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Abstract

 Pmedictions are derived for the integral
/a" f ha)exp(ﬁi;’f )dg witn k¢ &)  veing the cantribu-
tion of states containing f ¢ quark pair to tLe ratio £
;n;asmd in e*e -annihilation. The t“eoretical results refer
%o the region of the parameter /l ' /Ia 2 -.3.? Gev
where the integral ias saturated by cont ~idbution of Y and ¥
resonances. An agreement of theoretical prediotiun with ex-
perimentel data is fouud for the mass of / ~quark m =
= 4,65 20,05 Geve In the region of the 4 varisble con-
sidered the effeots of short distance glucn excharge enhance
the free quark result by a /I-dopcnd.nt fector 2 - 8.

’

":‘aer.eforo the agreexent with experimontal data is by no means

trivigl and seems to be a cmj.nc:l.ng‘:l.llutmtion of reality
of gluon exchange at short distances.
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l.Introduction

It is quite evident by now taat Y resonances observed
both in hadroprodustion ® snd in e*e -amnihilation 2 are -
wave bound states of qu;.rkoninn made from new helﬁ quarks

( f e Thus the .r family is one more copy of a quarkonium
picture which hag_booono wore or leas familiar from atudy of
cbarmoniun lsvels., The difference betwaen these twc syntems
is that { quark is roughly three times heavier than the
charmed one and that its electric charge is Qg =1/3,

On the other hand . quite predictive. approech to descrip-
tion of chmonium and charmed r rticles has been developed
3,4 relying on heaviness of the charmed gquark and exploiting
the very first principles of QCD. In particular .'ithin this
approach the mass of (¢ -qua~k was estimated from compari-
son of sum rules for ote” —» charm with experimental data.
This maess parameter is essentially the only one required to
make predictions about'cham photo- and electroprodu#tion
total crosas sections 5 .

The main purpose of this paper is to extend the approack
developed in Refs. 3,4 to d_scription of the 7Y resonances.
For this we pursue the general pattern of those papers and
consider vacuum polarization by vector (electromagnetic)

current of ¢ quarks:
(390 -8 £G47= o
= i/J'x e¥ ¢ol T/ﬁ},/,f by, o)l Evorflo>

Tor ;z real and below / / threshold

¢2= Ime- £ //")o/ (2




the amplitude .P /;2} is determined by diastances ¥< &l}—f
so that “t can be calculated by means of shcort-distance QCD
provided that 1 is sufficiently large.

On the other hand via a dispersion relation one can ex-
press [P /;’} below threshold in terms of its absorptive
part in the physical region moasured by e"e'-annihi}ation
cross section into physical states containiug / / quark

pa.ir:_
g2) = iz fif-‘—‘) 4
| i r2rg’ ) sl5-g7 )

where ,(( /s) is / -quark contribution to the ratio A
measured in e*e"-annihilation and the integral runa over all
values of S <for which Z(/S} # 0. In particular the lowest
state contributing to the integral in eq. (3) is the 7 -re-
sonance. In case the amplitude f/z‘} is calculated theore-
tically eq. (3) can be considered as a sum rule for the expe-
rimentally measurable quantity ,(?Kf/ .

Eq. (3) can be studied for arbitrary values of 72 of
the form (2) provided that é is large enough to asure
short-distance QCD calculation of //i"'/ « However in the
rest of this paper we shall be interested in considering re-
lations like eq. (3) for valuee of i 2 a8 close to the
phyeical region as possible, since in this case f and I"
dominate the r.h.s. of eq. (3) and one can make predictions
which can be checked without knowledge of detailed structure
of /é’, (s) above the Y  resonance. Therefore we must
ingpect what low values of .{ one can reach in eq. (2) not
to spoil the applicability of short-distance QCD with its

asymptetic freedo.,




It aay seam to the firet sight that the reglon of ssymp-
tovie freedom is 1}:11:«1 by the growth of the effective coup~
uing Ly /.!.é/' ¢ It turne out however that before the coup-
ling becomes large other effects come into play. These ef-
fects are the so-called power terms which arise (for heavy
quarks) from interaction of quarks with nonperturbative fluc-
tuations of glucnic field (instantons 6 etc.) present in
the true vacuum of QCD. In.the chearmonium theory these terms
wore first introduced in Ref.? and it was also found 8 that
for vacuum polarisation in the light quark sector the power
terms rather then the growth of oy  first violate the
asymptotic fresdom calculations at relatively iong distances.

