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Some basic relations for the representation theory and the 

Wigner-Racah algebra of a finite or compact continuous group are 

discussed and transcribed in terms of diagrams. Special emphasis 

is placed on the cast of a simply reducible group and all the diagrams 

are applicable to SU without any change. 

Quelques relations essentielles pour la théorie'de la représen­

tation et l'algèbre de Wigner et Racah d'un groupe fini ou compact 

sont discutées et transcrites en termes de diagrammes. Une attention 

toute particulière est réservée au cas d'un groupe simplement réduc­

tible et tous les diagrammes donnés ici sont applicables à SU. sans 

aucun changement. 
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1. Introduction 

The graphical techniques set up for angular momentum theory 

[ 1 -7] and extended to the Wigner-Racah a lgebra of an a r b i t r a r y compact 

group [8 -11] have been of invaluable help in nuclear and atomic phys ics . 

The in teres t for quantum chemis t ry of the graphical methods of spin 

a lgebras (hereafter abbreviated as GSA ) developed by the senior author 

(E. E. ) has been recent ly emphasized [ 1 2 - 1 4 ] . The graphical techniques 

provide simple representa t ions for basis-dependent quantities (e. g. , 

coupling coefficients) and non-basis-dependent quantit ies, i. e. , invariants 

(e. g. , recoupling coefficients). 

The theory of invariants plays a fundamental role in numerous 

a r e a s of mathemat ical physics , physics , and chemis t ry . Among the 

various branches of the theory of invariants» the charac te r theory for a 

compact topological group (discrete or continuous) is probably the one 

that is the most familiar to the chemist . 

The cha rac te r theory is of paramount impor tance in many physical 

p rob lems . F r o m a qualitative point of view, the charac te r theory is of 

invaluable help for determining selection ru les in quantum chemis t ry as 

well a s in molecular and solid state physics . Moreover , the splitting of 

a degenerate nuclear , atomic or molecular level under the action of a 

symmet ry-break ing Hamiltonian (ar is ing from internal or external fields) 

is a tr ivial problem once the cha rac t e r s for the invariance groups of the 

unperturbed and the symmet ry-break ing Ii.rniltonians a r e known. F r o m 

a qxiantitative paint of view, the cha rac te r theory is a very useful tool in 

chemis t ry and physics fur calculating symmet ry adapted s tate vec tors 

(crystal and ligand field s tate vec tors , molecular orb i ta l s , normal coor­

dinates, etc). In addition, the theory of level splitting recent ly d i scussed 

in an original way f15-18] might be approached on the basis of i r reduc i ­

ble c h a r a c t e r s only. 

The charac te r theory is of essent ia l impor tance in mathemat ica l 

physics and m o r e specifically in the representat ion theory and the Wigner-

Racah algebra of groups. As a mat te r of fact, the i r reduc ib le c h a r a c t e r s 
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appear as basic quantit ies in t e rms of which other invariants can be 

developed. In this direct ion, it is possible to connect recoupling coeffi­

cients and i r reducible cha rac te r s of a compact topological group. For 

instance, there exist charac te r formulae for Wigner 6-j and 9-j s y m ­

bols of finite or compact continuous g r o u p s [ l 9 - 2 l ] . These formulae, 

recent ly revived [ 2 2 , 2 3 ] , may be very convenient for computing 

recoupling coefficients [20, 24 j or for obtaining asymptotic express ions 

of recoupling coefficients. In a s imi lar vein, it is poss ible to der ive 

formulae connecting i sosca la r factors of a chain of compact topological 

groups and i r reducib le cha rac te r s of the groups of the chain being consi­

dered [22 ,23] . 

It is the aim of the present work to exhibit a d iagrammat ic r e p r e ­

sentation of the main charac te r formulae occuring in group theory. The 

mater ia l is organized in the following way. We devote Section 2 to some 

rela t ions central to the representa t ion theory and the Wigner-Racah a lge ­

bra of a finite or compact continuous group. In this respec t , it is not our 

purpose to give a summary of group theory. We l imit ourse lves to empha-

sizi ' /, the interdependence of various re la t ions and some formal re la t ions 

which a r e still in a s tate of incomplete development. In par t i cu la r , the 

exact connection between orthogonality and convolution relat ions [25] is 

pointed out. The presenta t ion adopted in Section 2 closely follows that 

of R-ef. [ 2 6 ] , We develop in Section 3 a geometr ical approach to the basic 

relat ions discussed in Section 2 . The approach is achi""ed along the line 

of the GSA . Last ly , in an appendix the connection between the d iagram 

technique for compact groups and the GSA is further investigated. 



2. Basic Group Theoret ical Formulae 

A. Kotational P r e l i m i n a r i e s 

Let G be a finite or compact continuous group with elements E (identity), 

R, S, T, The conjugation c lass of R is writ ten as tL . We use j {or J) 

to denote an i r reducible representa t ions c lass of G , D the (unique) ma­

tr ix representa t ion associa ted with j , and [ j ] the dimension of D . 

