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Some basic relations for the representation theory and the
Wigner-Racah algebra of a finite or compact continuous group are
discussed and transcribed in terms of diagrams. Special emphasis
is placed on the castof a simply reducible group and all the diagrams

are applicable to §U, without any change.

Quelques relations essentielles pour la théorie'de la représen-
tation et l'algébre de Wigner et Racah d'un groupe fini ou compact
sont discutées et transcrites en termes de diagrammes. Une attention
toute particulitre est réservée au cas d'un groupe simplement réduc-
tible et tous les diagrammes donnés ici sont applicables 2 SUZ sans

aucun changement,



1. Introduction ,

The graphical techniques set up for angular momentum theory
{1-7] and extended to the Wigner-Racah algebra of an arbitrary compact
group f8-ll] have been of invaluable help in nuclear and atomic physics.
The iuterest for quantum chemistry of the graphical methods of spin
algebras (hereafter abbreviated as GSA) developed by the senior author
(E. E.) has been recently emphasized [12-14] . The graphical techniques
provide simple representations for basis-dependent quantities (e. g.,
coupling coefficients} and non-basis-dependent quantities, i.e., invariants

(e.g., recoupling coefficients).

The theory of invariants plays a fundamental role in numerous )
areas of mathematical physics, physics, and chemistry., Among the
various branches of the theory of invariants, the character theory for a
compact topological group (discrete or continuous) is probably the one

that is the most familiar to the chemist.

The character theory is of paramount importance in many physical
problems. From a qualitative point of view, the character theory is of
invaluable help for determining selection rules in quantum chemistry as
well as in molecular and solid state physics. Moreover, the splitting of
a degenerate nuclear, atomic or molecular level under the action of 2
symmetry-breaking Hamiltonian (arising fram internal or external fields)
is a trivial problem once the characters for the invariance groups of the
unperturbed and the symmetry-breaking Iamiltonians are known. From
a quantitative point of view, the character theory is a very useful tool in
chemistry and physics for calculating symmetry adapted state vectors
(crystal and ligand field state vectors, molecular orbitals, normal coor-
dinates, etc). In addition, the theary of level splitting recently discussed
in an original way (15-18] might be approached on the basis of irreduci-

ble characters only.

The character theory is of esseutial importance ir mathematical
physics and more specifically in the representation theory and the Wigner-

Racah algebra of groups, As a matter of fact, the irreducible characters
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appear as basic quantities in terms of which other invariants can be
developed. In this direction, it is possible to connect recoupling coeffi-
cients and irreducible characters of a compact topological group. TIor
instance, there exist character formulae {for Wigner 6-j and 9-j sym-
bols of finite or compact continuous groups[l?-Zl] . These formulae,
recently revived [22,23], may be very convenient for computing
recoupling coefficients [20,24) or for obtaining asymptotic expressions
of recoupling coefficients. In a similar vein, it is possible to derive
formulae connecting isoscalar factors of a chain of compact topological
groups and irreducible characters of the groups of the chain being consi-~

dered [22,23].

It is the 2im of the present work to exhibit a diagrammatic repre-
sentation of the main character formulae occuring in group theory. The
material is organized in the following way. We devote Section 2 to some
relations central to the representation theory and the Wigner-Racah alge-
bra of a finite or compact continuous group. In this respect, it is not our
purpose to give a summary of group theory. We limit ourselves to empha-
sizi ; the interdependence of various relations and some formal relations
which are still in a state of incomplete development. ln particular, the
exact connection between orthogonality and convolution relations [25] is
pointed out. The presentation adopted in Section 2 closely follows that
of Ref. [26]. We develop in Section 3 a geometrical approach to the basic
relations discussed in Section 2. The approach is achi=ved along the line
of the GSA. Lastly, in an appendix the connection between the diagram

technique for compact groups and the GSA is further investigated.



2. Basic Group Theoretical Formulae
A. Notational Preiiminaries
Let G be afinite or compact continuous group with elements E (identity),
R, S, T,.... The conjugation class of R is written as ER We use j {or J)
to denote an irreducible representations class of G, D’ the (unique) ma-
trix representation associated with j, and [J] the dimension of Dj .
In addition, we use the abbreviation ? far [J] 1/2. { Note that {J-' and
,j\ were denoted as [12] and [j], respectively, in some previous works
on SU by the senior author.) The matrix Dj(R) , the elements of which
are DJ(R) o 18 the representative of R in D . We write X3 %)
>the character of R in j, Furthermore, -:_jljzm]m2 I bjm > stands
for 2 Clebsch-Gordan coefficient in the {j m} scheme with bbeing necessary

when j occurs more than once in the Kronecker product _j1 ® _]'2 .

In the compact case, ‘j‘ . dR denotes a Haar integral over the
topological space of G, and the volume j. dR of G is written as
;G] . When G is finite, JG dR and |G| are to be interpreted as
being the sum ... and the order of G, respectively,

ReG

Finally, most of the symbols have their usual significance : z'x'

stands for the conjugate imaginary of z, & {a,b) for the Kronecker delta

of 2 and b, IH[J] for the [j}x[j1 unit matrix, and tr X for the trace

of X,

B. Orthogonality and Convolution Relations

Let us start from the so-called convolution relation

§ J
lol-' | 2w 's) . p'w) . dR
m m m.m
. 2™ ™

8lp i) ot m ) (17 D (s) (D
my

Relation (1) was proved originally {25) for an arbitrary finite
group. As emphasized by Lowdin [25], the extension from the [inite
case to the compact continuous one is straightforward. Such an extension

yields (1) .
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Clearly the well-known orthagonality theorem

