18)

4. CARTESIAN SPHERICAL TRANSFORMATION COEFFICIENTS

We can express a spherical component Alu of the A vector ope-

rator in a cartesian coordinate system

~ ~
A=<A1u>=:<A|ei><ei\lu>
® H

4,1
A =I:A,<e.\1u>- { )
[ i 1 1
Graphically it follows that
- 5
<e,|lu>= _»Q:_*_;'-__ (4.2)
i
It defines  the matrix element of the U-transformation matrix
A =U A =E<el|un> A, (4. 3)
" [TRNS § i i i




[~
e, | 1> <e |1> <e | 1> == .= 0
ot 1) 2 3 ) N2 T4z
b = <el|0> <e2|0> <e3l0> = 0 0 < (4,4)
[ lc
< 1> < -1> < -1> L . 0
o -1z <ol &l NEl
and
° A= P A =2 <yule>a (4.5)
1 1w i "
W
with
* *
<tle,> <0le;> <-1]e > _J"Lz 0 -fzr
o= (v = <lje,> <0le,> <-lle,> | = | ic* = ic*
3 '3
<Ile3> <Ole3><-1[e3> 0 & o

(4. 6)

This transformation matrix is unitary and one can easily verify that

(TR o e M
< 1 < = . E———t— = 1 .
P<lile> <ol lu> = W U gf‘l‘ (4.7)
x
i & H
z <e.|u> <ule_> = Ul ut = +— + 2 :f;‘ (4. 8)
" i J o) (]

An operator KZ

transforms the variance of the matrix element
{Stone 1976}

2 1«
K' <lyfe>= () Mee) 1>

2 u e e, n (4. 9)

KE ——pe e = ——t—t—

*
and one can verify that in any case K2 c = -c (4.10)
The Edmond's convention gives KZ= -1 while the other gives K%z +1.,
Here again it seems more natural to give up the Edmond's

convention and use c = i,

5. TENSOR PRODUCT IN SPHERICAL COORDINATES

The A considered as I TO of rank 1 allows the determination of

the tensorial product (Au x BV)kq and graphically it immediately follows
that
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(A, xB,) = ——C (5.1)

The tensorial product of zero rank is related to the scalar product

since
A4
(A va)o S E - . (5.2)
" 0 \[3_
Pad
2 A 4 B 2
= A e - K270 (5.3)
NE) NE)
and the rank one to the cross-product
. A
(A xB,) L (K ®) < (5.4)
x = = - .
n vile JZ- 1L A
3
or equivalently "
4 A [
- ; Az
(X B), = ive . (5.5)
c
A
1NB

One can then obtain the graphical representation of more complex
products like

(AAE). T = (BAS). R = (CA5). T

and
Tz + .
——t c
2
(EBaB)ag) = - & 7 (5.%)

or even construct other tensors of rank one. We have for instance



We then express the sum over X =10, 1, 2 to get with (5,7)

(5.9)
One can also determine the k = 2 tensor components of the tenso~

rial product of two vector operators

(Aux Bv)z:. (5.10)

which leads to

(Au

(A,

(A,

(A,

(a
')

2
C
- - < (¢(a . ;
xB),, = A B > [ B AyBy) +i (Ay Bx+AxBy)]
1 2
= A = - i y]
va)21 T-z { 0Bt A, By [(Asz+Asz)+:(Asz+Aysz)J
xB), = —=— (A B +4 B+2AB)=-i(x-§-3AB)
V20 T 4% 1o-17 a1t 00 N ’ 2z
2
1 c
= A = £ s
xB“)z_l 73 ( OB_X+A_1BO) > [(Asz+Asz) x(Asz+Asz)]

2
- - _ s
xB), = A B, 2 [(AxBx AyBy) 1(AyBx+ .AxBy)]
(5.11)
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6. SCALAR AND CROSS PRODUCTS IN CARTESIAN COORDINATES

Let us construct the tensor product of twa vector operators in

cartesian coordinates

A
A
4
- - - =
(Ar]@Br,) 55 <1ir erISs>Ar B,
< Ss r,r 1 2
AN A 172
<Y (6.1)

In order to obtain the scalar and the cross-product we have to
evaluate two particular cartesian Cletsch-Gordan coefficients