In addition, we use the abbreviation j for [j] ' . / N o t e that (j" 1 and 

j were denoted as [j ] and [ j ] , respect ively, in some previous works 

on SU by the senior author. ) The mat r ix D (R) , the e lements of which 

a r e DJ(R) , , is the representa t ive of R in D J . We write x J ( R ) s x ( 8 J 
for m m . ^ 
ythe charac ter of R in j . F u r t h e r m o r e , < j j m m b j m > stands 

for a Clebsch-Gordan coefficient in the { j m j scheme with b boing neces sa ry 

when j occurs more than once in the Kronecker product j . ® j - , . 
In the compact case , ( ... dR denotes a Haar integral over the 

^ G r 

topological space of G, and the volume I dR of G is written as 

I G | . When G is finite, | . . . dR and |G | a r e to be in terpre ted as 
T — ^G 

being the sum / ... and the order of G , respect ively. 
R£G 

Finally, most of the symbols have their usual significance : z 

stands for the conjugate imaginary of z , 6 (a, b) for the Kronecker delta 

of a and b , Up.n for the [ j j x [ j ] unit mat r ix , and t r X for the t race 

of X . 

B. Orthogonality and Convolution Relations 

Let us s ta r t from the so-cal led convolution relation 

1 1 ^ 2 , ^ - U . J] i ' (R S) , D '(R) , dR 
m 2 m Z m i m i 

i ( j , . j , ) «(m ', m ') (J J D 1 ( S ,

m m ( U m . m 

Relation (1) was proved originally [25] for an a r b i t r a r y finite 

group. As emphasized by LOwdin [25] , the extension from the finite 

case to the compact continuous one is s t raightforward. Such an extension 

yields (l) , 
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Clearly the well-known orthogonality theorem 

IC',1"1 ! D 2 (R"' ) , D V ) , dR 

M.! 2 , j , ) Mm., ' , rrij') i ( m 2 , irij) f j ^ " 1 (2) 

appears a s a specialisation of the convolution relat ion (1). It is l e s s evident 

( cf. Ref. [25] ) that (I) may be derived from (2). This is actually the 

case , however, and the di rec t proof is left to the reader . The real reason 

for the equivalence of (l) and (2) is a s follows i. 26 J , R e l a t i o n s 

(2) and (l) r e s t r i c t ed to j = j = j a r e obtained from the Schur equation 

M" D V " . 1 ) XD J(R) ciR = 41, i [ j ]" ' trX 
G 

-1 

hy choosing X = E and X = D (S) E . respect ively , where 
m 2 m I m 2 m l 

E stands for a canonical generator of the Lie a lgebra of the unitary 

m m b " 

group U r . "j in [ j I dimensions. Note that another choice for X would 

lead to a relation apparently disctinct from (1) and (2) . For instance, 

by taking X = D J(S) E D J(T) we would obtain 
J , 

'S) , 0 (TR) , dR 
m Z m 2 m l m i 

|G | - ' ( D J V " ' S 

= S lVVSt rV .ny ) ^ - ' D ' I T S ) ^ ^ (3) 

Indeed, | E : m . , m , ranging! consti tutes a basis for the r ine of the 
m m & l v* ° 

matrices» so that the K - choice is the more general one. 
m 2 m i 

Consequently, any (nontrivial) choice for X, as for example the 

D - ( S ) E m m - cho ice or the D J(S) E D J(T) - choice, provides us 

with a relation that may be deduced from the great orthogonality theorem 

(2). 



The reduction of j © j a s a d i rec t sum of i r reducible represen­

tations c lasses j is descr ibed in t e r m s of representa t ion ma t r ix e lements 

by 

j ] j 2 
D J (R) , D ^(R) 

mr> m 2 m

2 

(4) 

= 2 _ < J 1 J 2 m r m

2 ' | b J m ' > * D J ( R ) m m . < J 1 J 2 m l m 2 | b J m > 

b j m m' 
As a simple consequence of (2) , relation (4) may be worked out to 

lead to the so-cal led Gaunt 's formula, namely, 

•Jr. 

t J l J 2 (R ) , D '(R) , D (R) , dR 
* ' m ' m m m ' 2 m 2 

(5) 
= [ J ] " ' E < j , J 2 m 1 ' m 2 ' | b j m ' >' < J 1 J 2 m ] m 2 ] b j m > 

b 

Relation (5) turns out to be of pa r t i cu la r in te res t for the Wigner-Racah 

algebra of G . More prec ise ly , Gaunt 's formula l ies at the root of charac­

ter formulae for recoupling coefficients of the group G f 19-2.11 and 

i sosca la r factors of a chain s tar t ing from G [22,23*1 . 

pass ing on to the i r reducib le c h a r a c t e r s for G, we obtain from (3) 

the immediate corol lary 

| G | " ' X J V " ' S ) X J ) ( R T ) d R = 6 ( j 2 . j , ) [ j j ] " 1 x ' (ST) (6) 

which special izes to 

l o i " ' f X

J Z ( R " ' s ) X J V ) d R = 6 ( j 2 . j , ) [ J i T 1 X '(S) (7) 
J G 

j i h 
The convolution (or Dirichlet) product x # X defined through 

•>1 j 2 f J l -1 h 
(X •* X MS) = X (R S) X (R) dR 

J G 
ia then easily seen to be U s ] 

X * X = X * X = 6 0 2 . j j ) [ j j ] | G | X 



7. 

AH a special case of (7) , we have the c lass ica l charac te r orthogonality 

relation 

| G | - 1 I %Z(R'1) x J l (R)dR = p\~lUl*xZ){E) * tiiz.ij (s) 
JG 

Alternatively, relation (s) direct ly follows from the great orthogonality 
theorem (2) ,a corol lary usually emphasized in textbooks. 

The litt le-known composition proper ty of the i r reduc ib le 

cha rac te r s 

XJ(R) XJ(S) = [ j ] | G | _ 1 f x V T - ' s T ) d T (c 
Jc 

which para l le l s the fundamental property of the (irreducible) representa t ion 

ma t r i ce s 

D J(R) D j(S) = D j (RS) 

may be obtained as a simple exerc i se in the algebra of the group G [ 2 7 J . 

