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The Universal Mode Revisited 

P. K. KawVind P. N. Guzdar 
Plasma Physics Laboratory, Princeton University 

Princeton, New Jersey 08544 

ABSTRACT 

Our present understanding of the 
theory of universal eigenmodes in a 
collisionless plasma slab with magnetic 
shear, is reviewed and critically examined. 
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The theory of universal drift waves in a plasma :;lab with 

magnetic shear has recently attracted renewed attention.^"^ 
Numerical and analytical work has led to the surprising discovery 
that drift wave eigenmodes in a collisionless plasma with 
Maxwellian electrons are always stable. 2 , 3 Similar conclusions have 
been obtained for collisional plasmas.4 Numerical work on the 
current-driven problem has shown that a drifted Maxwellian electron 
distribution function can drive the collisionless drift eigenmode 
unstable, provided the parallel electron current is sufficiently 
strong . ̂  

In this note we reiterate that for monotonic electron 
distributions, the stability of the universal eigenmode in a plasma 
slab with magnetic shear is strictly tied to the assumed even 
symmetry [f Q(- v ) = fQ(v •] of the function. Departures from 
even symmetry may lead to instability, irrespective of whether the 
distribution carries any net current or not. This reflects the 
fact that in the eigenmode problem there is a delicate competition 
between the growth effects due to locally resonant electrons and 
the shear damping effects due to the global mode structure and that 
this balance is determined not by the first velocity moment of f 
but by a more complex velocity weighting. It appears chen, that a 
detailed knowledge of the shape of fQ(v ) may be crucial in 
determining stability of the universal eigenmode. Parenthetically, 
we note here that it is quite likely that the electron distribution 
function in a tokamak is far from a simple drifting Maxwellian 
(cf.f runaway effects due to E ,6 interesting effects due to heat 
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flow along stochastic field lines 7 etc., and some experimental 

ft evidence in this direction 0). 
We consider the simplest model of drift waves in a sheared 

magnetic field. The equilibrium magnetic field is given by 
B = B 0(e z + x/L s e y ) , the ions are treated as a cold species and 
the elections are described by the drift kinetic equation. The ion 
density fluctuation (obtained from equations of continuity and 
motion for ions) is given by 

O ' (j) / 

where p| = T/Mu^, w* = cT/eBLn, c| = T/M, we have assumed 
expfik y - iut) dependence and k (x) = kyx/Ls. ire first term in 
Eq. (1) comes from divergence of ion polarization drift, the 
second term comes from E x B motion of ions along the density 
gradient, and the last term comes from the parallel ion motion. 
The electron response, obtained from the drift kinetic equation, is 
given by 

— = f dv,, f = I — + / dv 

(2) 

Using quasineutrality, we get the mode equation 

v \ , ft ( 1 / M ) v l l V (^)»V>V|,) . , x 2 . _ 
V $ + J dv,, v., - x e/x * + -j * = 0 (3) 

s 
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where x is normalized to p g, <a to u*, <)> to T/e, v to (2'r/m) 1/^, 
x

e
 = ("'/«*) (m/2M) 1 / 2 (L s/L n) and x s = (u/w*) ULS/Un) . Together with 

the boundary conditions at + '" (outward r/finq waves for growing 

modes) , this equation defines the eigenvalue problem. For a 

Maxwellian f Q, it reduces to the standard form. 1 

We first demonstrate that the stability of drift wave 

eigenmodes is only determined by the even symmetry o: f (v }. 
I I 

Following a procedure due to Antonsen, 3 we introduce a variable 'i 
by the equation x = -i«n. Changing from x to n in (3), multiplying 

by •!' , integrating from -'" to +'", separating the real and imaginary 

parts and manipulating them, we get the equation 

2 t,2 -2 

+ k + 
(k2 + ̂ ) n 2U| 2 - |*|: 

/ dv 
( v , | / 2 ) Q f o / a v | | ) 1 

" v 2
+ (xfTTTJJ 

2Y / dn |̂ | 2 /" dv, 
(x^wnKOf/av,,) + (2v|,fo/n)] 

2 . , 2 , 2 2. 
7II e n 

where u> = fi + iyr and it is to be noted that w/x e and w / x s are 

independent of u. 

If f 0(v ) = f 0(-v ) , the last term vanishes- Furthermore, 

for mdnotonically decreasing f 0(v ) , all the other terms are 

positive definite and cannot add up to zero. This is the Antonsen 

proof of eigenmode stability. 3 If f Q(v ) / f 0(-v. ) , the last term 

is finite and of indifferent sign and the stability proof breaks 



down. Thus, for monotonic functions, the absolute stability of 
drift waves is only dependent on the even symmetry of f 0( v,,) a n d 

has nothing to do with its detailed functional form. 
Numerical investigation of Eq. (3) using the shooting and 