]

L= Z,-1

la] DR L D (R) , dR
o 22 1

= 8 (iy §)) 8lm, m ) 5 (my, m)) Nt @

appears as a specialization of the convolution relation (1}. It is less evident
(cf. Ref. {257) that (1) may be derived from (2). This is actually the
case, however, and the direct proof is left to the reader. The real reason
for the equivalence of (1) and (2} is as follows 7267, Relations

(2) and (1} restricted to j2= j1 = j are obtained from the Schur equation

-1

i} RN x DR) v = lﬂ[j'w 517 e x

G

by choosing X = E

and X = DJ(S) E , respectively, where
m,m m,m,

I

]??m m stands for a canonical generator of the Lie algebra of the unitary
27

group U(-J] in [J‘ dimensions., Note that another choice for X would

lead to a reclation apparently disctinct from (1) and (2) . For instance,

by taking X = DJ(S) E D'(T) we would obtain
m,m
o i, J
o] lj p3r7's) , plirm) . dR
m, m m,m
o 2™ 1™

. oreael Sy
= 80, dp) 8lm,m ) 153 DTS, (3)
“ 1772

Indeed, {Em ml: mz, ml ranging* constitutes a basis for the ring of the

fj.] x [j] matrices, so that the F - choice is the more general one.

2
Consequently, any (nontrivial) choice for X, as for example the

i : i j .
n'(8) Emzmx- choice or the D"(S) Emzml DJ(T) - choice, provides us

with a relation that may be deduced from the great orthogonality theorem
).
\
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The reduction of j] ® jZ as a direct sum of irreducible represen-
tations classes j is deacribed in terms of representation matrix elements

by

j] jZ
plR)_ DR,

(4)
= E < jom 'm. | bym s Di(R) <j.j.m m_|[bjm>
- A PR Wi mm' 221"
bjmm'
As a simple conseguence of (2), relation (4) may be worked out to
lead to the so-called Gaunt's formula, namely,

; J
-1 KPR
|Gl j DHRTY) P
G

1

(R) dR

j
. D2(R)
m]ml m

mz'
(5}

. oa- . . * L. 3
= 3] li <j]32ml'm2‘] bjm' > <_]1sz1m21b_]m>

Relation (5) turns out to be of particular interest for the Wigner-Racah
algebra of G . More precisely, Gaunt's formula lies at the root of charac-
ter formulae for recoupling coefficients of the group G [19-21} and

isoscalar factors of a chain starting from G {22,23],
Passing on to the irreducible characters for G, we obtain from (3)

the immediate corollary

i i L
o' { 2w mmar = 6G,5) )7 ) ST (6
G

which specializes to

j j 2
lcl'lj AR MR ar = 60, 0) 7K @
G

W
The convolution (or Dirichlet) product yx % X defined through
i L N
(Xl*xz)(S)EJ x (R 'S) x“(R) dR
ig then easily seen to be [25]

i,
X ¥ X

—

J J J
2 2 1 N |
= xTxoxo = 00, 0) 11 |6l v



As a special case of (7), we have the classical character orthogonality

relation
o j 3 j L

lcl'lj 2Ty mar = o)X e % D) (®) = 6 0,0)) (&)
G

Alternatively, relation (8) directly follows from the great orthogonality

theorein (2),a corollary usually emphasized in textbooks.
The little-known composition property of the irreducible

characters
KR) Js) = (5] 'G‘-lj CRTSTI AT (9

G
which parallels the fundamental property of the (irreducible) representation

matrices
J Jj =
D(R) D(S) = D(RS)
may be obtained as a simple exercise in the algebra of the group G [271.
However, it should be noted that an alternative and more straightforward
proof of {9) follows from the choice X = DJ(S) in the Schur equation. We

thus obtain

o1 orlsmar - Do, 61 e
G (3
which yields

IG\'T PR sTrar = 5177 DR Ko
JG

to be compared with (9) .

C. Completeness Relations

Let us now go to relations which are the duals of the above discussed
orthogonality relations. In the {inite case the dual of (2) appears in any text-
book on group theory and may be written as

rw R s = 4R, 8) |G| (10

The inverse orthogonality relation {10} is a direct consequence of the
orthogonality relation (2) and thus does not contain any new information.
The extension of (10) to the compact continuous case seems to have recei-

ved very little attention. Following Sharp [20] , we have
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o e, Jim -1 j _ -1
o Ul PR, P = FRTs) 6] 0D
jmm'
where the delta function of Dirac # is defined by means of the group

integration
j F(R) /(R'ls) drR = F(5)
G

for arbitrary F . By rewriting the completeness relations (10) and (11)

in terms of irreducible characters, we (respectively) get

1 KRR = s, s 6] (109

and
. i, -1 -1
r YR = fr7s) |6l ()
J
I the case of a finite group, (10') can be proved to be equivalent

to

J i _ -1
£ A1) K8y - ety €9 |87 [0l won
where IgRi stands for the order of 8R; relation (10"} is the dual of

o™ H 18«2 x (B = 50,00
R

which is an immediate consequence of (8). The transcription of (10"}

to a compact topological group is far from easy, Formally, therightiand
7(10'f') should be replaced by ;((E -1 % ) 8 I -1 |G| In the case of

a compact connected Lie group, the f0rm )f .1 8 ) 18 |Gl

has received a precise mathematical meaning [_20, 281 . Assummg G
to be a compact connected Lie group, we have [20'_]
iox .