Por heavy quarks the leading power correction (e.g. to
the amplitude ,P/;} ) which shows up first when £° goes
down is expressed in terms of the vacuum mean velue of the
square of gluonic field temsor <ofJoly G}ﬁ; 4 ? (07,

This value was estimated 7 from charmonium sum rules

(o/Ji'a(; 6/':,' 6/':,'ID> e o 12 Geylf )

with a possible (éo-nb)s uncartainty. Implications of nonper-
turbative vaocuum fluctuations of gluonic fisld charscuerized
by the mean value (4) were analized in Ref.9 where it was
shown in particular that the relative magnitude of the cor-
rection to P (z‘) due to the mean value (4) is propor-
tional (tor £ << m ) to the. qmtity
[0 —

o <A 62 65 10> 57
(M : mass of the (()quu'k). In sec. 4 we shall quantify
thia statement and find that for the case of #c I'-family

this correction is small encugh if l Z 1 Gev. Note that




for such i the effective coupling is still small~”
aﬁ-ﬂé}«‘,’ Aellbev) o= 0,21 | (In thie paper the normali-
zation -—2+7'8 g adopted Ay (2m, = 2.5 6ev )= 0,2 .
Our results are rather sensitive to the value of ofv and in
principle enable to fit it., However we find that the adopted
value fits quite well. We shell return to discuseion of thia
matter in sec. 5. Itiilso worth mentioning that the adopted
value is essentially lower than that estimated from rits 10
to leptoproduction date. But it is the above normalization
of a’; which provides aun agreement with experimental
data and gelfccnaiatency of various predictions of the char-
monium theory). ’

So, ws can apply short diastance QCP when calculating
£ (- £€2) aomto £ =~ 1 Ger. Pror a rough
estimate M =~ //,-/2 = 4.7 Gev it is clear that such
values of the momentunm ,é sre nonrelativisiic for f
quarks: 42 /In" <« 7 . In the nonrelativistic region
however there appes. threshold singularities tho leading
of which are given by graphs with parallel exchenge of
"Coulomb"” gluons (see Fig. l1l). rhese graphs provide a series
in powers of /2;&/.'); / y4 rather than in powers
of d,/Z,é ) and in the regic. of our intersst we must
sun up all such terms. This summation can be performed 449
in terms of the Schr¥dinger equation ih the potential = g‘-:"—l
In sec. 2 we skall follow the method of Green's function J
which «oables to sum up all ( o m [k J7* singularities
in the vacuum polarization emplitude.

In sec. 3 we shall perform the so~called [—tranatom 3
of the sum rule (3). The L ~transfora is defined as follows




Fipe) = Ly Plom= v¢) =
s 4 [/2/’3 / / f("”a 4}‘;) (5)

Foon , 00, (n- -7)/
s py

48 a Tresult of this trensformation the (¥ - j‘J-, waight
fagtor in the integral in eq. (3) transforms into an expo-
ncntigl welght factor ‘

Fﬁa} = (1252 p;/,z} ’ ,:’{/s) ez//’_':-’”-z-}’/# (6)
dnd for smsll enough /.( the contridbution of higher astates
to this integral is sharply ocut 2%,

One can note also that in definition of the [ -trans-
form formally £ is going to infinity, In fast however the
qumtity /’/ ) is determined by behaviour of F/¥ar’ V€%
at 24 ~ /I pince simultaneoualy with increasing

A% one must iifferentiate the amplitude 2 n= 44 /.
times. Therefors the region Z 2 1 Geov corresponds to

/( 2 2 Gev and all the above remarks concerning the
relevance of asymptotic freedom in terms of .é hold also
in terms of (more pr cigsly /4/2 ). The quantity

/"//«a) will be estimated in sec. 3.