However, it should be noted that an a l ternat ive and more s t ra ightforward 

proof of (9) follows from the choice X = D (S) in the Schur equation. We 

thus obtain 

J G l " 1 I D J ( T " ' S T ) d T = U r . , [ j j " XJ(S) 

which yields 

I" 1 J D^T^ST) dT = H f j l [j]" lX j(. 

•Ids 

" ' D J ' ( R T * ' S T ) d T = D ] " 1 D J(R) X

J*(S) 

to be compared with (9) . 

C. Completeness Relations 

Let us now go to relations which a r e the duals of the above discussed 

orthogonality re la t ions . In the finite case the dual of (2) appears in any text­

book on group theory and may be writ ten as 

Z [ j ] D j { R ' ' ) D j(S) m , = 6(R, S) | C | (10) 
, m m m m • ' 

j m m ' 

The inverse orthogonality relation (10) is a d i rec t consequence of the 

orthogonality relat ion (2) and thus does not contain any new information. 

The extension of (10) to the compact continuous case seems to have r e c e i ­

ved very l i t t le attention. Following Sharp [ 2 0 ] , we have 
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where the delta function of Dirac / is defined by means of the group 

integration 

f F(R) / (R" ' s )dR = F(S) 

for arbitrary F . By rewriting the completeness relations (10) and (l 1J 

in terms of irreducible characters, we (respectively) get 

S [jl x V ^ S ) = 6(R, S) | C | (10') 

j 

and 

= fj] x V " ' s ) = / ( R " ' S ) | G | ( iv) 
j 

In the case of a finite group, (10') can be proved to be equivalent 

to 

j 

where |Ç>R ! stands for the order of G y relation (10") is the dual of 

M"** | & R | x J ^ - , > x \ ^ ) . . < i 2 . V 
C'R 

which is an immediate consequence of (8). The transcription of (10") 

to a compact topological group is far from easy. Formally, the rijhihand 

^{10") should be replaced by / ( G R _i 6 „ ) £ " | G I • I n t l l e c a s e o f 

a compact connected Lie group, the form / ( &„ -1 fer,) fén " l G I 
R S I R| I ' 

has received a precise mathematical meaning [20, 28] . Assuming G 

to be a compact connected Lie group» we have [20] 

T. X

J ( x ) * x V ) = 6(x-x') A x

_ ) |G| (11") 
j 

where 6 stands for a class Dirac delta function, each conjugation class 

being parametrized by an x-parameter with 

| G | - ' f A x d X =1 

The relation(ll") should be equivalent to (11') and is the dual of 

p l "If h * j l 
IGI J A X X 1 X ) X '(x) dx = 6 ( j 2 . J,) 
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D. Specific Group Integrals 

Let us now turn our attention to the in tegra ls 

" )dR 

<a n> c= M"' 

'Jo ^ 

r u j(R)] n . 

where n is a positive integer. ( F o r G finite, < s > and < a n > 

have been recent ly investigated [29].) The integrals < s n > Q and < a > 
a r e (respectively^ the averages over G of 

s = X J ( R n ) n 

and . n 

a n = I XJ(R) ] 

The integral < a >Q appear s as a special case of 

< a • > = I c i " 1 ! Ï ' ( R ! x V ) . . . x " ( R ) d R 
n c JG 

which is nothing but the frequency of the identity i r reduc ib le representa t ion 

c lass j in the Kronecker product j , ® L ® .. . ® j 

The case n - 1 is trivial s ince (8) gives 

The cases i. = 2 and n = 3 a r e of pa r t i cu la r in teres t : they provide a 

c r i te r ion useful for the representa t ion theory and the Wigner-Racah a lgebra 

of G , respect ively. Indeed, in the case n = 2 we have 

I * I < s _ > = S < j j m m l j m > < j j m l m j m > 

2 n . ' o o l o o 
^ m m ' 

where c is I, -I or 0 according as D1 is orthogonal, sympletic or 

complex. Note that < s , > i s general ly different from 
* G 
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< a-> > _ = E < j j m m ' M m > < j i m m l M m > 
*• G , ' o o ' o o 

= 6 ( j , j ) 

where j denotes the conjugate complex of j . In the case n = 3 we get 

<; 9 , > = £_ < j j mm 1 bJM > < j j m ' m " | bJM' > 
*•* m m ' m " 

bJMM' 
i i * 

< j J m " M j m > < j JmM' j m > 
J I Jo o r o o 

to be compared with 

< a , > = 2. < j j m r n ' | b J M > < j j m m ' | b J M l > 
* 3 ^ G . -

u m m m " 
b J M M ' 

< i J m " M j m > < j J m " M ' M m > J l J o o l o o 

The Clebsch-Gordan coefficients of the groups for which 

i 3 r x\R3)dR = r [X

j(R)i3 

J G JG 
dR 

holds for all j may be fully symmetr ized in the sense d iscussed by 

Derome [ 30, 31 ] . In our modern terminology, we refer to such groups 

as simple phase groups. For G simply reducible, < 63 >_, and < a 3 > ç 

reduce to 

< s 3 > G = <a 3 > G = [j J j] 

where j , . . V stands for a general ized t r i a d T . Consequently, a s imply 

\ All the re la t ions given in this paper for a s imply reducible group apply 

to SU 2 with [ j ] = 2 j+ l , ^(R) = X j ( ^ ) = sin [ ( 2 j + I ) ^ / 2 ] / s i n ( 4 / 2 ) , 

j = m = 0 , c = (-1) = 1 or -1 according as 2j+l is odd or even, and 

j j . j - j - 1 = 1 or 0 according as j . , J 2 , and j satisfy the angular momen­

ta addition rules or not. 
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reducible finite or compact continuous group is necessarily a simple phase 

group. The inverse statement is not true. As an illustration, all crystal 

point groups are simple phase groups (cf. Réf. flo])j. 

