

SUY904404

А. И. Климов, Е. А. Мелешко, Б. А. Никольский, В. И. Селиванов

Прецизионный спектрометр для экспериментов с мюонами

Москва 1978

ОРДЕНА ЛЕНИНА ИНСТИТУТ АТОМНОЙ ЭНЕРГИИ им. И.В.КУРЧАТОВА

А. И. Климов, Е. А. Мелешко, Б.А. Никольский, В.И. Селиванов

прецизиончый Спектрометр

ДЛЯ ЭКСПЕРИМЕНТОВ С МЮОНАМИ

Ключевые слова: спектрометр, сцинтилляционный детектор, схемы, временное разрешение, мезон.

Описан спектрометр со сцинтилляционными детекторами, предназначенный для работы на мезонном лучке синхроциклотрона ОИЯИ. В рабочих условиях со сцинтилляторами размерами 150 x 150 x 20 мм³ временное разрешение спектрометра – 320 пс, дифференциальная нелинейность при ширине канала 55 пс составляет <u>+1</u>%.

Оцениваются возможности применения спектрометра для измерения сильных магнитных полей на наблюдения двухчастотной премессии μ^+ -мезона. Временной спектрометр предназначен для измерения больших магнитных полей, которые могут возникать на *м*-мезонах в магнитных веществах, и для наблюдения двухчастотной прецессии мюония в сильных магнитных, полях [1].

Временной спектрометр состоит из системы сцинтилляционных счетчиков и электронной измерительной аппаратуры. Сцинтилляционные счетчики помещены внутри электромагнита, создающего поле величиной 0-8 кЭ, перпендикулярное пучку мюонов. Структурная схема всей установки приведена на рис. 1.

Рис. 1. Структурная схема экспериментальной установки: Ф – формирователь импульсов; ССА – схема совладений – антисовладений; ФСП – формирователь со следящим порогом; СКГ – схема "компенсации геометрии"; АПИ – аналоговый преобразователь интервалов; ПВК – преобразователь время – код; 1-У – сцинтилляционные детекторы; М – мищень

Поляризованные мюоны из ускорителя останавливаются в мишени М из исследуемого вещества. Остановки мюонов в мишени и вылет электронов $\mu - \ell$ -раслада регистрируются сцинтилляционными детекторами 1-У. Детекторы II-IУ вылолнены из полистирола с P -терфенилом и РОРОР, они имеют размеры 150 x 150 x 10 мм³. Детекторы 1 и У выполнены из сцинтилляционной пластмассы $\mathcal{N}E$ -110; размеры детектора 1 – 100 x 100 x 20 мм³, детектора У - 150 x 150 x 20 мм³. Детекторы II-IУ просматриваются с одной стороны фотоумножителями ФЭУ-36 через световоды из оргстекла длиной 600 мм. Детектор 1, определяющий время остановки мюона в мишени, просматривается с двух сторон фотоумножителями ХР-1021 с целью компенсации геометрического разброса (ФЭУ 1 и 2); длина световодов – 200 мм. Детектор У, определяющий время вылета электрона из мищени, вылолнен аналогично, длина световодов в нем – 600 мм.

Остановки мюонов в мишени М определяются логическим сигналом 2345 схемы совпадений – антисовладений (ССА), которая управляет двумя формирователями со следящим порогом (ФСП) [2]. Сигналы с ФСП подаются на схему "компенсации геометрии" (СКГ), выходной сигнал которой определяет время попадания мюона в мишень ("старт") независимо от места прохождения мюоном сцинтиллятора 1. Вылет электрона $\mu - \ell$ -распада из мишени определяется логическим сигналом 574 схемы ССА, которая управляет соответствующими ФСП счетчиков 6 и 7. Сигналы с выходов формирователей поступают на схему СКГ, выходной сигнал которой определяет время вылета электрона $\mu - \ell$ -распада – "стоп". Сигналы "старт" и "стоп" подаются на временной анализатор, состоящий из аналогового преобразователя коротких временных интервалов (АПИ) [3] с коэффициентом преобразования $\frac{T_{\mu}}{t_{\mu}}$ = 100, преобразователя время – код (ПВК)[4] с опорной частотой 200 МГц и/накопителя АИ-4096. При ширине канала 55 пс дифференциальная неиинейность анализатора на 80% временной шкалы ($T_{maxc} = 150$ нс) составляет ±1%.

Для точной временной привязки к импульсам детекторов излучений в ФСП используется способ следящего порога, при котором порог срабатывания формирователя для каждого импульса устанавливается индивидуально в соответствии с его амплитудой.

В отличие от других в используемой схеме формирователя влияние изменения загрузки на точность временной привязки значительно ослаблено за счет применения гальванических связей в тракте регулировки порога и в результате использования согласованной укорачивающей линии с токовым съемом сигнала в основном тракте. Формирозатель имеет регулируемое мертвое время и может работать в режиме внешнего управления. Измеренная с помощью генератора в диапазоне амплитуд входных сигналов от 0,5 до 5 В погрешность временной привязки к импульсу с фронтом 3 нс не превышает ±0,15 нс.

