P ISEWESIV

At & oAt # g o T Y

N wﬂm

© AGUST 1679 PPPL-15T3

uc-20g

THE UNIVERSAL MODE REVISITED
| BY‘ |

P. K. KAW AND P, N. GUZDAR

PLASMA PHYSICS
LABORATORY




3 =
: 5 o = =1
B g 5 s
. = . B
s &
6 5 - ; O
= (o)
o o a c )
P o
a; " a
] o=
= . ' = -
A |
n P ° \) >
= B o
)
& # £ ki i
“ o N
N = A -
E = N E
Q P i ’
L ! o>
“ b v ’
o 5
@ s} . ¢ -
5 e N E =

L2

l :q’ort m pmc"fod as an-account’ - -
- sponsored by the United States Gov-
, arament. Neithes United States nor the -
S tai States ma‘luarch snd Development - .
I < mmuum nor dny of thair smployeas, ‘ =
R S - of their contractors, subcotitractors,
, S - or smplovees, makes any nrranty, express
O of upxm ‘or assumes - any lega’ -liabi 1ity or
. 'responsibility for the accuracy, .completeness
' ' or usefulness of any information, apparatus,
. product or process disclosed; or rc;/tucnts
v ‘#that its use would not infrinqc privatoly
° owned r:l.qhtt.

B Print.d in the Unii:od sutll of Marica. ) S T

& AN . o

CEL L e ‘ Available from
Cer LTwa T Nat:l.onal 'rochni.cal Inf.omtion Su:vica
R PR O 5 5285 Port Ibyal Road . .
B I R . Sptiagﬁold. Virginia 22151
Price: Printed c::py 3 o H.tcrotiche 3. 00

~Selling Price- .- -

’ ‘.oo
5 45 .




The Universal Made Revisited

P. K. KaQ\and P. N. Guzdar

Plasma Physics Laboratary, Princeton University

Princeton, New Jersey 08544

ABSTRACT

Qur present understanding of the
theory of universal eigenmodes 1in a
collisionless plasma slak with magnetic

shear, is reviewed and critically examined.
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The thenry of universal drift waves in a placn slab  with

magnetic shear has recently attracted rencwed attention.l—5
Numerical and analytical work has led tn the =surprising discovery
that drift wave elgenmodes in a collisionless plasma with
Maxwellian electrons are always stable.?r3 Similar conclusions have

4 Numerical work nn the

been obtained for c¢onllisinnal plasmas.
current-driven problem has shawn that a drifted Maxwellian electron
distribution function can drive the collisinnless drift eigenmode
unstable, provided the parallel electron current 1is sufficiently
strnng.5

In this note we reiterate that for monotonic electron
distributinns, the stability of the universal eigenmode in a plasma
slab with magnetic shear 1is strictly tied to the assumed even

symmetry [£(~v fo(v||;] of the function, Departures from

1k
even symmetry may lead to instability, irrespective of whether the
distribution carries any net current nor not. This reflects the
fact that in the eigenmode problem there is a delicate competition
cetween the growth effects due to locally resonant elechtrons and
the shear damping effects due to the global mode structure and that
this balance is determined not by the first velocity moment of £,
but by a more complex velocity weighting. It appears then, that a
detailed knowledge of the shape of fo(vll) may be crucial in
determining stability of the universal eigenmode, Parenthetically,
we note here that it is guite likely that the electron distribution
function in a tokamak 1is far from a simple drifting Maxwellian

{cf., runaway cffects due to E ,6 interesting effects due to heat
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flow along stochastic field lines’ etc., and some experimental
evidence in this directiona).

We consider the simplest model nf drift waves in a sheared
magnetic field. The equilibrium magnetic field 1is given by
B = B,,(;,-Z + x/Lg ;y), the ions are treated as a c¢old species and
the electrons are described by the drift kinetic equation. The ion

density fluctuation (obtained from equations of continuity and

motion for ions) is given by
x:l. W g k,c
w000 ¢

where p% = T/ngi, wy = cT/eBLn, cg = T/M, we have assumed

exp(ikyy - iwt) dependence and k, 6 (x) = kyx/Ls. ice first term in

I
Bg. {1y comes from divergence of ion polarization drift, the
second term comes from E x B motion of ions along the density
gradient, and the last term comes from the parallel ion motion.