Going back to G finite or compact continuous, the case n> 3 

may be handled with the following algorithm. The characters are developed 

as functions of representation matrix elements. The number of represen­

tation matrix elements is reduced step by step by repeated application of 

(4) . At the final step, only one representation matrix element is left so 

that integration over G can be easily performed. This procedure leads 

to a (nonuniquej expression for < s n > or <a > in terms of Clebsch-

Gordan coefficients of G . It is always possible lo rewrite such an expres­

sion in terms of recoupling coefficients of G . For G simply reducible, 

the expression so-obtained assumes a reasonably simple form. By way of 

illustration, it can be shown that 

«•4 »„•»)"« I'll {! ,' ',\ 

< . ! > 0 = 1 . , ^ H 1

j ' " » [ J , ! ^ { ; ; i ^ } { ; ; ; ; 
where J " " ' \ stands for a Wignei 6-j symbol of the simply reducible 

group G . 

For G simply reducible, the above-mentioned examples for 

< s n > G and < a n > G satisfy : < s 2 k + 1 > G = <a 2 k-H> G

 = ° w h e n 

DJ is syrnpletic. This is actually a (trivial) general result. 

For G finite, the algorithm just described could be appropriately 

modified^ following van Zanten and de Vries [32]^ to obtain 

( For G simply reducible, < s n >£, has been recently investigated 

X 
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[32 J . ) At the final step, it would be sufficient to use 

^ D V ) = %,, [J]"' | fe R | x j ( ^ ) (12) 
Ree R

 [ J ] R l ^ 
that comes from Schur ' s l emma. However, it should be rea l ized that (12) 

is not real ly neces sa ry at the final step ; in fact, s may be developed 

as j 
s = S (recoupling coefficient) x ( <STJ ) 

n J R 

which is compatible with 

< s„ >o> = s n ^ n 

As an example, we get 

< s 2

 > t o = S < j j m m ' | b J M > x ( <SR) < j j r n ' m | b J M > 
R m m ' 

b J 

For G simply reducible, the la t ter relat ion pa r t i cu la r i zes to 

< S 2 > =(-»2Jz ( - ^ { J J J , } * ' 1 ' ^ ) 
R Jj 

in agreement with Ref. [ 3 2 ] . For G simply reducible, we further 

obtain 

° 3 ^ R - ; / • " '-J>J b j i V ; W R / 

1 2 

J +J ( i i ' i ] j 
< a 4 > f e = I (-1) L 2 [ J , ] [ J , ] V J 2̂ X 3 ( t ) 

R J , J

2

J 3 ( . J 1 J 2 J 0 

I For G compact, the relat ion analogous to (12), if it exis ts , does not 
seem to be known. Formal ly , we should have 

I" (R) d f e R = D ^ [ J ] _ 1 A X x!W 

from which we might obtain A x I yj{ R ) d o 
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< S 5 > f e = ( - l ) J Z (-1) > 2 [ J , ] [ J , ] [ J , ] 

^ J l V 3

J 4 
J l * j J Z 

J J 2, j J 3 

U J l J 3 J 4 
« ^ ' 

where < . . . I and < . . . . 2 v stand for a Wigner 9-j symbol 

and a 12-j symbol of the second kind, respect ively, of the simply reduc i ­

ble group G . It should be noted that < s >(i3 ( < s >*• and < s_. V ) 
J ^ R 4 ^ R ^ R 

a g r e e (disagree) with the r e su l t s of Réf. [32J . 

E. Charac ter Formulae for Recoupling Coefficients. 

The Simply Reducible Case 

Let us close Section 2 with some cha rac te r formulae which have 

not a t t rac ted very much attention in the past . The recoupling coefficients 

a r e basis independent coefficients, i. e, , they remain unchanged when going 

from the j j m J scheme to another scheme, as for example the | j aT Y [ 

scheme (cf Ref. [23 J ). It thus seems reasonable to connect recoupling 

coefficients and i r reducib le c h a r a c t e r s . Indeed, it is possible to expres s , 

modulo summation over all the internal multiplici ty labels , any product 

Q of recoupling coefficients a s a sum or integral of a product of i r r e d u c i ­

ble c h a r a c t e r s , under the condition that Q involves an equal number of 

covariant and contravar iant o rde red general ized t r i ads [19-21 , 2 3 ] . The 

proof easily follows from repeated application of (5). Following this idea, 

Wigner [ l 9 j derived cha rac te r formulae for 6-j symbols of a simply 

reducible finite o r compact continuous group. These formulae, which a r e 

l i t t le-known, may be written in symmet r i c form as (cf. a lso Refs. [ 1 9, 2 0 ] ) 

= ( - ! ) 2 j | G r 2 X ' i R S l s V s " 1 ) x J (R) X J'(S) dR dS (13) 
v>G«Z 
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Q =J J1 J2 '3V = loi" 4 f XJ'(RS) ï' 2(RT) x V - ' u ) 
-2 