z 6" ) = elxx) AT (6] (1)

j
where & stands for a class Dirac delta function, each conjugation class
being parametrized by an x-parameter with

-1
la ) IA dx = 1
X

The relation(11") should be equivalent to (11') and is the dual of

-1 i j
o1 fa, 220"« M ax = 60,00



D. Specific Group Integrals

Let us now turn our attention to the integrals
< = ;
*n> = [l 'f LR ar
G G

and
-1 .i .n
<a > = |dl [+ (R)] <R
G G -

where n is a positive integer. For G finite, <s_> and <a_ >
P E n"g n G

have been recently investigated [29].) The integrals < 8 >G and<a > G
n
are (respectively) the averages over G of

s =% (rR")

and .
a = [¥@®1"

The integral < an>G appears as a special case of

-1 iy 73 J
<at>_ = |6l %X (R) X “(R)... x “(R) dR
which is nothing but the frequency of the identity irreducible representation

class jo in the Kronecker product ,j1 [ jz @.. 9 jn -

The case n=1 is trivial since (8) gives
= = 8,

<s‘>G—<a]>G (J,Jo)
The cases n=2 and n=3 are of particular interest : they provide a
criterion useful for the representation theory and the Wigner-Racah algebra
of G, respectively. Indeed, in the case n=2 we have

*
<s > = <ij LN ] > ijm' j >
sy G T , JJmmlJomo <jjm'm{[j m_
mm

=

where ¢’ is I, -1 or 0 according as diﬁorthogonal, sympletic or

complex. Note that < 8, >G ig generally different from
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<a,>. = & <jjmm',jm >*<jjmm' jm >
27¢g B o o o o
mm
= 63,3

where 3- denotes the conjugate complex of j . In the case n = 3 we get

z *
< jjmm' I bIM > <jjm'm"| bIM' >
mmlmll

bIMM'

< 87> =
37¢a

*
< ij"M'ijo> <ijM‘|j°m°>

to be compared with

%
z <jjmm'|bIM> <jjmm'|bIM' >

mm'm"

bJ MM'

<33>G

*
. g | < j YaE
<jim M|Jomo> jim Ml_]om°>

The Clebsch-Gordan coefficients of the groups for which

j xj(RS)dR = j [Xj(R)]3 dR
G G

holds for all j ray be fully symmetrized in the genge discussed by
Derome [30, 31] . In our modern terminology, we refer to such groups

as simple phase groups. For G simply reducible, <s3>_ and €a3>g

G
reduce to

<s3>, = <az>g = {jjj}

where {. .. } stands for a generalized triadT. Consequently, a simply

T All the relations given in this paper for a simply reducible group apply

to SU, with !:j]=2j+1, Y(R) = x-‘(;&):sin[(2j+1)¢/z]/sin(@/z),

J— (-1)ZJ= 1 or.~1 according as 2j+l is odd or even, and

j°= m = 0, ¢
{_11_12_13} = 1l or 0 according as iy JZ,and i satisfy the angular momen-

ta addition rules or not,
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reducible finite or compact continuous group is necessarily 2 simple phase
group. The inverse statement is not true, As an illustration, all crystal

point groups are simple phase groups (cf, Ref. flO]).

Going back to G finite or compact continuous, the case n> 3
may be handled with the following algorithm. The characters are developed
as functions of representation matrix elements, The number of represen-
tation matrix elements is reduced step by step by repeated application of
(4) . At the final step, only one representation matrix element is left so
that integration over G can be easily performed. This procedure leads

to a (nonunique) expression for &s,> . or < a,>q in terms of Clebsch-

G
Gordan coefficients of G . It is always possible to rewrite such an expres-
sion in terms of recoupling coefficients of G. For G simply reducible,
the expression so-obtained assumes a reasonably simple form, By way of
illustration, it can be shown that
2j i I
<s,> =(-1)"¢g [Jl] { .
4 G Jl i3 Jl

2 143, iioa iyg
1
<s > _ =()" ¢ (-1) [7,105,34. .
5°G I3 1472 _y..'fl..'f2 JJZ J’l
172
where { ) } stands for a Wigner 6-j symbol of the simply reducible

group G.
For G simply reducible, the above-mentioned examples for

<sn>G and <an>G satisiy : <sZk+l>G= <a2k+1>G = 0 when

D s gympletic, This is actually a (trivial) general result.

For G finite, the algorithm just described could be appropriately

modified, following van Zanten and de Vries [32], to obtain

-1 Z% xj(Rn)

RER

< sn>eR= I%R

( For G simply reducible, < sn>%l has been recently investigated
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[32].) At the final step, it would be sufficient to use
Z j - 1] =1 Jj .
e D'(R) {J] [J] [%Rl % (ﬁR) (12)
R

that comes from Schur's lemma. However, it should be realized that (12)
is not realiy necessary at the final step ; in fact, s, may be developed

as
s = & (recoupling coefficient) xJ( €.

which is compatible with

< =
sn>BR sn
As an example, we get
<52>(€> = ¥ <jjmm' bJM>*XJ((CR) <jjm'm}bIM>
R

mm'

bJ

For G simply reducible, the latter relation particularizes to
2j J J
1
<sy; >, =) g (-1) {jjJ x e )
‘GR 7 i R

in agreement with Ref. [32]. For G simply reducible, we further

obtain

J [
1 1 2
<s,>¢, = € (-1) "[1.] { % (E)
Eh < J.J 1 399 R
1°2
3,4, PI)
<g>g = T (-1) [J1] [JZ-'J 3 Iy rx (&R)
R J1J2J3 Jy 3273