Отличительной особенностью временного кодировшика, используемого в анализаторе, является применение метода фазирования стоповых импульсов с импульсами опорного генератора. Реализация этого метода в ПВК с минимальной шириной канала 4 нс позволила

4

существенно снизить дифференциальную нелинейность типа "чет-нечет". Максимальное число каналов ПВК – 4096, дифференциальная нелинейность при частоте опорного генератора 200 МГц – <u>+0</u>,5%.

Рис. 2. Блок-схема установки для проверки работы ФЭУ от импульсов светодиодов: ГИ - генератор импульсов; Д светодиод; ЛЗ - линия задержки

Для предварительной оценки временных разбросов, вносимых фЭУ, использовались импульсные светодиоды (рис. 2). Сигналы с генератора импульсов через пассивный разветвитель поступали на вход "старт" АПИ и на светодиод Д, засвечивающий фотокатод фЭУ. Амплитуда электрического импульса на светодиод подбиралась такой, чтобы количество света с диода Д было приблизительно равно количеству света, попадающего

Рис. 3. Временное разрешение ФЭУ ХР-1021, полученное при использовании импульсных светодиопов (ширина канала 55 пс) на ФЭУ в рабочих условиях. Импульсы с ФЭУ подавались на формирователь, выходной сигнал с которого поступал на преобразователь АПИ в качестве сигнала "стоп".

Типичный вид полученного в этих условиях временного спектра представлен нарис.3. Как видно из рисунка, временное разрешение **2***T* при использовании ФЭУ типа XP-1021 с блоками ФСП составляет 0,24 нс. При существенном увеличении количества света (приблизительчо в 5 раз) **2***T* = 0,12-0,15 нс.

Для компенсации сременного разброса импульсов, вызванного большими размерами сцинтилляторов и неопределенностью места попадания детектируемой частицы в сцинтиллятор, были применены схемы "компенсации геометрии". В СКГ осуществляются привязка к середине временного интервала между фронтами импульсов фЭУ, "просматривающих" противоположные грани базовых сцинтилляторов. В СКГ временного спектрометра при изменении задержки одного из входных импульсов относительно второго на ±0,8 нс погрешность привязки, измерензая с помощью генератора, не превышала ±0,02 нс. В органических сцинтилляторах свет проходит 1 см примерно до 0,05 нс и ожидаемый временной разброс, вызванный размерами сцинтиллятора, составляет ±0,75 нс для сборки с большим сцинтиллятором (150 x 150 x 20 мм³) и ±0,5 нс для сборки с малым сцинтиллятором (100 x 100 x 20 мм³). Поэтому можно считать, что параметры схем СКГ в основном удовлетворяют требованиям эксперимента. Временное разрешение спектрометра, измеренное на пучке µ⁺-мезонов синхроциклотрона ОИЯИ (рис. 4), оказолось равным 320 пс.

Рис.4. Кривая эременного разрешения спектрометра, полученная в рабочих условиях (ширина канала 55 пс)

Кроме временных разбросов, связанных с неидеальностью компенсации изменения амплитуды импульсов в ФСП и места попадания частиц в СКГ, существенный вклад в увеличение ширины кривой временного разрешения вносит большая протяженность световодов

6

(до 600 мм), необходимых для вынесения ФЭУ из магнитного поля установки. Для сравнения в таблице приведены значения временного разрешения слектрометров, полученные другими авторами в сопоставимых условиях.

Работы	Расстояние между ФЭУ (мм); размеры сцинтиллятора счет- чика 1 (мм ³); количество и тип ФЭУ	Расстояние между ФЭУ (мм); размеры сцинтиллятора счет- чика II (мм ³); количество и тил ФЭУ	Разреше- ние 2°с, нс
[5]	235 35 x 35 x 10 2 XP-1020	360 ø 160, толш. 45 2 XP-1020	0,44
[6]	65 30 x 30 x 10 XP-1021	490 290 x 50 x 2,5 2 XP- 1020	0,28
[7]	900 100 x 100 x 40 2 XP-2020	580 100 x 100 x 40 2 XP-1020	0,28
Наст. работа	500 100 x 100 x 20 2 XP–1021	1350 150 x 150 x 20 2 XP-1021	0,32

Из таблицы видно, что примерно такие же значения временного разрешения получоны в работах [6, 7] при меньшей протяженности сцинтилляторов и световодов [6] и большей толщине сцинтилляторов [7].

Была измерена долговременная стабильность линии в рабочих условиях. Результаты измерений приведены на рис.5. Как видно из рисунка, смещение линии за 24 ч не превышает 110 лс.