In cec. 4 woe shall discuss corrections te the results
of secticns 2 and 3 and in sec. 5 a comparieon of theoreti-
cal predictions with data on I' and 2‘ ’ formation in

e*e -annihilation will be given for /( 2 2.~ 3,7 Gav. (The
values of /k under consideration are bound from above

by relativistio corrections %o our essentially nonrelativis-
tic approach. The relative magnitude of these corrections




is /t’j/'fﬂ‘ ). As & result we estimats the mass of the £
quark ” = 4,65 £ 0,05 Gev and make some judgements on

the value of the coupling comstant ofy .

2. Caiculation of the Vacuum Polarization in the Near
Thresohold Rexion

In this section a ocalculation of P /¥ar®- vlr)

will be given summing up all ( Ay M/l )  terms for
.t,’z <</#% and neglecting all corrsctions proporti-nal to
A3 . he caloulation 1s hased on a relation ? bet-

ween the vacuum polarizstion amplitud. and the nonrelati~

vistic Green's function of the .elative motion .1.n quarko~

nium é’{xjj, £) . The reliation has the .orm

Pl WY = S G CEF ),
i=o0 2 .
J° (k2 << e 4
which is valid up to an unimportant (though infinite) addi-
tive constant indep.ndent of é ¢ (In Ref. ¢ this cone-
tsnt was sliminated by differentiating eq. (7) over é e

For the Green's function & (., i , E) in Ref. 9

was ovtained the follo:ing expansion
&,
C{x' £ =6, (X, ,f/—_____&_#-—-
- = [4 g

o ( J-‘z J’z' (Eé") 6,,,.[1’,5-’,63) 6(3) 2:z't) 6(0) {E’J'E)"
J

+ ...
which accounts both for perturbative contribution (Fig.l)
(the first term on the r.h.s.) and for the leading nomper-

turbative power correction due to the vacuum msan value (2)




(the seoond term on the r.h.s.}. Here 62,, md By, K
denote the “Coulomb™ Green's funotioms for coler singlet

and color octet. states ot. ,{ pair regpectively. They obiy

the equations

~ 5052/ + Ve

with the condition of regularity at infinity and the poten~
tials

V(O) (z)=-

The thres dots in ege (8) refer *o contribution of vacuum

(171) - 5)6'{0 "(27,:) Sa-j)

»

& =+ 2 %
o Ve 5 F (20)

?

Gl

mean values of gluonic eperators of dimension d>9,

¥e start with comsidering the perturbative contribution
to the r.h.s. of eq. (7) which is described according to
aq. (8) by the Green's function C(g) (?,j, "ZV‘“) .
Yor ( quarke this contribution dominates Llon® 7£ Y.
for £2 1 Gev. Keeping in mind that in eq. (7) one needs
only the X»° , /-‘r © limit of the Green's functionm
we can take ¥ = O from the very beginning, and denote
40) (X, 0, —la/ﬁ'} = ‘(" £ since for ; o
the Green's funotion depends only on % = A/ . Then from
eqe. (9) and (10) one obtains the equation ( 2 # 0)

f D 22 _ f4 , £
Tz P2 ”aaz Tz v ZT/"/’—'» £)=0 Q)

Its solution rogula.r at g —» o2 is given by
O AN e 4 Y- e 5, 2b4)

where 11’(4,4, 2) is the standard notation for the
contluent hypergeometric function which has no expanential




growth at 2 * vo (8ee e.g. 11). The normalisation. con-
ztant C in eq; (12) is determined by the S ~function

singularity in the original equation (9), whiuh m’}ioa that
when ‘z + 0 +the leading singularity of (- (t, &' must

have the form
x¢
(x, k?) &=~ - (13)
¢ rro Yre -
(it is this £ -independent singularity that gives rise to
the intinite additive constant in eg. {7)). The expansion of

the function 'Yf for swall 4% is given vy T

ols - ":3"'_' -
,/V l//" 2'!3'(,2_ ’ 2.&?} /"/ 2»(0(«} [“‘("{k
- bushe - Yla- f:-‘;-‘z-’&} +P1)+ }%/2)+ 0/:4:}£