T For G compact, the relation analogous to (12), if it exists, does not
seem to be known, Formally, we shouid have

L B(r) dER = /ﬂ“] Lt A, ()
R

-1 .
from which we might obtain Ay j‘GRXJ( rR") a8, .
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: J o+
<55>(6=(.1)ZJZ: (-1)l 2 [Jl][JZ][J3]

R 3T,

1 2 J
. . 4
ioTy 0 I3y x ((CR)
R I ‘
where PN and I stand for a Wigner 9-j symbol

anda 12-j symbol of the second kind, respectively, of the simply reduci-
>

%R)

ble group G. It should be noted that « Sy >€R (< S4>%R and < sg

agree (disagree} with the results of Ref. [32] .

E. Character Formulae for Recoupling Coefficients.
The Simply Reducible Case

Let us close Section 2 with some character formulae which have
not attracted very much attention in the past, The recoupling coefficients
are basis independent coefficients, i.e., they remain unchanged when going
from the {jm} scheme to another scheme, as for example the -IjaI'Yl'
scheme (cf. Ref. [23] ). It thus seems reasonable to connect recoupling
coefficients and irreducible characters. Indeed, it is possible to express,
modulo summation over all the internal multiplicity labels, any product
Q of recoupling coefficients as a sum or integral of a product of irreduci-
ble characters, under the condition that Q involves an equal number of
covariant and contravariant ordexred generalized triads [19-21, 23] . The
proof easily follows from repeated application of (5). Following this idea,
Wigner [19] derived character formulae for 6-j symbols of a simply
reducible finite or compact continuous group. These formulae, which are

little-known, may be written in symmetric form as (cf. also Refs. [19, 20])

J.ody

- z
Ql~{.‘ . ..}
i g

_— j oo
= (Il 25 RS K 2®sTh dwm) ki) ar a5 (13
G2
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2 . ) .
j.og, 4 - J ) J3 o1
a.=471 %2 3 - |G| 45 % {RS) x XRT) x “(R™ U)

2 iy dg g c®4

j J g .
L HTU) X C(5U) X bs7!1) dr a5 aT AU (14)

Q={J]JZJ} {J] i, i JZJ}
PRl DR O DR, IR
iy iy i, i iy iy

2j j J J
. 3
= () 1|G| 65- L HRUT) x 2RWTSUV) x
G®6

(swV)

Servly WFrs ™) W (uwl) dr ds aT au v aw  (15)

o ={Jl i, 13§ {J] ig J6} {14 i, J% {14 ig 13} i
FER TR RN AN 4
g s Jed LIy 03) ) Y2 J3) U d2 s

1

2j i i _ i oo j
= ‘_1)4]G|'8 j re) x rxTvy X rvy ity ey TwW)
G®8

J b J .
X 4(uw'l\{) X 5(s'lxw) X 6(su 'v"!) 4R dS dT dU av dw ax ay  (16)

where J means J 5 ! (P times). Sharp [20] showed
G@P G G G

that the Wigner 6-j (or Racah W) symbols of a simply reducible finite
or compact continuous group can be defined by the set of relations (13) ,
(14), (15), and (16} . The extension of (13), {14), {15}, and (16) to an
arbitrary finite or compact continuous group were given by Derome and
Sharp [21] . Such an extension requires taking the complex conjugate

of some of the irreducible representations classes and introducing sum-
mation over internal multiplicity labels, For the simplicity of the diagrams

in Section 3 we confine ourselves to the simply reducible case.
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Let us go on to a geometric transcription of some of the main for-
mulae reported in Section 2. The diagrammatic equivalent of relation (a),

if any, will be quoted as (Da},

3. Diagrams for the Basic Group Theoretical Formulae

A. Diagraminatic Representation of the Character

Let us stort {from the following diagrammatic representations :

%V\'\
J
= - >
PR, = PR
Aaml
and
Ja«\’\'\
-1
PR} s PR
mm .
™ |
the
that are coherent with>~(]SA (ct appendix), The usual summation rule over

a (generalized) magnetic quantum number leads to

: : ™y R R R
XJ(R) =t DJ(R)lnm = I ) -3-=- = »>-- = -p--
m m %N

in agreement with Guichon [ 97 . The diagrams for XJ(R) so-obtained

compare with

R

x‘i(R) =

as given by Agrawala and Belinfante [8]. It should be noted that the

direction of the j~arrow is here of no importance. Consequently, we can

take A
x(R) = ->--z

which fully parallels the representation

xj(R) = OR
3
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of Stedman [10 ]. Continuous deformation in our diagramfor Xj(R) yields

j
’ 1?’ R
which, in turn, gives
R -
- R . 1/ £
: 7’
XJ(R) = .L-—)—— = l—(—
as a limiting case. The latter representation of xJ(R) will sometimes
prove to be useful. In the case where R = E we simply omit the

R = E-line and thus get a closed loop, the value of which is well-known in
the GSA (cf. also Ref. [10])

4 . .
X - Q&E - 2

It is now straightforward to obtain

it
-
1
=)
™

. . J_/
§<--: D S R

KR =

and

-

WI(RST) = O --5

The character is a class function and this is diagrammatically depicted
by

- -
<< -

R,SR

“@®sR™Y) = O -§-~ = +(s)
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B. Diagrams fo: Orthogonality and Convolution Relations
The diagrammatic equivalent of the convolution relation {1) may be

obtained in the following way, First, the m-summation rule gives

o ..
~ - - g— - ‘31"‘11
) 1 ! S
™ -=>--
mzll _—
S A S
--<<-% 7o
A 1LML 1
Second, R-integration {described in the appendix for the L = SU2 case)
yields

A .