Q 3 
• J 3 <2 

\h h h\ - |o|- 4 f xj 

• / V o l x^tsu) x V ' T ) dR as dT au (14) 

( j l j 2 j l ( j l h j ' l ( j l j2 j"l 

= (-1) G X (RUT) x ( R W T S U V ) X (SWV) 
1 J e ® 6 

X J (T V" 1 ) / ( K S " ' l / ( D W " 1 ] dR dS dT dU dV dW (15) 

_\>1 h h] \ h j 5 h] ( J 4 JZ j û l ( J 4 j 5 J ' 3 l 

' l j 4 j 5 V U l jZ J3J Ul JZ J3J t_J I j2 J 3 J 

= 1-0 4 \ C \ ' 8 \ X '(RS) X J ( T X " ' v ) X 2 ( R V Y " ' T " ' U ) x

 3 ( R X Y T W ) 
J G ® 8 

X 4 ( U W " ' Y ) X 5 ( S " ' X W ) X 6 ( S U " ! V _ 1 ) dR dS dT dU dV dW dX dY 0&) 

where I means 1 I .. . I ( P t imes) . Sharp [20J showed 
J G ® P JC J G J G 

that the Wigner 6-j (or Racah W) symbols of a s imply reducible finite 

or compact continuous group can be defined by the set of re la t ions (13) , 

(14), (15). and (16) . The extension of (13) . (14), (15), a n d ( l 6 ) t o a n 

a r b i t r a r y finite or compact continuous group were given by Derome and 

Sharp [ 2 l 3 . Such an extension r equ i r e s taking the complex conjugate 

of some of the i r reducib le representa t ions c l a s se s and introducing s u m ­

mation over internal multiplicity labe ls . For the simplici ty of the d iagrams 

in Section 3 we confine ourse lves to the simply reducible case . 
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Let us go on to a geometr ic t ranscr ip t ion of aome of the main for­

mulae reported in Section Z . The d iagrammat ic equivalent of relat ion (a) , 

if any, will be quoted as (Da). 

3. Diagrams for the Basic Group Theoret ical Fo rmu lae 

A. Diagrammat ic Representat ion of the Charac ter 

Let us s t a r t from the following d iagrammat ic represen ta t ions : 

* ir 
D J ( R ) m m . = mm 

•r 
D j ( R _ 1 ) , = mm' —«--R 

'r" the 
that a r e coherent with)sÇSA (cù appendix). The usual summation ru le over 

a (generalized) magnetic quantum number leads to 

X J(R) = E D j (R), 

'<'• 

r 
.^m(Ty..-.Qy^ 

in agreement with Guichon [ 9 ] . The d iagrams for X (R) so-obtained 

compare with dth f^f 

KJ{R) = fil j 

a s given by Agrawala and Belinfante [8 ] , It should be noted that the 

direction of the j»a r row is he re of no importance . Consequently-} we can 

take 

xj(R) 

which fully pa ra l l e l s the representa t ion 

XJ(R) = Of 
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of Stedman [lO*l. Continuous deformation in our d iag ramfor X^(R) yields 

V ) - C >->•"• R 
which, in turn, gives 

XJ(R) = 

a s a l imit ing case . The la t t e r representat ion of x (RJ will somet imes 

prove to be useful. In the case where R = E we simply omit the 

R = E - l i n e and thus get a closed loop, the value of which is well-known in 

the GSA (cf. a lso Ref. [ l O ] ) 

It is now s t ra ight forward to obtain 

<^2 
J 

xV) - (f\*.. = -L-i- = ±J* 

X J(RST) 
»— 

T 

The cha rac te r is a c lass function and this is d iagrammat ica l ly depicted 

by , 
„ ' iS r 

xJ(s) 
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B, Diagrams foi Orthogonality and Convolution Relations 

The diagrammatic equivalent of the convolution relat ion (1) may be 

obtained in the following way. F i r s t , the rn-summation rule gives 

3^-vA 
i — > 

= A 

R. 'r^'A 

Second, R-integrat ion {described in the appendix for the G = SU case) 

yields 

Id" 
f 

dR , 

-<-
', V K"\' 

^ 4 

* * W 

Mi*l 

A ^ i 

V^ 

t^V 

As a final resul t , we have 

* ' >4W 
<— 

J ^ 4 
1 

/ 

(Dl) 

•OrV^MV^- 'As) 



since a j -node on a j - l i n e introduces a j factor, a well-known fact in 

the GSA , In the same way, the great orthogonality theorem (2) i s d ia­

grammed as [ 9 j 

ttA 

V tn,1 J. 

4>« M T 

v^v 
(D2) 

-3Z W L' wJ 

= Û (J 2 > j j ) fi (m2*, m ') fi ( m ^ m ^ j j 

in agreement with Agrawaia and Belinfante [ 8 ] and Stedman [ 1 0^ . 

Clearly (DZ) is a specialization of (D î ) . As a m o r e general case we 

have 

i^i W*>fr 

W"\! I ,, 

T 

Y A .«. VV 

^v 

• â ^ i 

^*V 
(D3) 

= » 0 - . j . ) «(«•»,'. m ' ) t " 2 D '(TS) 
i l i l l n 

which covers both (Dl) and (D2). 
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From (D3) it is straightforward to get 

, s\-2 J l , 

whichparticxilarizeB to 

-«-- , - s . . 
V^xi. 