(12)

‘ fé/?}; J£ /%'z/ /JE— . From this one readily

finds that the condition (13) is setiafied if the normali-
zation in eq. (12) is chosen of the form

= - Ml sz (15)
€ =- M (o2mt)

®ith this value of ( and agsin using the expansion (14)
one readily calculates the limi~ involved in eq. (7) and

finally finds .
g 4 /[., Swd, £4 +
P (7 2 37
( jl" < kel fikl 16

+jfpa$. #lr- 23‘%{.}]4 const

The terms in this expression have sisple physical in-




terpretation. The firat cne im the curly orackei is the

free theory result,ths second ona is the rusult of rust'

iteration of the "Coulomb™ intaeraction §; , &nd the thiri
represents the sontridution of Coulomb ,S' -wave poles at
= Smd/e , Rl 2, ... It can be also noted
that eq. (16) cc.°responds to QED regulfa 12 sbtained in a
slightly different manner than ours. . '

Pwo more remarks are ‘n order, First is that in presen-
ting comsideration of this sect’on we did mox specify the
normalization point for the coupling ofy . One can 1eadily
convince oneself that when calculating the Green's function

from eq. (9) for /X[, Ci /< K7 by iterations of
the interaction V,g) the lattsr is integrated over ¢
~2k2

with the weight factsr e . Therefore the distances rele—

vgnt are % s{zé)” and therefore in eq. (16) ones saould
take 4344212} . |

The second remark concerning eq. (16) ias that in QCD
this expression is relev-rant only ia the region of asymptotic
freedom. For the case of { -quarks ( £ 2 1 Gev) only
tails of Coulombd polea (given by )‘ [/ - g—,“-’i{! /) are seen in.
this regicn. Por ?oywer values of ,é powar termas core in-
to play and destroy the validity of eq. (16). Por more massive
quarks however, e.g. for quarks with mass m 2 15 Gev
the asymptotic freedom extende to the region #£ < 341' 4{4'(’2!/
80 that lowest dound states of such superheavy quarkoninm
must be essentiully "Coulomb®-like. In this case eq. (16}
gives their doninant “"Coulomb™ parameters (the dinding ener-
&Y, the wiath [,, ) while the mecond tern on the r.h.s.
of eq. (8) describes corrsctions 7due %to v.e.v. ( 4) to thaese

parameters. 4 detailed analisys of properties of superheavy




cuarkonium within this approsch will be given eisewnhere. For
the case of our interest ( i quarks) thne second term on the
r.h.s. of eq. (8) only imposes a bound in £ wvmapplicebility
of eq. (16) and we postpone a discussion of this bound till

sec. 4.

3. é ~transform of the Vacuum Polarizat.on Amplitude_

In this section we calculate the [ ~tranaform of the
amplitude f/f"l”z- #;é‘/ given by eq. (16) and also
here will lLe discussed a connection of the [ -transforn
with the moments of e*e —annihilation cross secsiom *%+7 |

The [ -operator is defiped in eq. {15,

/= fim (A
A £S5 00, Rv00 (fl-/}/ U o2

£n = u¥y
It bhas the foilowing siaple properties

Af' £7 = //'/’/(/”)Pﬂ ’ °19)

Using these one finds from eg. (16)

l Plw-) = - 2= [2
+4. e 10 458)]

& _ 2mdd, 7
< i (100§ e AR et ]

/' S
/”) (19)

A\

10




%o calculate / -tranaform of the function f[!- é!i

ane can use the reproaentatien
/d(/f‘ =-c Z[A‘ g-zu-&7 (20

{ € 1is the Bermouilli constant) and find

-1 //A'}
G5/ ‘FIF /m/' ,.2: )