Рис. 5. Кривая, характеризующая долговременную стабильность спектрометра (ширина канала 55 пс)

Созданный временной спектрометр предполагается использовать для наблюдения прецессии *м*-мезонов в тех случаях, когда частоты прецессии слишком велики и их невозможно наблюдать с помощью обычных слектрометров, имеющих временное разрешение горядка 1 ис (см. [2]). Оченим возможности слектрометра с этой точки зрения.

Предположим, что кривая временного разрешения спектрометра имеет гауссовский вид с полушириной С на полувысоте. Тогда при наблюдении прецессии с периодом Т асимметрия прецессии a_{τ} уменьшается по сравнению с величиной асимметрии a_{o} при большом периоде прецессии по закону

$$a_{T/a_{o}} = exp\left(-\frac{\pi\tau}{\sqrt{\ln 2}T}\right)^{2}.$$
(1)

Используя формулу (1), получим, что допустимое экспериментальное уменьшение асимметрии в два раза наблюдается, когда

$$T = \frac{\pi \tau}{\ell_n 2} \quad . \tag{2}$$

Отсюда следует, что при временном разрешении \mathcal{T} = 160 пс можно наблюдать периоды прецессии μ -мезона $J_{\mu} > 0,7$ нс. Период прецессии μ -мезона зависит от величины матнитного поля на нем:

$$T_{\mu} \simeq \frac{\gamma O}{M}$$
 (2)

Здесь T_{μ} выражено в нс, а \mathcal{M} – в кЭ. Из формулы (3) следует, что с помощью созданного временного спектрометра можно регистрирозать магнитные поля на \mathcal{J}^{μ} -мезоне в веществе порядка 100 кЭ. В настоящее время на \mathcal{J}^{+} -мезоне каблюдены з ферромагнитном диспрозии магнитные поля $\mathcal{M} \sim 13$ кЭ [8]. Еще большие магнитные поля могут возникать на \mathcal{J}^{+} -мезоне в других редкоземельных ферромагнетиках. Заметим, что прецессионные кривые, соответствующие магнитным поля м $\mathcal{H} \sim 15$ кЭ, уже невозможно наблюдать на обычном спектрометре с временным разрешением $\mathcal{C} \sim 1$ нс. Разработанный временной спектрометр предполагается также использовать для измерения магнитных полей на \mathcal{J}^{-} -мезоне в ферромагнетиках ($\mathcal{H} \sim 100$ кЭ).

Рассмотрим возможности спектрометра при наблюдении интересного физического явления – двухчастотной прецессии μ^+ -мезона в сильном магнитном поле. Зависимость поляризации μ^+ -мезона от времени P(t) описывается в этом случае [1] формулой

$$P(t) = \cos \omega_{\mu} t \cdot \cos \frac{\omega_{o}}{2} t , \qquad (4)$$

где ω_{μ} - ларморовская частота прецессии μ^+ -мезона во внешнем поле \mathcal{M} ; $\omega_{\mu} < \omega_{o}$ - частота сверхтонкого расцепления атома мюония. В вакууме ω_{o} =2,8.10¹⁰ 1/c и период T_o , соответствующий $\omega_o/2$, равен $T_o = 0.44$ нс. При такой величине T_o уменьшение амплитудь прецессии слишком велико [в ~ 8 раз, как это следует из (1)], чтобы явление можно было наблюдать экспериментально. Явление двухчастотной прецессии с помощью созданного спектрометра можно наблюдать в германии, где $T_o^{Ge} \simeq 0.7$ нс [9], и, возможно, в других полупроводниках.

Авторы благодарны В. А. Суетину за помощь при изготовлении встречных сцинтилляционных детекторов.

Литература

- Гуревич И.И., Никольский Б.А., Селиванов В.И. "Письма в ЖЭТФ", 1972, т. 15, с. 640.
- 2. Мелешко Е.А. и др. Препринт ИАЭ-2320, М., 1973.
- 3. Климов А.И., Мелешко Е.А. ПТЭ, 1976, т. 3, с. 100.
- 4. Климов А.И., Мелешко Е.А., Морозов А.Г. ПТЭ, 1975, т. 3, с. 95.
- 5. Лапшин В.Г. и др. Препринт ОИЯИ 13-3549, Дубна, 1967.
- 6. Тихвитский С.В. и др. Препринт ОИЯИ 13-8152, Дубна, 1974.
- 7. Бунятов С.А. и др. Препринт ОИЯИ 13-10156, Дубна, 1976.
- 8. Hopmann W. e.a. Phys. Lett., 1978, v. 65A, p. 343.
- 9. Гуревич И.И. и др. ЖЭТФ, 1971, т. 60, с. 471.

Редактор Л. А. Кузьмина

Технический редактор Е.Д. Маркова Корректор Н.Н. Черемных

T-12983. 10.08.78 г. Формат 60х90/8. Уч.-изд. л. 0,6 Тираж 121 экз. Заказ 947. Цена 6 кол. ИАЭ

6 коп.

• . . .