<lr1 lr2|00> and < 1r lrz | ts>

1

It can be easily found that

> = >< <
<ir Ir,[ 00 g <ir lu, h-zlwz> . lu1!u2100>
Hite

= < I, > < - < -
T <lr fin Iy |1y, > < 1 uy l00> (6.2)
1\l
1
1-p
z 1 1
= <lr > <ir_ |l-y > — (-)
1 u
“'1 1 2 1 43_
We know that
oy 2
lap > (- =
<1rz] Ky (-) K <lp.[|lr2> (6. 3)
and then
<tr ir,loo> = £ <ir Ity > K2<1u1lx.~z>‘—= )
By \ﬁ_ 3 172
(6. 4)
One can obtain then
‘ (o_®B ) = L k3.5 (6.5}
1 T200 B

| SO
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and a comparison with (3.10) shows that the Biedenharn's convention

leads to the same value of the tensor product of zero order

(a4 ®B ) = A. B (6.6)
r r

L
1 200 43

in any coordinate system

Let us now evaluate the cartesian Clebech-Gordan coefficient

< 1 > = > < 1 > A2
11-I T, | 1s z < lrlllul lrzl b, > < 1u3| I
u]u2“3 (6.7}

= dp ol u, >
"‘1“2’“3

w
1 . . .
The use of the Ur matrix elements gives without difficulty the

value

<1r, 1r2| 16> = —= ¢ (6. 8)

where € =1 if r r s is an even permutationof 1, 2, 3 indices
T T, 12

and L = -1 for an odd permutation and zero elsewhere.

12

In cartesian coordinates one thus finds that

A_xB = EAE 6.

( £ X By } (A )5 (6.9)
1 2 s 2

It ia exactly the result obtained in spherical coordinates. It thus appears

that one can use the same graphical representation of the scalar and cross-

product in apherical, cartesian coordinatea if one choose the Biedenharn

convention that is ¢ =i and in that case

A
A2t % -%.5
A
Y ) (6. 10)
4
- =_1_6—(AAE)
q
4

>
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in any reference frame, When working in spherical coordinates

q=p=1,0, -1 and in cartesian coordinates q=s8=1,2,3=x,Vy, 2.

7. VECTOR ANALYSIS

Let us first recall some obvious but useful results. The cross-

product of two vector operators reads now

LAl
A y! A
i (KAE)Q: N 1 ~ (7.1)
1N A
6 :
If the components of A operator commute ane can change the :

lecture order of the diagram without affecting the result ; one knows

e s 1+1+41
however that such a change multiplies the result by (-) . It then

follows
4
- Aq
(A,a)=0 @3> - =0 (7.2} i
A

We obtain for inatance

>

>

A
A A
4q -
— =0 equivalentto T AT = 0 (7.3)
1 ~
r
while "
J
44 i Ay A - e
‘ -— =T ——| T equivalentto JAJ=1J
6
A 7.4
+ (7.4}

and with the Pauli matrices
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(7.5)

»

An other interesting result is obtain with the cartesian coordinates

coefficients
i
r, 11’-( re rh r rh
PP 4
4
6+ - - - X
¢ 1»—i'— / bt (7-6)
e oy L7 n
LEN
aince
,: < e T L} = ° * 8 t - 6 . 8 . (7‘ 7)
s TIT2® T'T,'e nr o, T T, T,T

Let us now examine different products obtained with vector operators. One
- A
notes that when one introduces the V differential operator /v\ ,.—’.q__

one obtains easily some well-known results

(corl A ) = (VA ZX) = JZ A - (7.8)

Y

while

(1.9)

and with the use of (7.1)



I,

S

15,

<>

{curl grad)q = - =0 (1.10)

a3

7.1 The triple scalar product.

(7. 11}

It represents the volume of the parallelepeped having A,B and T as
three of its edges. Due to the symmetry property of the " 3jn '' coeffi-

cient one can start the lecture from any vector operator and thus obtain

Z.(BAC) =B.(CAA) =C.(ArB) (7.12)

We can express the above diagram in term of the determinant

A
A A A &
x 'y z ’ 4
4
det B, B B, = F 2 - (7.13)
c.¢c ¢
x 4 A
Yy x 2
if [A,A2)= 0 one refinds that
A
L]
4 A /- -0 (7.14)
N a
e

When two of vector operators are differential operators



|

16, A
v

e = 3w a A

div cirl vV - 9.TAT = ﬁq - =0 (213
A
v

7.2 Scalar products of two dot products.

The use of (7.6) gives an interesting expression of the scalar

products of two dot products

>

bl

(7. 16)

'
When dealing with vector operators which do not necesesarily commute,
one must take care of the order of the operator in the left and right hand

sides. When the above are only vectors the order is unimportant.