~

whare

4 = w} {22)

; 3u
4

(the term with pP=0 in eq. (21) vanishes).
The summation in eq. (21) can be performed using
' Laplace traunsform to obtain the result

Z SIH/IE)]= L 4 (E)%e g [1+eefpprer]

where esf(.\'}- = fe'f ‘/f « Keeping tncl; of
all terms ons obtaina tro: eqs. (19), (20) and (21)

Fipe) 2 4y Pltw- 929 = Lo P() 2

and

éqs VE /JZ/)}!-# ort +4'/i;§ ( ’é)zé "’;;pu,z_lj](au)

The plot of the function f/f} 1s given in Fig. 2.
Let us digouss now a relation between the [ -trans-

form of the vacuum polarisation amplitude and the moments
of the e*e -annihil :on o ‘as section uced in Refs. 3,4,7.

In those papers wer 3onsi red theoretical predictions for

1t

o




the moments

7 ().
o= g (B2 e

ey
o

where Mf is the mass of neavy quark of a given flavour
f and tef ) is the f ~flaveur contribution to
the ratio ,@ (more specifically C -quarks ¥ere consi-

dared).
Consider now the r.h.s. of sq. (25) for »2 = y,.,z//'“a
and % e $%* {(i.e. /2> 7 . In this case one can
Ve

write

(Y D"/8 7 < m / nr?
,0/’5’5—;1—‘-) (1+ Om-7)

]

_7.
o
Comparing this with eq. (6) one sees that the quantity FZQ‘)
tor A= ¥w¥ << ¥m® coincides up to a mormalization
fact{.ar with the asymptotic expression for /2«4,,' when

22 > 7 « It can be also noted that in the sense of this
relation between Fluy) emd NAy four first terma in
expansion of eq. {24) in powers of /4 correspond ©o the
results of Ref. 4 (see eqs. (7.11) - (7.13) of Ref. 4) wmihile
the rest terms have not been calculated there.

4, Corrections %o Egs. (16) and gg:;

- In this section soms corrections to egs (16) and (23)
will be discussed. As a result these expressions will be
slightly aodified before confrouting with sxperimental data,
and also the region of spplicability of our resuits will be

clarified.

12




3us. $16) and (23) give the ~esult of sumeation of
{ g l Jilﬂ/éjb . terms in the vactum polarintio# amplitude
when £°%<Mm? . It is interesting to note that cae cen
readily find also ell ths terms of order d’m) ( “ff/&/"‘/é} ”
According to Schwinger i3 - these terms arise from nonsinguiar
in. ;é when ,[ =20 part of the electromagnetic form-
zactor of & ~quark calculated to the first order in oy
(see Fig. 3). Adgpting the QED resuit 3 to the case of Q0D
one finds that thies effect results in the overall factor

/‘j—?'/.;‘:“:fﬁ"}/ . {26)

which renormalizes the expression octained by using Scard-
iinger equation. Rote also that thie factor comes from dis-
tances 2 ~ m 7. This factor is quite familiar to those
who followed the literature on J/i /’ width into e*a” 1%,

Ir temms of our consideration the factor (26) amrst be imtro-
duced iato the r.h.s. of eq. (7).

48 to the oorrecti;:ns oomning fr-m sxchange of trans-
versal (ac Coulomd") gluons and from the thrze gluon ver—
tices these are propertional to either /,é/m}‘ or 642
ﬂﬂ}zd; « For the vaiues of ,é considered these correc-
zions seea to be unimportant.

Thus acoounting for the factor (26) one finds from eq.