The electron response, obtained from the drift kinetic equation, is

given by

ng Wy [(w*/m)v“ £+ (T/m) (Bfo/Bv”)] eo
T = dv” f = ot dv“ o
o (w/k ) =V,
(2)
Using guasineutrality, we get the mode equation
(L/w)v £ + (1/2) (3f /3v ) 2
2 it "o o i X _
V¢+fdv” v“-xe/x ¢+;—2~»¢—0 (3)
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where ¥ is normalized to Pgr » Lo ik, 4 to T/e, v to  (29/m) /2,
Xe = (o/wa) (n/2M) 1/ 2(Lo/Ly)  and xg = (w/ww) blg/Ly) . Together with
the boundary conditions at + “ (nutward qé{ig waves for growing
modes), this equation defines the eigenvalue problei. For a
Maxwellian fo' it reduces to the standard form.!

we first demonstrate that the stability of drift wave
T
Following a procedure due to Antonsen,3 we introduce a variable

eigenmodes is only determined by the even symmetry o! f (v

by the equation x = -iwn. Changing from x to n in (3), multiplying
by W, integrating from -~ to +», separating the real and imaginary
parts and manipulating them, we get the eguatinn

1
Sl
o]

(VII/Z)(BEO/BVIN

2 2
1%L (12 227 - qag? f
aql + (k" + XZ)H lo] [4] av, Vi + (x2/w2n2]J

s ] ¢

(x /wm) (3 _/3v, ) + (2v, £ /0)]

i fdnid)lz dv =0
2y 1 A PR

where o =0+ iy, and it 1is to be noted that w/xe and qus are

independent of w.

If £f,(v = fo(ﬂv“), the last term vanishes. Furthermore,

Tk
for monotonically decreasing f°(vll)' all the other terms are

positive definite and cannot add up to zero. This is the Antonsen

proof of eigenmode stability.3 If f (v, ) # fo("V‘,)' the last term

]
is finite and of indifferent sign and the stability proof breaks

|
|
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dnwn. Thus, for monotonic functinns, the absolute stability of
drift waves is only dependent on the even symmetry of fo(v‘[) and
has nnthing to do with its detailed functional form.

Numerical investigation of E£g. ({3) using the shooting and
WKB methods has established? that for Maxwellian electrons, the
eigenmodes are always stable (Imw < 8). We have recently
confirmed? that this is indeed true for any assumed even and
monotonic form of fo(v ). Furthermore, we have found that for
M — « (i.e., on ignoring parallel ion respnnse), the elgenmodes

are always marginally stable (Imw = @); this latter result is

independent of k0., Lg/L, and form of shear Ffunction and only

depends on evenness of f (v . Here then is the provocative

1
mystery stripped to its barest essentials. Why, for even fo(vll)'
are there exact concellations taking place in this model? wWe still
do not know the answer and would like to deepen the mystery by a
physical descriptinn of the cancellations,

we multiply Eg. (3) with (noez/T)w¢* integrate in x from -L
to L (where L is some large distance) and take the real part of the

resulting squation; this leads us to the following equation:

- 2 2 2 2 2
2y {L dx {_U-\pi (7,1; a_dllz k2f¢l2)+ u)Ei k”l‘bj ] _ ._wﬂ‘]_' Im(w¢* _a_d))‘L
J-L wii Gm{dx 81 lw|2 8w wii Ix -L

I -]
n e v, f w, + (wr/m) (3f /3v )
[o] 2 Il "o * [e] 1l
Im J ax |¢] I dvll v (w/k”) . (4)
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we can readily interpret the varinus terms in Fg. (4). The terms
propartinnal to ¥ (viz., the first three terms on the left cide and
a partion of the right side) can be interpreted as the rate of
change of the mode energy; mode enerdy is dominantly in the form of
kinetic energy of perpendicular and parallel ion slashing and the
parallel electron sleshing (viz., nonresonant electron effects).
The fourth term on the left side can be interpreted az the Puynting
flux of drift waves out of the ends #L. [To verify this, note that
the x-Poynting flux = Re(c/thx)ETlBy and
By = (i/k, ) (41/€)3y = - (4nNMc?/B?) w/ck ) (34/b%) ete.] This term
is responsible for the shear damping of drift waves. The remaining
term (viz., the leftover portion of the right side) may, using the
drift kinetic equation, be shown tn be the RG(JIIETI) work done by
resonant electrons on the wave. This is the term which cauld drive
the wave unstable. Equation (4) is thus. a power balance eguation.
The rate of J*E work done by resonant electroﬁs is balanced by the
rate of growth of mode energy minus the energy flux out nf the

