
- o F - i Q - -

MASTER
THE EVENT HANDLER II ",

A FAST, PROGRAMMABLE, CAMAC-COUPLED DATA'ACQUISITION INTERFACE

David C. Hensley*

Til u re
ipdiMIt
United
I-nergy

P"(
dt»
Sia
no
'its

any war ran

liability
,,, u i e j

pi own
inttinee

Ine
diw

P»

wa
v ihe
r i n
an>
tub.

y, «

s »i

a'ely

NOTICE —

piepaied ai a
Unn;d Siaiet Go*
ur ihe l.'mted S
of then employ

onuatii'ti. 'Jf 'f'
pfe« ot implied

em
ate
Cl

if

HI

ny informati'jn. app
. '„ feptesfnu U

o*ned rtKbli

at

ttiiunt

meni *»
Depa

nor an
mpl»>
awumc

ratut.
t i UK

of

(iih
ti^-

> "

work

f f th.f
nl uf

thetf

i n ™

Utl 1"
a n'it

The purpose of this paper is to describe the
architecture of the Event Handler II, a fast,
programmable data acquisition interface which is
linked to and through CAMAC. The special features
of this interface make it a powerful tool in
implementing data acquisition systems for experi-
ments in nuclear physics.

Philosophy—what is needed

Nuclear physics style ADCs, TDCs, and like
equipment in CAMAC are now appearing, but a module
which might act as the brains of a general, but
fast, data acquisiton interface has not really
appeared. The ubiquitous micro-processor (uP)
provides a locally smart crate, able to go through
the appropriate motions for the desired data
acquisition, able in fact to handle easily a por-
tion of data acquisition. Unfortunately the
current CAMAC based tiP systems tack«the necessary
speed to handle the high rates arid burst character
of the data acquisition of many of;the currently
significant types of experiments in nuclear phy-
sics. Something at least an order of magnitude
faster than the current uP systems is urgently
required, though it will require only a small
fraction of the processing capability of the uP.

Generally, high-rate multiparameter experi-
ments scatter relevant information into a few of
many detectors. A pressing need is to have a
system which can rapidly (less than 10 usec)
decide if the current event is of possible
interest and, if not, to restore the system imme-
diately for further data acquisition. If the
event is to be accepted, the system must be able
to transmit "relevant" information at rates
greater than 200 kHz (<5 usec/word); "irrelevant"
information could be ignored, i.e., not
transmitted. Notice that no arithmetic capability
is generally required; all arithmetic capability
resides with the downstream computer. A further
quality of a system is that its interaction capa-
bility should be strongest on the experiment side
of the interfacing. On the host computer side it
need do little other than transmit data and
recognize the availability of the computer. On
the experiment side, however, the system must
recognize the status of switches, of ADCs, and of
other modules, and it must respond to any steering
logic applied to it by the experimenter. Finally,
to be generally usable, the system should be
easily programmable and should be largely indepen-
dent of the host computer.

An "Event Handler" (EH) module has been devel-
oped! which incorporates most of the philosophical

*Oak Ridge National Laboratory, Oak Ridge, TN 37830.
Operated by Union Carbide Corp. for U.S. Department
of Energy, under contract W-7405-eng-26.

cortsiderations (prejudices) discussed above, and a
year's highly successful experience with the
device has demonstrated its power, flexibility,
and general ease of use. The Event Handler II is
the next model of this device and includes an
enhanced capability for sparse data scans and
transmission verification. The name "Event
Handler" has been chosen because the primary pur-
pose of the interface is to handle the equioment
and information associated with experimental
events.