23)

Aped = 2L (1- Lo tm)) P 22
= 12 em )

Tis is in fact the expreasion whirch will be compared with

axperimental data in the region /a = 2 = 5,7 Gev. For

larger 4 relativistic effecis bDecome essential, while

s

13




for /tl X 2 Gev power teras rapidly grow up. Now we
proceed to a discussion of the latter to argue that for

/( > 2 Gev they can be neglected.
The leading power correction to the vacuum polarization

is given by the second term on the r.h.s. of eq. (8). In
case ,é/ m >> oy (but still .é"’/ﬂ‘ <<{ ) so that
/2 € 1 one can neglect to a first approximation the Coulomb

interaction and write

é {x,cy -£S) ‘;”/l —é%&/& (28)
(2= /x—;//

Fcr this case the result 9 is

P/t U — - (o/rals@av‘}w"”m
Pl - FM (+ 792 /

and
3 _ £, a'/o) 5_.1
/'//;(z/= 3'5%47;: (7 £ corwels €p C
(A<t).
' l'/:r arb{trary /5 the function £ J//“'} must be of

the tom

"7/"') 3213¥m (- % 31' olv)) [ 96(‘) - (30)
- £ Cof¥ds 6ps uslo> X () ],

where tno function X//G ) can in principls be founc

by integrating well known Coulomb functions in eq. (8).
However this involves & calculation of rather complicated
convolutions of oconfluent hypergeometric functions. S0 far
I failed to find X {4 ) i a closed form. The first
nontrivial term in the expansion of X 46) can bs odtained
by comsidering the interaction 1/10, 2) in eqs. (9) pertur-
batively. The result is

14




.X/A)‘: I+ L:;@ + ﬁ[,ge/

3y considering rhe singularities of the %erms an Whe r.l.s.
s

of eq. (8) in the K zophne one can alsc find that apart

2rom preexponentisl factors é(,'a} and X /,4 } develovs
sne same expcaertial asymptotic “ehavior when ’pf - o

B3> o X(p) o e”

Surely, tne limit .,6 - > ras no poysical sense since
Zor /l{ - O all powsr terms are important dot cols the
leading one. But as a mathematical poblem the asymptotic

behavior of é(ﬂ) and X /s / ca . be considersd). Thus,
no special reasons are seen for which the function X/j)
san be enhanced with respsct to f/’l ) at least for mo-
ierate values of A < 1. (in fact we neea J < G,7).
Therefore aliowing for a possible numerical factor between
(/ﬁ) and 13/,5/ we restrict ourselives to the values

P> u ?or wnich the quantity o/ Aol 6,«« i}w 45">
i0es 1ot exceed . %, which correspond o A 2 Z Gev.
In what follows the power correcticn will bg completely neg-

~ected for & > 2 Gev.

3. Comparison with Bxperimental Data and Concluiing Eemarks

Summarising the preceeding discussion and usieg eq.{27)
we conclude that for A& = 2 = 3,7 Gev thiare 13 the sum rule

for hidden {Y -flavour formation in e*e _annihilation

%




'2fﬂ((s) exp [ﬂr S )Ms = T
T )
{27‘:(?! F{fz} e?( Z/'?&/- .
- 2
= Elf{/—{-t/—jgg"/gn ("3%‘(3-(’"}} ffﬁ), (@(:-fﬁ)_

mpigs sum ruls st be valid up to a (10-15)% accuracy for

the above mentioned values of 4« . (In eq. (31) both’ bands
of eq. ‘6) are multiplied by exp. [an - ‘ﬂ*‘)//‘ ] 80
that besides the running parameter /( the first oxpregs:lon
in eg. (31) contains no thecrstical quantities.)

" In Fig. 4 is given a comparison of eq. (31) with expe-
rinental data on 2 and 2/ formation in e*e " annibilation.
The oxperimental inputs 2 are My = 2,46 Gev, Myt =
= 10,015 Gev, f’( Y = eo%e™) = 1,2 Kev, [ Y ete™) =
= 0,33 Kev. (We recall that a narrow resonance comtribution
to R(S) is given by

lus (s)= %— Hes [{hes - ee”) S{:- ”;e"))