" 31.8 L /L{;L“"l

5. S

9 > . e -
lo | dR 2 [ 4™ ™
S Ut St N S,
. 4oa ' ; .
Hiemy i B o
Aeg a final result, we have
‘S 4 61_|V\L
- -(- -
4 el = (o1)
______ Aaw, ! :
A4

s -2 J
= 80 8ty mn 207N s)
1
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-1
since a j-node on a j-line introduces a /_]\ factor, a well-known fact in
the GSA . In the same way, the great orthogonality theorem (2} is dia-
grammed as [9]

TN S
A /\ (A \/é;"ml

4
---- = (D2)
4‘1‘“}_’ T’/g,\w‘,ll NW‘
észl
= 80 d)) 8 (my m) 5 (m,, mx)/j\l-z

in agreement with Agrawala and Belinfante [8] and Stedman [10].
Clearly (D2) is a specialization of (Dl). As a more general case we

have

-l - ——),-_

(D3)

YA ’3 G

J
PR N -2 1
= 8li_, 8(m.", m ' i
3 _11) (mZ ml) N D ITS)

which covers both (D1) and (D2).
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From (D3) it is straightforward to get

S
- . >---—< I- = 80,5 9 Py (sr) (D8)
32_ 1

whichparticularizes to

4 4 oy .
> DA

A further specialization yields the character orthogonality theorem

\ A
’h@_-__@ O =80, ) {D8)

in agreement with Agrawala and Belinfante (8] and Stedman [10].

is to be noted that (D7) and (D8) may alao be deduced from {DI) and
(D2) , respectively,

Finally, starting from the right hand side of (9} we obtain

INR I W R _B_,s__
4
o

YR W) (09)
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C. Diagrams for Completeness Relations

The distinction between finite and compact continuous groups does not
need to be maintained any longer as far as diagrams are concerned. As
a matter of fact, in the present state of development of the graphical
techniques in group theory, it is not possible to distinguish between
Kronecker and Dirac deltas. Consequently, both (10') and (11') have

the same diagrammatic representation, viz

R " R
£ -.»— — == = ;: A ->-

Ay

1

R4 S

= & ] -~ })r - e——— . 3
3

5 (R, S) IG| for G finite  (D10")
ﬂ(R-lS) |G| for G compact continous
(D11')

All the diagrams in Subsections A, B, and C apply to an arbitrary
finite or compact continuous group. For simplicity, we shall restrict our-
selves from now on to the case of a simply reducible group, as for example
the group SUz . The case of an arbitrary group requires the introduction
of multiplicity lines that render the diagrams more complicated and do not
offer anything really new from a graphical standpoint, However, such an
introduction may be easily achieved, where necessary, following the

works by Agrawala and Belinfante [8], Guichon (9], and Stedman [107.
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D. Diagrams for Specific Group Integrals. The Simply Reducible Case
Let us now turn our attention to

- g j j J
s = L (R)mml D (n)mlmz... ow_

all m n-1

Ab-s--R
IL=->--R

nf-3--R

The GSA allow a closed expression for the product of n representation
matrix elements to be easily obtained . By repeatedly using the diagram
of (4} transcribed in terms of 3-jm symbols for a simply reducible

group, we get

n even : . 3
n_even 4 4
ARG +
¢
AL X
4
414 -, 3
+
R
. g NZAZ 2 ‘
% :: Jl JZ ) J;\-zl +
. +
3
* s
4
-+
n_odd : " .4 +
4
+d
. v +
4 1; d
N 9, Ja
2 “\2
3 ] 30-4
’ 4 4 {d |
WA
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In both cases, we have
JS
s = L {3(n-l)-j symbol} x (R}

R
8

Let us give some examples

+ J
- ; R
weE 114 O,
+

2541 I
RGN TR S Y




b S I A
J
17273 J, I J

2 1 73

? J
R
>
+ 4 -
)é 34 3
. pY . i
=§ Azazaz L 3d ,J .
TTaT NIRRT AT Y 4 T8 YR R
172937 & +
RN Jg
3 -
. NI RN
2j+ 1 47 1 2l | g
iy ENE > S I IR S R S B P S )
13,33 2 3
1727374 TN

To go from 5, to < sn> we just have to average over G . This

G
is achieved diagrammatically by removing the J_-line. It thus arises

b(J!_‘. Js-Z) or 6(Ja_‘. j) according 2s n is even or odd. Therefore,
we have

<sn>G =T {3(n-3)-j aymbol} {6-1' symbol]

Alternatively, we can express < s, >G as a sum of product of 6-j

coefficients, Indeed, by graphical integration we directly obtain
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+ 3 +
pA A 41
-+ I -
% 4

A
a
n
o
R
>
P
(N
+
x>
)

n”g .
JI%'JS +/j‘(_/ :;A-A
Rt e, g

4

An analytical transcriptioa of such a result is
AL 2j+J,+J
I
nG g P 1 s
lal ]

{J Jl J} {Jl JZ "). Js-Z Js-! ) Js-l Js i
L N S A i J J i i T

F2R s s-1

By way of illustration, let us particularize the diagrams for
<sn>G (and <an>G) to some given values of n. As a trivial example,

we have

é . .o
<51>G = <a]>G= Q---. = -————

G

= = &, jo)