Overview of the Event Handler II

The Auxiliary Controller (Aux)

It made sense to divide the EH into two com-
ponents, a processor and an auxiliary controller
(Aux), as shown in Figure 1. The processor is
physically independent of CAMAC; a data and logic
bus connects it to the Aux. The Aux can be
accessed by the crate as a slave module. It will
respond with a true Q only if the EH is disabled;
then the following functions are implemented:

F(0)A(0) read processor memory
F(16)A(0 or 1) write processor memory or address
F(24)A(0) disable EH; Q=l, if achieved
F(24)A(1 or 2) set PAUSE or set PAUSE/HALT
F(26)A(0) enable EH; 0 should be false
F(26)A(1 or 2) reset PAUSE or reset PAUSE/HALT

These functions allow one to disable the EH,
to load and verify a program, and to re-enable the
EH, all from the host computer. When the Aux
operates as an auxiliary crate controller, it
accepts an NAF request from the processor, execu-
tes the NAF, and signals the processor that it is
through. It will put its I/O register on the con-
necting data bus upon request of the processor.
The Q-response of the current NAF operation is
latched and available to the processor.

The Processor

The processor is inactive if the EH is
disabled; this requires both that the front-panel
enable switch is off and also that the enable
latch has been reset in the Aux. When the pro-
cessor is inactive, it: memory and address may be
accessed through the Aux. When the EH is enabled,
the processor, after a 410 usec delay, begins to
execute its program starting at the last address
specified.

The processor works on a pipeline scheme
whereby the current instruction is clocked into a
pipeline register for decoding and implementation
while the address logic is fetching the next
instruction. The processor is driven by a 10 MHz
clock and has a 24 bit wide random access memory.
The beginning of a cycle clocks the memory into
the pipeline register and at the same time

oiSTBJBrnow a r THIS DOCUMENT IS uiajuan>E& k

By acceptance of this article, the
publisher or recipient acknowledB«
tl>» U.S. Government's right to
retain a nonexclusive, royalty-free
license in and to any copyright
covering the article.

••irr.mr-

aSa.

Dataway — X Aux X Processor >< Front Panel

-> | CAMAC Logic [< | Address Logic | <-
12 bits

24 bit Memory

T
NAF Register | < 1 | Pipeline Register |

, i ,
| Op-Code Logic |

| INTERRUPT] <

-> I Aux I/O Register

|Output Register |

-> | Registers |

| PAUSE and HALT ~[< | PAlirS ~| < —

-> | FIFO Port] — >

| Qiasi-registers [<- 6 inputs
Set BUSY

| Output Register \

Figure 1. Schematic Layout of the Event Handler I I

6 outputs
BUSY

increments the address. The next c y c l e s t a r t s
typically 0.4 or 0.5 ysec l i t e r , longer than the
access time of the memory. Four 24-bit registers
are available for saving the Aux I/O register, and
these registers are available to the processor's
bit-checking instructions.

The FIFO Output

The output of the EH has been made to
resemble that of a 24 bit wide FIFO (First In,
First Out buffer). There are essentially only two
control lines: RECEIVER-AVAILABLE and SHIFT-IN.
The fact that the EH looks like a FIFO means that
it may be connected directly to a FIFO to provide
buffering and time-derandomizing. If the data
acquisition crate is remotely positioned, the out-
put may 90 into a data transmitter. While, of
course, the EH could use the CAMAC dataway for its
data transfer, the FIFO port should be used to
handle any high-rate data transmission to the com-
puter, when feasible.

External Control Logic

The processor has several sources of external
control logic. It can sense and test 6 front
panel (FP) inputs with the SKIP instruction. This
allows the experimenter to provide steering logic.
In addition, there are three FP inputs; SET BUSY,
INTERRUPT, and PAUSr. The BUSY latch drives a FP
BUSY OUTPUT and can be sensed/tested by the pro-
cessor. An INTERRUPT signal will generate a stan-
dard processor interrupt, if enabled. The
processor can also drive any of 6 FP outputs.

Two basic control lines are used with the
FIFO output; RECEIVER-AVAILABLE, to indicate that
the downstream device is available, and SHIFT-IN,
to indicate that a word is being transmitted.