¥ te that camtribution of 2 to the experimental integral
in eq. (31) is at moct 12% (to:.:_ /l = 3,7 Gev). The con-
tribution of still hig :exr f 0) states is completely neg-
ligible due to exponential cnto.f in the integral. The ex-
perimental uncertainties result in that the "experimental"™
curve in Fig. 4 (beavy line) can be multiplated as a whols
by a factor (1+0,2). |
The theoretical curves sre sensitive both in normalizati-

on and in shape to values of Ag and /. . In cass one fixes

Ag(2,5 Gev) = 0,2 as it has been done in charmonium theory
35,7 then the beat £it for the mass of { quark is

16




. /M = 4,84 Gov (the curve 4 in Fig. 4). By comsidering

theoretical curves with 2”21 cloes to this value one can

convince onaself that a mass paramatar out of the intervel
M = 8,6510,05 Gev oan mot fit tle experimental curve

even allowing fbr theoretical and experimental uncertainties.

We illustrate t! "5 by drawing th. curve ( corresponding

to M = 4,60 Gov, |

If one also allows tc vary a’; , then a somewhat
better f£it toc experimental date is found in the region
/( 2 2,3 Gev (where theoxotical uncertainties seem to be
ninimal) if d’(2.5 Gev) = 0,22 and 7 = 8,67 Gev (the
curve ¢ 1in Pig. 4). Bowever with our sccuracy we cannot
gssert for sure that this value of oy ie much more pre-
ferable than  of; (2,5 Gev) = 0,2.

It can be also noted that for /‘l < 2 Gev the theore-
tical curves are much more ateeper than the experimental
one (this trend is already seen from Fig. 4 at /((< 2¢3Gav).
According to eq. (30) this deviation of theoretical curves
mpust be corracted by power terms. Therefore qualitatively the
behaviour of theoretical and experimental curves in this
reglon is in agrecaent with the picture described ab.ve.
However a detailed quratitative description in this region
Tequires a calculation of the function X (f) .

Anyhow the agreement of theoretical prediction with
experimental data on T and r ! resonances sesms to be
by no means trivial and can be considered as ;:ne of most
convincing illustrations of reality of giuonic ex:hange at
sbory disvanoes. Indeed the gluonic exchangs brings to eq.
(31) the fastor (7~ :,‘%d’g/m}) ?/ﬂ} which for

17




the values of } considered ( /4:. 0¢3 = 0,7) variea
roughly from 2 to 8. One can readily verify that the fres
quark prediction (i.e. for oly = 0) gives noiaing like

the exparimeuatal curve with any value of the I quark
mass. (Ses for example the ocurve d in PFig.4 which corres-
ponds tc free quarks with M2 = 4,65 Gev).

Probably an improvemant o2 experimcatal dats and theo-
retical predictions (a calculation of the function .4 4‘)
and anh account of relativistic correct’ons) will make it
Possible to fit from the sum rules like (31) mot only the

{ quark mass but also precise valuwes ¢ at: and of
vacuum expectation value (4). '

I am thankful to V.A.Novikov and L.B.Okun for useful

discussions and comments.
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Fg.l. Diagrampe with "Coulomb™ gluon exchange which give
the leading threshold singularities. The dotted lines

correspond to “Cou? ogb" gluons.

)

1 0.5 1

Pig. 2. The plot of the funotion é(?).

& ¢

Fig. 3. The graphs for forafactor correction to vacuum pola-
rization amplitude.
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f-a“,‘w exp('%}i‘)c’ﬁ

2

-£
Fig. 4. The qmtity/u—zj,e({s) exp /%?)Js .
The heavy line is calculated from experimental

- ’
nasses and ete” widths of 7' amd 27 . (Experi-
rantel errors correspond to that this curve can be

aultiplied as a whole by a factor (140,2)). The
curves & f and ¢ - are theozjetical predictions
for various values of ofg and 2

a) ol (2,5 Gev) = 0,2. /M= 4,64 Gev,

b)  0ly(2,5 Gev) = 0,2, M= 4,60 Gev,

¢) dg(2,5 Gev} = 0,22, /= 4,67 Gev,

The curve d is the free quark prediction for

m = 4,65 Gev,
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