ends., The real mystery of the recent drift wave work is that for

even f

O(v;l), the frequency Rew and mode-structure adjust in such

a way that far large kﬂs, there is a near exact cancellation!?
the J°E work done by resonant electrons and the energy flux out of
the ends; the cancellation is exact for the model (M,, — @) in
which outward energy €£lux and shear damping 1is dominated by
nonresonant electron effects. We do not see any obvious physical

reason for this cancellation. So the mystery remains: Is there

anything deeper in this exact cancellation for symmetric f, 2!
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Once it is appreciated that the stability of drift wave
eigenmnde is tied to the even symmetry of fo(vll)’ the next obvious
task is to investigate stability for more general electron
distributions. One such effort is the calculation for a drifted
Maxwellian?; this shows that the instability is recovered when the
current exceeds a critical value., In the discussion given below,
we present the results of a numerical investigation (using WKB and

shonting methods) of the eigenmode stability for a number of

nonsymmetric electron distributions.? Our first choice is the model

- 2 2 S
f = (cl/ve)/‘l + (v”/ve) ] vy > 4

(5)

v, < 0

N
] I

- 2
f = (Cl/ve)/Ll + (VIIR/VE)

with N > 2 and C; determined by the normalization cond.cion

1. R controls the width of the distribution for

[ £ av
J Il

v|| < b. Ffor R =R. = 1/(N - 1)1/2, the distribution carries no
net current; any other choice of R gives a net parallel electron
current. This model may be treated as a simple analytical
approximation to the runaway distribution function in a plasma with
parallel electric field. Both the WKB and shooting methods show
that such nonsymmetric distributions give unstable eigenmodes.
Table I presents the results of ¥ versus kzog obtained from the
shooting ¢ode for N =8, R = l/(7)l/2, Lo/Ly = 192 and (M/m) =

1837. Significant growth rates are observed. The growth rate does
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not chande very much when R is made slightly different from LI
that a net current flows. Thus, it iz the asymmctry nof f,, rathcr
than the current carried by it which determines the growtn rate.
We have alsn considered the effect of peaking the districution
functinn away from v]| = f#. This is accomplished by replacing v||

with (v -y in Bg. (5). R and v, may again be adjusted so

l ' 0)
that no net current flows; this mndel cruld c¢nrrespond o oo
physical situation where parallel tenmperature gradi=nts and
electric fields distort f, tn give a large heat flow but not net
current. Table II shows the variation of /i, vs v,/v.. The
growth rate cali be substantially increased by peaking the
distribution away from vH = f.
Sn what do we conclude? Stated briefly, we conclude that
stability of the universal eigenmode 1is tied tn gymnetries of

(v For nonsymmetric f,, unstable modes can be obtained with

)
11
a growth rate determined by the detailed shape nf fn. Finally, we

believe that from a physical ponint of view, it is still a mystery
why for symmetric f_, the local growth terms are always overpowered

by the shear damping terms.
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TABLE I

Lg/Ly = 180, m/M = 171837, vy/v, = 8, R = 1/(7)}/2

kZoZ | 0.01 .05 8.1 8.5 ]
T/ws | B.814 8.031 p.04l p.014 8.009
TABLE II
Lg/Ly = 100, m/M = 1/1837, 3 = 0, k2
Vo/Ve .01 9.93 p.08 2.1
Y/ 0.046 0.057 0.081 0.891

R B S L - s
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TABLE CAPTIONS

Le I, Variation of normalized growth rate Y/w, with kzoé for
a current-free asymmetric f, [given by Eq. (5)] with
peak at VII =0,
Table I1. Variation of ¥Y/uy with v,/ve for a current-free

asymmetric distribution peaked at vH z v,