There are two additional controls, PAUSE and
HALT, which are recognized by the processor. HALT
indicates that the downstream control computer is
through; it will accept no more data. PAUSE is an
indication that processing should terminate as
soon as possible—usually at the end of the
current cycle. Generally the control computer
will indicate PAUSE, wait a bit for everything to
clear out, and then indicate HALT. The control
computer can set PAUSE and/or HALT through the AUX
or through the FIFO. PAUSE is, in addition,
generated by the FIFO when it is 3/4 full (for
example) or by the experimenter through the FP
input when he wishes to shut off the data acquisi-
tion front end.

The Processor Instructions

General Op-Code Operation

The following general operations were incor-
porated into the processor. They fit comfortably
into the architecture of the processor while per-
mitting a fair degree of flexibility and power in
the dJta acquisition configuration.

1) NOP ~ this no-operation instruction uses one
timing cycle; the next instruction is then
executed.

^Number

2) DELAY — the delay instruction has a duration
of one timing cycle plus up to 4095 0.1-usec
time intervals. This is used to specify the
duration of an output pulse or to wait for a
device to complete its task.

3) JUMP. JSUB. RETURN — unconditional jump to a
specified address. The address may be spe-
cified in the pipeline register (normal
JUMP) or may be fetched from a four-deep
stack (RETURN). The current location may be
stored in the stack (JSUB).

4) LOAD — this instruction loads the A through
D registers with the contents of the AUX I/O
register. It can also set a 6 bit output
register which drives the 6 front panel out-
puts shown in Figure 1.

5) SKIP -- this instruction will skip the next
instruction if a specified condition is met,
otherwise the next instruction is executed.
The SKIP instruction first masks (ANDs) the
designated register with the pipeline
register. The instruction can skip if the
result has any or no bits set, or if the bits
are the same as those in the mask. Or the
result can be compared witii a number-register
and the instruction can then skip if the
result is <, =, or > the number.

6) NAF ~ t h is instruction passes NAF, a CAMAC
I/O request to the Aux Controller, where N is
the slot number, A is the subaddress, and F
is the function number. The Q-response is
available for checking with the SKIP instruc-
tion.

7) XHIT — this instruction causes the Aux I/O
register to be loaded into the output
register. At the same tine, the instruction
can request that the output register be
transmitted.

8) INTERRUPT — this psuedo-instruction genera-
tes a JSUB REGISTER instruction upon receipt
of a front panel pulse. All instructions
except DELAY are interrupted at the end of
their execution. The DELAY instruction is
interrupted immediately. Normal response
time is less than 1 usec.

Op-code Special Features

In order to fac i l i ta te sparse data scans, the
JUMP+FSBR instruction has been implemented to
allow a JUMP to a specified location plus a number
(from 0 to 12) from the FSBR (First Significant
Bit Register) which indicates the position of the
f i r s t non-zero masked bit in a particular
register. •

LOAD FSBR.A.0770
wi l l set FSBR to the position of the f i rs t signi-
f icant b i t common to the A-register and the mask
(0770, in oc ta l) . FSBR is set to zero i f there is
no such b i t . For example;

BITS 1 2 3 4 5 6 7 8 9 10 11 12
A 1 0 1 0 0 1 1 1 0 1 1 1

MASK 0 0 0 1 1 1 1 1 1 0 0 0
+ FSBR = 6

JUMP 10+FSBR will jump to 16.

In order to facilitate multiplicity measure-
ments, an 8 bit multiplicity Adder is implemented:

NOP MULTIPLICITY Clear the Adder
LOAD MULT.A.MASK " Count bits in mask
LOAD MULT.UA.MASK Add to MULT-Register

The MULT-register now contains the count of the
masked bits in the 24 bit A+UA register. This
register can be checked with the SKIP instruction.

The NAF instruction can reuse the previous N
and F but increment A.

NAF 1,2,0
NAF INCREMENT — > NAF 1,3,0

The A in the NAF instruction can be tested with
the SKIP instruction for looping purposes.