= » ( j 2 . j j J j ^ ^ X '(S) (D7) 

A further specialization yields the cha rac te r orthogonality theorem 

" W V—-- / l = f l = 6 ( j . . j . ) (D8) 6t i 2 .J , ) 

if 
in agreement with Agrawala and Belinfante [ 8 ] and Stedman [ïO]» It 

is to be noted that (D7) and (D8) may alao be deduced from (DI) and 

(D2) , respect ively . 

Finally, s tar t ing from the right hand side of (9) we obtain 

A2 
J 

AT 

'"1----0-
* T 

^ z 
= Il 

R 

* i 

• * Q 
xJ(R) ^(s) 

4 î 
(D9) 

s 
- > - -
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C. Diagrams for Completeness Relations 

The distinction between finite and compact continuous groups does not 

need to be maintained any longer as far as d iagrams a r e concerned. As 

a mat te r of fact, in the presen t state of development of the graphical 

techniques in group theory, it is not possible to distinguish between 

Kronecker and Dirac del tas . Consequently, both (10') and (11') have 

the same d iagrammat ic representa t ion, viz : 

^ 2 S j 
j m m ' 

fc 
--»-

i ^ 
„ A 2 R. Z J - » - S 

A2 *-S J - » -

6 ( R . S) jO| for G finite (D10') 

4 (R S) |G| for G compact continous 
(DU' ) 

AU the d iagrams in Subsections A, B, and C apply to an a r b i t r a r y 

finite or compact continuous group. For simplici ty, we shall r e s t r i c t ou r ­

selves from now on to the case of a simply reducible group, a s for example 

the group SU . The case of an a r b i t r a r y group requ i res the introduction 

of multiplicity l ines that render the d iagrams m o r e complicated and do not 

offer anything real ly new from a graphical standpoint. However, such an 

introduction may be easi ly achieved, where necessa ry , following the 

works by Agrawala and Belinfante [ 8 ] , Guichon [ 9 ] * and Stedman [ l 0 ] . 
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D. Diagrams for Specific Group Integrals. The Simply Reducible Case 

L.et us now turn our attention to 

z_» j(R) D j(H) ... D^R) 
% 1-1-1 *-r\ * » w TYN * ' 1-1 

n 

--* — R 
- > — R 

The GSA allow a closed expression for the product of n representat ion 
matr ix elements to be easily obtained . By repeatedly using the diagram 
of (4) t ranscribed in te rms of 3-jm symbols for a simply reducible 
group, we get 

J l J 2 • 

-5 

##...:T* a - l 

+ 
__ + 

* 
__ + 

X -->+ 
i 

+ / < 
+ k / y " 
4 ^ > / 

I, 3« 
i ' / ,4 I, 
+ 

^ 

o!-



22. 

In both cases , we have 

JMn-= E J 3 ( n - l ) - j symbol] x "W 

Let us give some examples 

••<3> O 
2 j + j i f . . , i . j i x '(R) 

»3 = ^ ^ 1 

2Z <V ,_,,"! 
V E 

J ^ ' ( - l ) 

.4= 2 Z ^ 
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n ^ ( - O 1 2 •4 j j J J 

j j J 2 h X (R) 

J 1 J Z J 3 J 4 

^ 2 - ^ 2 / ^ 3 
J l J 2 J 3 

4 ' 
, + 

+ 

4 ' 

sA 

X \ 
+ 4 \ . . - \ 

trX 

J , J , J , J , I 2 3 (! 

y/ ^ H 
ov ' 4 ' 'i A 

X /4 
R 

•i_?w<-,r ,' t j* / h i /zUv. 
J J , J

3 V 

To go from 6 to < s > we just have to average over G . This n n G 

is achieved diagrammatically by removing the J -line . It thus a r i s e s 

b (J . , J _) or 6 (J , j ) according as n is even or odd. Therefore, 

< a > = t 
n G 

< 3 (n-3) - j aymbol \ < 6-j symbol | 

Alternatively, we can express < s > as a sum of product of 6-j 

coefficients. Indeed, by graphical intégration we directly obtain 
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.»_ -'LZ^t^ 
J i i - J . 

.1 
M~ J, 

m> 

An analytical transcription of such a result is : 

" c ' , * - > . "*" 
A 2 f ^ 2 , . ? ' + V J

S K ^ 
( j J i j ] f j , J 2 j ) ! \ _ 2 J a - I ' 

l J

2

 J l J J l J 2 J> j J "• J s J s - 1 j 

By way of illustration, let us part icular ize the diagrams for 

< s > (and < a > ) to some given values of n . As a trivial example, 

< s , > = < a . > = 
1 G 1 G 

Further , 

« ( j . u 



provides a diagrammatic representation of the Frobenius-Schur coefficient 
c while the diagram for ^ a > is nothing but (D8) with 
The n = 3 case yields 

a n d 

which compare with the diagrams immediately preceding relation (48) of 

Ref. [ 10 ] , Finally, we obtain 

-JL-

*%>„• s ^ I 

< 8 c > -TL if if + 

J 1 J 2 

.E 

^ 2 ( - . ) 2 j I j 'i \ H = r > i - n w i s 

^~^2( n

2 J + J l + J z ( T rl A I ' 1 r2 r 

J , J Z

 J l *2 ( - " [ J 2 J l J J I J J 2 J 
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E. Diagrams for Character Formulae for Recoupling Coefficients The 

Simply Reducible Case 

Let us begin with the trivial 3n-j symbol 

By applying GSA rules, we have the decomposition 

in 

i l 

Ai. 