7.3 The double cross-product .

A +
ﬁl—“—i-
A 4
(Ka(BaC)) =68 4 4. =
AS4

One can consider that one works in cartesian coordinates and uses (7, 6)

to immediately obtain



[

P
4 As B ,a
a
R
AA(BAC):= E(R.C) - (A.B) C (1.17)

¥ A=B =V one immediately obtains the well-known result

[ R .y - -~ - - 2=
ciFlcurl © = VA(VAC) =V{¥.T)v°C = griddivC -¥°C
(7.18)
On can use now the graphical representation of the double cross-product

and the usual rules of the (G.S.A.) to get the analytical expresaion of a

particular tensor

ﬁl 4+ 4q A )
] 1
% A + 4 4/
b A
(AA(BAC))q= 6 ;4 = 6 ZX + - 4
2 X 4 4 4
" £ e
[] +
A3
=6 ZX + A d
* g
+ A +
ANy 4
- - A2 X 111
(RA(BAT)), = 6::‘ R {1 . x} Dx /L (7.19)
4 4
3 ¢

One can develop that expression sincs X =0, 1, 2 and the corresponding

" 6" coeificient take the values - ;—, —;' . ;— . One then obtains
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One sets

and it follows that
- e e - - = 2 s I , =, , =,
T A,B,C) = (AA(BAC + —(A.B)C + —(CA(AAB
1q¢ )= (RAEACY) + 5 (R B)c v o (SAEAE)),
(1.22)

Or with (7.17)

A,B,C)=(A.C)B_-(X.B) S,

qu( q
| - e
— [(B.C)a -(A.T)B
2[( q( )q]
s yx e 1 B g
Tiq® 2 (X C)Bq 3 (A B)Cq+ 2 B.C)Aq (7.23)

identical to (5.9).

One can rich the same result starting from the product { E 8) A

" i A
o 2 A 12 ZALH 1 9
(B.C)A_ = -
g A Ay X + -
. wh o N2

and since X=0, 1|, 2



i
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19.
R L (Ea(RAE
(B.C)A_= < (% Bic + 5 (CA(RAB)) + T
or . 1 1
T = (B.C)A - — (R.B)c - = (CA(AAE 7.24)
g ¢ o” 3 B Brc -5 (EMERE))

and if the double/croes—product is expressed with (7.17) one refinds
(1.23).

7.4 Multiple cross-product .

The use of the graphical representation of the scalar and cross-
products and the rule (7.6) allow us to write in different ways a mul-
tiple croas-product. Let us take an example

+ 4
34 q

4




:
;
3

AAUBREIAD) = (B.8)(ZrT) -(T.D) (ArE) (7.26)

One seen on such a simple example the powerfull of our method .
One can analytically verify the (7.25) or (7.26) equalities but it demands
a high degree of intuition to discover them with other techniques, One <an

- - - - —
ask the reader to find directly the value of AA(BA(CA(DAKE})}

while one ob’t\ains graphically with repcated application of (7, 6)

1q
1A
4

Arf Araaf Atn
- —3p A

Wtz B2 Trde

(.DI(E.E)E -(X.D)(E.O)E
S(E.B)((E.DIE + (A.B)(E.OT

8, SOME EXAMPLES OF APPLICATION

One can use (3,17) to show that for the & Pauli matrices consi-

dered as vector operators

’l‘zq(e,e) = 0 (8.1)

One can then easily obtaln the following

2 1

4 A

T Y|

@EOEB a4 4 'E*" + -
2y Y



We use the X =0,1,2 and (7.5}, (8.1} to get

and since e2= 3
(T.A)(T.B)=(R. B)+ iv. (AAB) (8. 2)