XLOAD moves the datum in the AUX I/O register
to the output register but does not transmit it.

XMIT moves the datum and transmit it.
XUP moves the lower 12 bits of the AUX

register to the upper 12 bits of the output
register and transmits the result.

XLOAD+NA or XMIT+NA move the 14 lowest bits
of the AUX register to the output register. Bits
15 through 23 are replaced by N and A, and bit 24
is set to zero.
IF two words are read, ADC1 and ADC2, respec-
tively, the following transmissions are possible:
(1) (ADC1) XMIT

(A0C2) XMIT
(2) (ADC2.ADC1) XLOAD, then XUP
(3) (NA1.ADC1) XMIT+NA

(NA2.ADC2) XMIT+NA
Transmission (2) simply recognizes that most CAMAC
ADCs use no more than 12 bits and packs the two
words into one 24-bit transmission. Finally,
either the NAF or NAF INCREMENT instruction may be
combined with XMIT, XLOAD, and XUP and with NA, if
desired.

General Applications

It will be assumed that 96 ADCs are to be
read and that they are packed 16 per module in
sequential slots.

Simple data list transmission (96 instructions)

(PROGRAM)
NAF+XM1T 1,0,0
NAF+XMIT 1,1,0

(COMMENTS)
1st in slot 1

NAF+XMIT 1,15,0 last in slot)
NAF+XMIT 2,0,0 1st in slot 2
• • •
NAF+XMIT 6,15,0 last in slot 6
STOP

"Do-Loop" data l i s t transmission (16 instructions)

NAF+XMIT 1,0,0
JSUB XT
MF+XMIT 2,0,0
JSUB XT

NAF+XMIT 6,0,0
JSUB XT
STOP

XT NAF+XMIT
SKIP
RETURN
JUMP XT

INCREMENT
NAF.NE.15

subrout ine XT
check i f A=15
yes, i t is

JUMP+FSBR data scans (384 instructions)

Q-scan data l i s t transmission (18 instructions)

NAF
JSUB

1,0,0
XT

i f bad Q, don'transmit
Tag output with NA

NAF 6 , 1 5 , 0
JSUB XT
STOP

XT SKIP Q.NOT.l
XMIT+NA
SKIP NAF.NE.15
RETURN
NAF INCREMENT
JUMP XT

Sparse Data Scans

Two cases will be treated for the two modes
of sparse data scans. It is assumed that the pat-
tern of relevant data is stored as 96 bits in the
A, B, C, and D registers. This is the sort of
information that is generally stored in a coin-
cidence buffer. Each bit in the buffer is set if
its respective detector fired during the gating
interval. Only if a bit is on will the corre-
sponding ADC be transmitted. For the case of 2
ADCs per detector (i.e., per bit), the second set
of ADCs are assumed to' be in modules 7-12. Simple
examples of 2 ADCs are 2-element detectors or ana-
log and time measurements for each detector.

SKIP data scans

(One ADC transferred per bit) (192 instructions)
(PROGRAM)
SKIP A.NOT.l
NAF+XMIT+NA 1,0,0
SKIP A.N0T.2
NAF+XMIT+NA 1,1,0

SKIP A.NOT.4000
NAF+XMIT+NA 1,11,0
SKIP UA.N0T.1

SKIP UD.NOT.4000
NAF+XMIT+NA 6,15,0
STOP

(COMMENTS)

2nd bit

12th bit

13th bit

96th bit

(Two ADCs transferred per bit) (384 instructions)
SKIP A.NOT.l
JUMP X2
NAF+XMIT+NA 1 , 0 , 0
NAF+SMIT+NA 7,0,0