Further,

<8_> = ‘
27 /0
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provides a diagrammatic representation of the Frobenius-Schur coefficient
) while the diagram for <az >G is nothing but (D8} with j2 = jl =3j.

c
The n =3 case yields
+
<g, > ' o )
8 = {f e » = = .
g 2 4
and _ . <{iis}
4 k ;
N
A
. AY
N
> Sy
<a, —j ———-® = 4 - ={JJJ}
d

which compare with the diagrams immediately preceding relation (48) of

Ref. [10 ]. Finally, we obtain
+ By,
A2 9 N2 2j j j
<s,> = 7% ) g =z Y J.jx’.
I, A / 40, RS
+ é_.. +
34 A /) '34
A2A2 T 3 -
<55> = J‘l ’5;
1.3 :
172 1 4 J,
- ﬁé -
= 2j+J +T ioJ, i J.ooJ,
= A2ZA2 1" V2 [ 1 2 )
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E. Diagrams for Character Formulae for Recoupling Coelficients The

Simply Reducible Case

Let us begin with the trivial 3n-j symbol

{JIJZJJ = {J]JZJ3

By applying GSA rules, we have the de_composition

'S M
A )
_ \ - a +
8 Lo
= . i
44 mpmy Ty il
) . 1 = 11. L +
- + m1 mZ m3 i .
Ay
(5
RS Y R
*b-3-- iehl
Y .
A )
N (U Ay
= lal 4R d§ + |-»--§ >R
m,m, my G®z amy! /3,_\"\,_1
ml'm ‘m_'
2 ™3

By g A R

) -»-- +-->-
™My VO
Y ey

The diagrams in which the variance is not natural have received a lecture

order (cf. appendix) . We thus get

_ -2
QO = dR dS

ZJZ ‘j2 -1
(1) "D (5 )m1""‘1 (-1) “p°(s )mz,mz D (5)

'
mm3
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j i j

1 2 3 73, -1

D (R) , DY DR ) _,
mlm m3m

2j
R) (-1
1 m™y

_ J = J - Ja
=lG|ZJ arasx 'ms )y 2mshx3r s
G®2

Let us go now to the general case of a product Q of 3n-j aymbols
involving an equal number of covariant and contravariant generalized triads.
1t is not necessary to achieve the preceding decomposition in order to get
a character formula for Q. Such a formula may be obtained from the
following graphical rules,

Rule 1 : We draw the diagram for Q and modify it, if necessary, accor-
ding to GSA rules, to get pairs of cotresponding nodes. (Two nodes are
said to be correspondent if they have the same generalized triad, opposite
variances, and identical lecture order.)

Rule 2 : We link the corresponding nodes two by two by means of a R-line
the direction of which may be arbitrarily chosen. It is to be noted that the
R-lines have to be distinguished from the usual lines of the GSA, i.e., the
j-lines, the § -lines, and the integration R-lines.

Rule 3 : The character formula for Q is thea
-P : i
Q= (-1¥ |g f g aras .
G P

where P is the number of distinct R-lines and where the pkase ¢ and
the argument in each X are obtained as follows. Starting from a given
line j, we move on 2 loop involving alternatively R-lines and other lines
j . The argument of xj is then the product of the various encountered
group elements, each element being taken to the power 1 or -1 according
ag the associated R-line has the direction of the lines j or not. Each
negative power introduces the phase factor (-l)zj . Note that in Rule 1,
it ia not crucial to have opposite variances for two corresponding nodes.
It thus may arige on a loop lines j with opposite directions. In the case
where we met a contra-flowing line j, we have to introduce the phase
factor (-l)zj . Note also that we may loop the loop in any direction since

G is ambivalent. By way of illustration, the loop
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bl
N
-

gives the contribution

ORIsTY ()PP L PJrsTu)

or identically

j ool o1 -1 JH2jH2j42j+ 2j+2)
x"(UlT s R)(_UZJ+Z_|+J 2j+ 2j+2j

| -1_- j oo =1

= WEltt's ' = YR 'sTUY)
according as we move on the loop in a clockwise or a contra-clockwise
way.

As a trivial example, let us consider

In order to get two pairs of corresponding nodes we have to change the

3
direction of one line _il thus introducing the phase factor (-1) L

-

Q, =(-1 +
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We link the corresponding nodes by meana of two R-lines, viz, the lines

R and S :
JSA ., i
2i, 3! S IVR
Ql=(-1) +' - +
i 4 A J
N
S

We then obtain four loops which lead to

2j -
Q= (-1 1 |6} zf dR dS
G®2

1 1

§ i 2j, L .
2, - -1 2 el 2j'
xRS X HR sy (<0 2 ®TY (0Pl (-0
in agreement with (13). Remark that if we do not change the direction of

one line j] , we directly obtain

la]? 4R ds
cez

1

i 2, 3, 2, . — .,
X 'R -0 Lx RSy (-1 2WRY (0 S Y P

In a similar way, we have

——e



and

3o,




— e

from which it is straightforward to deduce the character formulae (14),

{15}, and (16], respectively,

Appendix
The Rotation Matrix in the GSA

In a previous series of works, one of us (F.E.) has developed a
diagram technique, the so-called GSA, for the Wigner-Racah algebra of
SUZ@f.Refs. {2, 3.71). The diagrammatic representation of Dj(R)mm,
introduced in Ref, [2] is not entirely consistent with the representation
of the state vectors <jm| and ]jm’>. Indeed, the Elbaz et al. [2:"
representation of Dj[R)mm, = <jm ,PR }j m'> doea not exhibit
the variance of <jm| and ]jm‘) so that a difficulty arises for the re-
presentation of xj(R) . This difficulty may be overcome by using the dia-
grammatic representation of Dj(R)mm, as postulated by Guichon [ 9]
for a compact group. We devote the remaining part of this paper to the
latter rtepresentation,which presents a high degree of coherence with
the basic axioms of the GSA .