L_i.i-r 

+ 

dR dS + -->-s -V- 1 K 

V 1 ! 
+ 

The diagrams in which the variance is not natural have received a lecture 

order (cf. appendix) . We thus get 

<vL_ior2r 
m m m J G 

GI I dR dS 
G® 2 

m l , n V m 3 ' 

(-1) * D ' ( S " ' ) (-1) 2 D Z ( S _ 1 1 , D 3 ( 5 ) 
m l m l m 2 m 2 m 3 m 3 
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J, J , 
D ' ( R ) , D *(R) , ( -1) J D J(R"1) , 

| G | " 2 d R d S X ' ( R S " 1 ) x 2 (R S" 1) x 3 ( R _ 1 S ) 

Let us go now to the general case of a product Q of 3n-j aymbols 

involving an equal number of covariant and contravariant generalized t r iads . 

It is not necessary to achieve the preceding decomposition in order to get 

a character formula for Q . Such a formula may be obtained from the 

following graphical rules . 

Rule 1 : We draw the diagram for Q and modify it, if necessary, acco r ­

ding to GSA rules , to get pa i r s of corresponding nodes. (Two nodes a r e 

said to be correspondent if they have the same generalized triad, opposite 

variances, and identical lecture order . ) 

Rule 2 : We link the corresponding nodes two by two by means of a R-Hne 

the direction of which may be a rb i t ra r i ly chosen. It is to be noted that the 

R-lines have to be distinguished from the usual lines of the GSA , i. e. , the 

j - l i nes , the § - l i n e s , and the integration R- l ines . 

Rule 3 : The charac ter formula for Q is then 

• i * l Q * ( -1)^ | G | " X J ( . . . J x J (• • J - - . dR dS . . . 

where P is the number of distinct R-l ines and where the phase ""£ and 

the argument in each x a r e obtained as follows. Starting from a given 

line j i we move on a loop involving alternatively R-l ines and other lines 

j . The argument of X is then the product of the various encountered 

group elements, each element being taken to the power 1 or -1 according 

as the associated R-line has the direction of the l ines j or not. Each 

negative power introduces the phase factor (-1) . Note that in Rule 1 , 

it is not crucial to have apposite variances for two corresponding nodes. 

It thus may a r i s e on a loop lines j with opposite directions. In the case 

where we m e t a contra-flowing line j , we have to introduce the phase 

factor (-1) . Note also that we may loop the loop in any direction since 

G is ambivalent. By way of i l lustration, the loop 
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* ! 

T 
—>— 

V 

gives the contribution 

J/o-« 2 J + 2 J = J r B " l . < XJ(R S T U ) ( - 1 ) ' ' ' = xJ(R STU) 

or identically 

X J ( U l T - l S - l R ) ( - W 2 ^ 2 J + 2 j + ^ + 2 ^ 2 j 

= X ^ U ^ T ' V ' R ) = X^R - 1 STU) 

according as we move on the loop in a clockwise or a contra-clockwise 
way. 

As a trivial example, let us consider 

\te 

In order to get two pairs of corresponding nodes we have to change the 
2 Ji 

direction of one line j . thus introducing the phase factor (-1) 

Q, = (-D 

\ f c 

* \ yi 
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We link the corresponding nodes by mcana oi two R-lines, viz, the lines 

R and S : 

C, = ( - D ' + 

We then obtain four loops which lead to 
Z J , 

a , - < -u ' 1 M " 2 I S 2 

2 J, 
x l(RS) X Z <R"'S> ( - i r ^ x ^ R ' 1 ) < - i ) 2 j x i ' ( s ' 1 ) ( - i ) 2 j ' 

in agreement with (13). Remark that if we do not change the direction of 

one line j . , we directly obtain 

J l 2 J 1 h -I *J2 i -1 2i V -t »-. 
x l ( R S ) ( - i ) x (R l s j ( - D ^ ( R ' K - I ^ X M S H - I ) ^ 

In a similar way, we have 
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» + 

and 



3 1 . 

1V 

W 

Ac 

'* \ 

•iV 
\ *•> 

/ • * { , 

i \ * / 
: v\J / \ * 

from which it is straightforward to deduce the character formulae ( I4 j , 

(15), and (16J, respectively. 

Appendix 

The Rotation Matrix in the GSA 

In a previous se r ies of works, one of us (E. E. ) has developed a 

diagram technique, the so-called GSA, for the Wigner-Racah algebra of 

SU,£f.Refs. [Z, 3, 7 ] ) . The diagrammatic representat ion of D J(R) £ v mm 
introduced in Réf. L2J is not entirely consistent with the representat ion 

of the state vectors < j m | and | j m ' > . Indeed, the Elbaz et al . [Zj 

representation of D (R) ,^= < j m j p „ | j m ' > does not exhibit mm i R ( 

the variance of < j m | and j j m ' > so that a difficulty a r i s e s for the r e ­

presentation of x (R) • This difficulty may be overcome by using the dia­

grammatic representation of D (R) , a s postulated by Guichon L 9 j 

for a compact group. We devote the remaining par t of this paper to the 

la t ter representation,which presents a high degree of coherence with 

the basic axioms of the GSA . 

Following Guichon [ 9 ] we take 

JWV 

D J(R) 

A * * " 

• - - > -
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which is markedly different from the diagrammatic representat ions of 

D J(R) given by Agrawala and Belinfante [ 8 ] and Stedman [ 10 ] 
mm 

in the case of a finite or compact continuous group. We further assume 

D J ( R _ 1 ) , === D J(R) 
m 'm v m m " 

in accordance with the usual practice in the GSA that complex con,'., ation 
changes the variance of each arrow. Note that the variance for m , m' , 

and R a r e clearly specified both for D J(R) . and DJ{R) , . This ' r 1 m m ' m m ' 
probably constitutes the main advantage of the representation of Guichon 

[ 9 ] over the ones of Elbaz et al. [ 2 ] , Agrawala and Belinfante [ 8 1 , 

and Stedman [ l o ] . 