One can obtain a more general expression when starting with the

product of two scalar products of vector operators

(8.3)
We set
T,(4, B). Tz(c. D) (8. 4)
and one easily obtains
(Z.)(E. D)= + (K. BN D)+ 4 (R1F). (ChD)
+ TZ(A,B). TZ(C.D)
or the well-known form
T, (X, B). T,(C. ) = (R.©)(E.B) -+ (X.3)(T.B)
1 - - (8~5)
-3 {AAB). (CAD)
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one can express the scalar product of the two dot products with (7, 6)

getting
T,(X,B). T,(T.B) = -2’— (Z.H(B.D) + —; (X.D)(B.%)
1 , = =, ,= —
-5 (X.8) (C.D) 0.6
% A comparison with (7.21) and (7.23) shows that
2 2
]
T, B, 1,(CB) = 7 (R B 2.5 -
N
2 3
(8.7)
or equivalently
T,(AB). T,(C. D) = T(C.B.5).% - 1 (CBA). 8
=T {AB D). C 4y

since the above diagram can be cut by isolating any component,

One can evaluate the TZ(K, B.). TZ (C-i., -15) scalar product by

starting from a mixed product

= (. BNT. D) - (DD

(8.9)



|
}
!
!
i

It comes finally that

-

Z('

-

Z('

-

Z (X DS+ -;—(AAE).(EAB)

T B). T D)< = (X

This expression gives (8. 6) when one expresses the mixed products in

terms of scalar producte as in (8.9) .

We note that when G = D = o one can reach the dot product

(TAR). (A B) but it is easier to get it directly

= p z
(Tak). (TaB)= 6 oS _/ =R B-(FRE D
4
) 'y
(FAR)(TAB) =38 B-(T2)(E. D) {8.12)
or with (8.2)
(TAZ). (TAB) = 2A2.B-17. (AAD) (8.13)

Let us finish by an example in which both cartesian and spherical

aspecto of the (G.S.A.) have to be used

g,r—"—l? 2
- - - AL
(5,-7)(E,.7) = g‘, 4 42 =ZX:X
4] (8. 14)
and since X=0, 1,2
('s'l.'r’)(gz.") =
A
34 4 Wl (8. 15)
+‘ + -
2 1 I\, 4
Y
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.
Since TAT = 0 the second diagram vanishes and we are left
with
[ R S 1 = = 2
(l.r)(z.\)-B(Sl.Sz)r = £ ;

We divide the two sides by the length 1-2 of the T vector and set

(8.17)

Since the only directiomsof the T vector are now involved in the
o,
diagsam, one can normalize it by 43 in order to have Am ;‘ = X““ ;‘)

and use the usual technique of the {G.S. A.}on the two spherical harmonics

thus left
A A
+
SaNa 4 Sha 4
4v " 45 A
= —-— 4 2 3
$127 573 7 - £ ‘: 4
A "
(A 1 sk (8.18)
where the marked triad takes the value _3£ —Q and we finally
‘!411 3.5
obtain
"
S,
—_ - (] 4
s - (Sl.';)(sz. T) L. am -
12 2 3 1% 3 r
T " 4
Sq

(8. 19)
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N A
where —2-1-[ T = Yiw (3] the usuval spherical harmonic in the ¥

~
direction, and S 4 - S is the standard form of the spin
»

vector operitor.

9. CONCLUSION i
We have shown in this paper two important results, First il we
use the Biedenharn-Rose convention ¢ =i for the transformation of the
cartesian basis into a standard (spherical) basis, the (G.S.A.) is appli-
cable without major modification in cartesian coordinates. Moreover,
the graphical representatiomof the scalar and dot products and of the
scalar " 3nj " coefficients in the two coordinates are identical. One
can thus work without specifying a priori the coordinate system. The
second important reault is that the (G.S5.A.} can give a new pawerful
approach of the vector analygis in its more usual aspect. In that case

one can deal with the ouly few graphical representations and ruleg

-~ A
A = A;...AL.

- - A Aq g
A.8=8+~4% =Z 9r—->1 > -Zﬂq&q
q L]

Al
A A
4 4 2 A
oty Ar
(RaB) = o =t i iq _ -
q + ra + "Z,A“P?otc‘r»
4 8 1 ta
2 Al
[
At 4r A
—— T N Ar,
- Aag A41_
P——e
sy AAg

One note that when dealing with these rules only, one can avoid the "6
numerical coefficient in the dot product, but the use of the other rules of

the {G.S.A.) makes this coefiicient indispengable, We have given here
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only fcw examples of the many possibilities of the (G.S5.A.) and of this

approach of the vector analysis,
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