Following Guichon [ 9] we take

g 4™
STRTNETN  SS VIR N
mm

émx a'mv
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which is markedly different from the diagrammatic representations of
DJ(R)mm, given by Agrawala and Belinfante [B] and Stedman [ 10]

in the case of a finite or compact continuous group. We further assume
)8"’\
Jog -t o * )
D(R )m|m = D (R)mm' = -«.-. I\

Fime

in accordance with the usual practice in the GSA that complex con; . ;ation

changes the variance of each arrow. Note that the variance for m, m',

and R are clearly specified both for D‘](R) . and DJ(R) , This
mm mm

probably constitutes the main advantage of the representation of Guichon
[ 9] over the ones of Elbaz etal, [ 2], Agrawala and Belinfante [ g ] .

and Stedman [10].

At this point it is perhaps whorthwhile to mention that the GSA rule
3"’\ . jomn , A™
" transforms contragrediently to (-1} ——— "may lead

to some ambiguity when considered as an equality. In particular, starting

R i * ma-m'_j
f: th 1) -k 1 = {-
romn the we nown symmetry relation D (R)mm, {-1) D (R)-m-rn'

and using such an equality, we would obtain
/6“" R 1o

SN | S Y
2 ™
or

A TR SV VI

a result which ie evidently wrong. Such an ambiguity may be overcome by

introducing a lecture order starting from the R-line for the second diagram:
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A A
j * _ AN YT S P
D(R)mm, = X = (-1)"7 + >
i i
X
(Y SV SO AS IN °Q
,&\V\'
/&'“
@™ LR @™ ™ olw
g

Application of the m-summation rule of the GSA yields

m'

r ow) L ow)
mll

o5 A
- -

gl 4™ /a:M‘
> = —p——>— =  &(m',m)

/{‘)m
-
whence the unitarity property of o’ amounts in laat analysis to omitting

the R - and R—]- lines exactly as in the Agrawala-Belinfante-Stedman

techniques.

The invariance property

Gim | Ty [aymd> = > e, ¥ <aJE!T§

@i &> D) D R

is diagrammed as [9]



that particularizes to

=

bq

or identically

él.‘w\‘l
&

4
ke

for the Clebsch-Gordan coefficient < j'km'qg Ijm >*E < j'km'qg Ij m>.
Alternatively, we have the symmetric diagram

which corresponds to the 3-jm Wigner symbol
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o2 s
] 1 1
mym,t My
It jz j3 j J J
E 1 2 3
) ( ° (R)"‘lmx' ° (R)"‘zmz'D (R)m3m3'
m ™y Ny Wy My

The rotational invariance of the 3-j symbol {] lijB} is expressed

diagrammatically by

+- 454 -+ ’}-B 44 + ’k“&
{JlJZJZ’} ) é":@ - “i- ) ‘«_&_
N te -

The j-summation rule of GSA easily enables us to diagram
(4) for G= SUZ' We have
N

AR

Y 7 \'\?\

4

By using the above-mentioned invariance property for the Clebsch-Gordan

coefficients, we get
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Following Sandare [5] and Stedman [ 107, a group integral of

the type |SU f(R) dR will be transcribed diagrammatically
yp 2 g

-1
2' su
merely by connecting the R-lines relative to the diagram for f to a solid
circle. When only two R-lines with opposite variance are connected the
solid circle will be omitted. Such a graphical manipulation defines the
R-integration, which turns out ta be a simple extensian of the {1~ and

8- integrations ( cf. Refs. {2,3,7]). Asa trivial example, we have
. -+ .
M 2

{jljzja} s lsuzl.l\LUz {jljzja} dR = '~

A more elaborate example is supplied by the great orthogonality theorem

(2) for G = SU, : the diagram relation

A Ay

suU "I cllme -~ = bo—g--d oL bLecce--
I z' su:R <'f<L a = . ' oL

lez !§4“1

el A et ey \’5_1\‘“1'/
/},‘VM
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1> the diapgranumatic trauascripiion ot
J .
-1 2 *
ISUZl j D (R)mzmz' DJ](R)mlml' "‘R
SU,

AN-1,,. .
= ey stmymy)

-1
- 5(m ! '
1 Blged)) (mytm’)

Along the same lines, the formula of Gaunt (5) for G = SU, yields
R AN

-K-- )
v ?W\‘ \
! N

) e
su,|™! drR ™ R \ \
e 5% / s 4my! P

v ~,
2 3"“"' //
. 7
s Ay
Ay R /.B" /
-e- A \f

A
™4
i +
4™
AN g
" ‘
™
Yo
A A+

/B v"\L'

Alternatively, in terins of 3-jm symbols we obtain

"



Jsug|
5U,

L dA™™
+
RS
/(sn""\r\'
+
.-\rvv] i
'ﬁ> 3
S Wi ’"3) (‘il Iz 33)
= (., .°. C
N2 ) m) m, my
Aan immediate geaeralization of the latter relation leads to
Djl(R) Djz(R) 5" (R) @R =p B R
' pee . = .
mymy ™™ M 3, (. s
e : 31 !
1A A \ Yma ]
\
™ .
s 1| [t/ oy A2
R i o
b "'}_ 4 32 %
Gy S LN
——1 A [ / A Saragt 4]
Y M 4 .
9“<“d3‘> In eV An*o, d
M

38.

where the closed and integrated diagram is easily recognized to be equal

to 1 or 0 according as J

1

-

—
+J +...+J = 0 or not,
2 n

[N
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The R-integration is at the root of the YLVZ2 Yutsis-Levinson-
Vanagas theorem {17, which is known as the pinching rule in the GSA.