X2 SKIP A.N0T.2
JUMP X3
• > •

X96 SKIP UD.NOT.4000
JUMP STOP
NAF+XMIT+NA 6,12,0
NAF+XMIT+NA 12,12,0

STOP STOP

(One

TAB1

XI

Xl l

X12
DOUA

TAB2

X13

X23

X24

ADC t r a n s f e r r e d per b i t)
LOAD
JUMP
JUMP
JUMP
JUMP

JUMP

FSBR.A.7777
TAB1+FSBR
DOUA
XI
X2

X12
NAF+XMIT+NA 1 , 0 , 0 1st word
LOAD
JUMP

FSBR.A.7776 omit b i t 1
TAB1+FSBR

NAF+XMIT+NA 1 ,10 ,0
SKIP A. ANY.4000
NAF+XMIT+NA 1,11,0
LOAD
JUMP
JUMP
JUMP
JUMP

JUMP

FSBR.UA.7777
TAB2+FSBR
DOB
X13
X14

X24
NAF+XMIT+NA 1,12,0
LOAD
JUMP

FSBR,UA,7776 omit b i t 13
TAB2+FSBR

NAF+XMIT+NA 2 , 6 , 0
SKIP UA.ANY.4000
NAF+XMIT+NA 2 , 7 , 0

STOP

(Two ADCs transferred per bit) (488 instructions)
LOAD FSBR,A,7777
JUMP TAB1+FSBR

TAB I JUMP DOUA
JUMP XI

XI NAF+MIT+NA 1 , 0 , 0
LOAD FSBR.A.776
NAF+MIT+NA 7 , 0 , 0
JUMP TABl+FSBr.

omit bit 1

STOP

Conclusions

The desire to reduce both the front-end dead
time and the downstream communications overhead
has motivated the particular architecture of the
Event Handler. The currently available ADCs and
TDCs densely packed (8 or more) in CAMAC modules
have conversion times from 50 to 200 usecs. It is
desirable to keep the scan time comparable to or
less than this conversion time so that the front-
end dead time will w>t be dominated by the speed
of the Event Handler. Table I compares the
sparse-data scan times for 96 detectors for the
three main modes available to the EH when 100%,
30%, and 0% of the detectors are significant.
When one ADC per bit is transmitted, the SKIP and
JUMP modes are equally fast when about 29% of the
ADCs are significant. For two ADCs, equal speed
occurs when about 63% of the ADCs are significant.
The Q-scan technique has not been especially opti-
mized in the EH and, consequently, does more
poorly than it might; but, in any case, the Q-scan

technique must be inherently slower since it
relies on a CAMAC data-way transaction to make its
decision of relevance.

For scans of very sparse data involving many
parameters the JUMP-mode is clearly superior and
very powerful. For smaller numbers of parameters
the SKIP-mode will often be found to be superior.

Table I

Time (ysec) for 96 detector scans

SKIP MODE

JUHP+FSBR

Q-SCAN

SKIP=JUMP

1
100%

115

235

173

AUC
30%

79

81

166

29%

Time
0%

67

14

163

2
100%

230

283

317

ADCs
30%

145

95

236

63%

Time
0%

106

14

202

Even though special attention has been given
in this paper to the problem of sparse data scans,
it is clear that the overall features of the Event
Handler satisfy nicely a current need for a
general, fast, data acquisition equipment. This
CAMAC based programmable interface is much faster
than CAMAC uP systems and is much better suited
for a wide variety of experiments in nuclear phy-
sics. Because it is programmable and already
linked to CAMAC, it is much more adaptable and
versatile than hard-wired logic for event
managing, particularly if event managing includes
the manipulation of CAMAC modules. Because it is
essentially totally independent of the host com-
puter, the EH can be imnediately implemented into
any system which supports CAMAC. Such a device
must be a major part of most complex multipara-
meter nuclear physics experiments.

Reference

D. C. Hensley, "The Event Handler - A Fast,
Programmable, CAMAC-coupled Data Acquis i t ion
In te r face , " IEEE Trans. Nucl. Sc i . NS-26,
No. 1 , 710-716 (Feb. 1979).

^^tlv;^""*^