At this point it is perhaps whorthwhile to mention that the GSA rule 

X n t ransforms contragrediently to (-1) \—£ i - m < * * * " may lead 

to some ambiguity when considered as an equality. In par t icular , start ing 

mm' * ' * *-m-m' from the well-known symmetry relation D J(R) , = {-!) ~ D (R) 

and using such an equality, we would obtain 

4 M * 

4 W 

-<l~ - tfj» 
"V 

- y - \ 
ti 

a result which is evidently wrong. Such an ambiguity may be overcome by 

introducing a lecture order starting from the R-line for the second d iagram: 
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- 4 * >• 
D J (R) ,* = m m ' 

T 
h-«— 

( - » 2 J < - i ) j - m ' ( - » j + m 

( - i ) ' 

4 ^ 

(-»>" 
r 
.->-~V\ ( - l ) m - m D J(R) 

Application of the m-summation rule of the GSA yields 

E Er'(R) .. D j(R) , 

R ^ 

- * — • -
? ^' -i"1 •&"' 

-*- Z Sfm'.niJ 

whence the unitarity property of IT amounts in last analysis to omitting 
the R - and R* - lines exactly as in the Agrawala-Belinfante-Stedman 
techniques. 

The invariance property 

< j m | T j | „ T m > = _ Z _ D J ( R ) m m * < ° J ™ I 'ff l » ' ! ' 3 ^ " H , ^'w-
' rnqiiv i i i MM 

is diagrammed as [ 9 ] 



that part icular izes to 

4>'S 

U 

X y / # / V V ^ ' 

or identically 

r —(—L 

for the Clebsch-Gordan coefficient < j , k m ' q | j m > s < r j ' k m ' q ] j m > . 

Alternatively, we have the symmetric diagram 

W V* ^ 

which corresponds to the 3-jm Wigner symbol 

- 9 — 1 >> 
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' j , h •>, 

I j» j z ' 3 ^ JI h J 3 , > 

The rotational invariance of the 3-j symbol t j i j j j- j t * s expressed 
diagrammatically by 

[Wi] M 4 ty ~ U".*/t 
iv 

RJ P. 

tu The j-summation rule of GSA easily enables us to diagram 

(4 ) for G = SU 2 . We have 

—» ; y * 

ÎÂ j^W 

. - j i " ^ , 

<Jl*L 
By using the above-mentioned invariance property for the Clebsch-Gordan 

coefficients! we get 

+ /!-> ' >. 

f > l 
, w , < 
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Following Sandars [ 5 ] and Stedman [ 10 *} , a group integral of 

the type ISIL I 1 £(R) dR will be t ranscribed diagrammatically 

merely by connecting the R-lines relative to the diagram for f to a aolid 

circle . When only two R-lines with opposite variance a re connected the 

solid circle will be omitted. Such a graphical manipulation defines the 

R-integration, which turns out to be a simple extension of the ft- and 

5- integrations { cf. Refs. [ 2 , 3 , 1 ] ) . As a trivial example, we have 

A more elaborate example is supplied by the great orthogonality theorem 

(2) for G = SU : the diagram relation 

, .4l*l V-i y A Ï ' ^ M l '^/.*M 

dR 

2 

i<V 4»MV 

fc1"^ 3A 

wv 
^ l V •3>.VV 

# lV >*v ^-n,va 
$* w 1 

4i« i / 

<3>i*V 
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ia t. lie aiagrammatic transcription ot 

Jsu z 

<R)„ 
D ^ R > m .m . '« 'K 

• t 'MVJ, ) !^ , - , ) 

I ^ ' 1 i ( j 2 . j , ) S t i y . m , ' ) 

Along the same lines, the formula of Gaunt (5J for G = SU yields 

«--

W 
>"V 

A -4 

V T ' 4 

Alternatively, in terms of 3-jrn symbols we obtain 
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J ] J ? J3 
D (R) , D (R) , D J(R) , dR 

m i m i m 2 m 2 m 3 m 3 

0 / | , W X / v 

k I - J l t a t 

i v y 

4)¥*il 

sp.^1. 

i " S 

m l m Z " V J l J2 J 3 
j l h h m , ' m 2 m 3 

An immediate generalization of the latter relation leads to 

D ' ( R ) m , D 2 ( R ) m . . . . D"(R) .dR = z 4? # . . . # 

>SV2 

1 " 1 

3**1 
* -

fal 

4 A » V 

ft"*»' 

} - i n - i v̂1 

1 ^ < î l ^ 

•4A ~v ft 

3o 

where the closed and integrated diagram is easily recognized to be equal 

to 1 or 0 according as J, + J , + . . . + J = 0 or not. 
1 2 n 
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The R-integration is at the root of the YLV2 Yutsis-bevinson-

Vanagaa theorem [ 1 ] , which is known as the pinching rule in the GSA . 

To be more prec ise , let us consider 

4^ 
-<t-

^ h i 

The use of the above-mentioned invariance property gives 

Therefore we have 

< i « / j i » i 

k 

V" l J 2 I ' ' ^ J s u 2 ^ > J2 ' ' 

> i > • 

- 4 ^ 
> 

as g i v e n by the YLV2. theorem. 
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