To be more precise, let ua consider

—— ﬁ.'\""\'\
j, m
F ! .2 la) = | o
™l L —
'37-‘“7.

The use of the above-mentioned invariance property gives

1
é?\ "
j] m, _ o ] A™Ma
F(m j ;) = | A )
L "2 H’}lm‘l_

A
R

Therefore we have

j, m
F(": 2
12

3 AMY -
! _ P _ %
o . - B .
l - Ae¥hy
AeM

as given by the YLVZ theorem,

Acknowlegments

Interesting discussions on convoiution algebra which one of the
authors (M. K. ) had six years ago with Profesgors P, -O, Lowdin and
Y. 6hrn are gratefully acknowledged. The authors wish to thank Dr.
P. Guichon for permission to reproduce some diagrams of his 1975
unpublished report (obtainable from M. K.} and Drs, G. Grenet and
P. Guichon for comments and criticism during the course of this

work,



i

[2]

{3l

[4]

5]

f6]

73

fa]
{9}
(10}

f11]
[12]

[13]

[14]

{1s]

40,

Bibliagraphy

A.P, Yutsis, 1. B, Levinson, and V.V. Vanagas, Mathematical

Apparatus of the Theory of Anpular Mamentum (Israel Program for

Scientific Translations, Jerusalem, 1962).
E. Elbaz, J. ~N. Massot, and J, Lafoucri®re, Nucl. Phys. 86, 625 (1966).

J.N, Massot, E, Ei-Baz, and J. Lafoucritre, Rev. Mod. Phys.
39, 288 (1967).

D.M. Brink ..nd G.R. Satchler, Angular Momentum (Oxford

University Press, London, 1968).

P.G. H. Sandars, in Lectures in Theoretical Physics, Brandeis

University Summer Institute, Vol.1 (M. Chrétien and E, Lipworth,

Eds., Gordon and Breach, New York, 1969).
J.S. Briggs, Rev. Mod. Phys. 43, 189 (1971),

E. Elbaz and B. Castel, Graphical Methods of Spin Alpgebras (Marcel

Dekker, New York, 1972).

V.K, Agrawala and J.G, Beliniante, Ann. Phys. (NY) 49, 130 {1968).
P.A. M. Guichon, Report LYCEN 7570, University of Lyon, 1975,

G. E. Stedman, J, Phys. A : Math, Gen. 8, 1021 {1975).

G. E. Stedman, J. Phys. A : Math. Gen, 9, 1999 (1976).

v
J. Paldus, B.G. Adams, and J. G{¥ek, Int. J. Quant. Chem.
11, 813 (1977).

v
B.G. Adams, J, Paldus, and J. Ci¥ek, Int. J. Quant, Chem.
11, 849 (1977).

J. Paldus and P.E.S, Wormer, Calculation of permutation matrices
using graphical methods of spin algebras : explicit expressions for
the Serber coupling case, Quantum Theory Group preprint, Univer-
sity of Waterloo, 1978.

L.C. Biedenharn and A. Gamba, Revista Brasileira de Fiaica

2. 319 (1972),

—



[16)
[17]

(18]

[19]

{20]

f21]
[22]
[23]
[24]
[25]
[26]

[27]

(28]
[29]
(301
{31]
[32]

41.

J.D. Louck, Phys, Rev. A9, 2273 (1974).

E. de Vries and A,J, van Zanten, J. Phys. Math, A : Math., Nucl.

Gen, 7, 807 (1974).

K. Fox, H.W. Galbraith, B.J. Krohn, and J. D. Louck, Phys. Rev.
A 15, 1363 (1977).

E.P, Wigner, in Quantum Theory of Angular Momentum (L. C.

Biedenharn and H, van Dam, Eds,, Academic Press, New York, 1965).

W.T. Sharp, Report AECL-1098, Atomic Energy of Canada Ltd,
Ontario, 1960,

J. -R. Derome and W, T. Sharp, J. Math, Phys. 6, 1584 (1965).
G. Fieck, J. Phys. B : Atom. Molec. Phys. 10, L1 (1977).

M. R. Kibler, J. Phys. A : Math, Gen, 10, 2041 {1977).

E. de Vries and A,J, van Zanten, J, Math, Phys. 13, 862 (1972).
P. -0O. Lowdin, Rev. Mod. Phys. 39, 259 (1967).

M. Kibler, Eléments de Théorie des Groupes, Lecture Notes,

University of Lyon, 1970.

H. Weyl, The Theory of Groups and Quantum Mechanics (Dover,

New York, 1931).

H. Weyl, Math. Zeitschrift 24, 377 (1926).

A,J. van Zanten and E, de Vries, J. Algebra 25, 475 (1973).
J. -R. Derome, J. Math, Phys. 7, 612 (1966).

J. -R. Derome, J. Math, Phys, 8, 714 (1967).

A,J. van Zanten and E. de Vries, Physica 49, 536 (1970).