WKB methods has established2 that for Maxwellian electrons, the 
eigenmodes are always stable (Imo; < 0). We have recently 
confirmed5 that this is indeed true for any assumed even and 
monotonic form of fQ(v ). Furthermore, we have found that for 
M -r> '-° (i.e., on ignoring parallel ion response) , the eigenmodes 
are always marginally stable (Im<ji = 0); this latter result is 
independent of k P , L s/L n and form of shear function and only 
depends on evenness of f

0' vi )• Here then is the provocative 
mystery stripped to its barest essentials. Why, for even f0(v ), 
are there exact concellations taking place in this model? We still 
do not know the answer and would like to deepen the mystery by a 
physical description of the cancellations. 

we multiply Eq. (3) with (n0e2/T)w<f>* integrate in x from -L 
to L (where L is some large distance) and take the real part of the 
resulting equation; this leads us to the following equation: 

2Y 
i-L 

dx 2 VBu 3x 8ii J 

2 , 2 u . k.. pi II 
BIT 

J2i Im K m 

n e o Im dx 
-L 

dv, II o ' + (toT/m) (3f o/3v N) 
r^^iT (4) 



-6-
Kve can readily interpret the various terms in Eq. (<1). The terms 
proportional to Y (viz., the first three terms on the left side and 
a portion of the right side) can be interpreted as fie rate of 
change of the mode energy; mode energy is dominantly in the form of 
kinetic energy of perpendicular and parallel ion sloshing and the 
parallel electron sloshing (viz., nonresonant electron effects). 
The fourth term on the left side can be interpreted as the Poynting 
flux of drift waves out of the ends +L. [TO verify this, note that 
the x-Poynting flux = Re(c/4n)E* B and 
B y = (i/k ) (4TT/C) J x = -(4irNMc2/B2) (oi/ck ) O-j./ax) etc.] This term 
is responsible for the shear damping of drift waves. The remaining 
term (viz., the leftover portion of the right side) may, using the 
drift kinetic equation, be shown to be the Re(J E* ) work done by 
resonant electrons on the wave. This is the term which could drive 
the wave unstable. Equation (4) is thus.a power balance equation. 
The rate of J'E work done by resonant electrons is balanced by the 
rate of growth of mode energy minus the energy flux out of the 
ends. The real mystery of the recent drift wave work is that for 
even f0(v. ), the frequency Reu and mode-structure adjust in such 
a way that for large kp g, there is a near exact cancellation1-3 of 
the J'E work done by resonant electrons and the energy flux out of 
the ends; the cancellation is exact for the model (M —» °>) in 
which outward energy flux and shear damping is dominated by 
nonresonant electron effects. We do not see any obvious physical 
reason for this cancellation. So the mystery remains: Is there 
anything deeper in this exact cancellation for symmetric f Q ?! 
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Once it is appreciated that the stability of drift wave 

eigenmode is tied to the even symmetry of f0(v ), the next obvious 
task is to investigate stability for more general electron 
distributions. One such effort is the calculation for a drifted 
MaxwelliariS; this shows that the instability is recovered when the 
current exceeds a critical value. In the discussion given below, 
we present the results of a numerical investigation (using WKB and 
shooting methods) of the eigenniode stability for a number of 
nonsymmetric electron distributions.^ Our first choice is the model 

f + - (C;l/ve)/ri + ( v n / v e ) 2 ] 2
 V | | > C 

(5) 

f_ = ( C 1 / v e ) / [ l + ( V | | R / v e ) 2 ] N v M < 0 

with M > 2 and Cj_ determined by the normalizat ion condxcion 

I f dv , = 1. R con t ro l s the width of the d i s t r i b u t i o n for 
) I I 
v < u. For R = R c = 1/(N - l ) 1 / 2 , the distribution carries no 
net current; any other choice of R gives a net parallel electron 
current. This model may be treated as a simple analytical 
approximation to the runaway distribution function in a plasma with 
parallel electric field. Both the WKB and shooting methods show 
that such nonsymmetric distributions give unstable eigenmodes. 
Table I presents the results of y versus k 2p| obtained from the 
shooting code for N = 8, R = 1/(7)1/2, h&/h^ = 10 2 and (M/m) = 
1837. Significant growth rates are observed. The growth rate does 



not change very much when K is made slightly different from H„ so 
that a net current flows. Thus, it is the asymmetry of ffj rather 
than the current carried by it which determines the growth rate. 
We have also considered the effect of peaking the distribution 
function away from v = 0. Thi:; is accomplished by replacing v 
with (v - v 0) in Eq. (5). R and v may again be adjusted so 
that no net current flows; this model could correspond to a 

physical situation where parallel temperature gradients and 
electric fields distort f 0 to qive a large heat flow but not net 
current. Table LI shows the variation of < /<.-. * vs v0/"ve. l'h« 

growth rate car. be substantially increased by peaking the 
distribution away from v = 0. 

So what do we conclude? Stated briefly, we conclude that 
stability of the universal eigenmode is tied to symmetries of 
f0(v ) , For nonsymmetric f n, unstable modes can be obtained with 
a growth rate determined by the detailed shape of f 0. Finally, we 
believe that from a physical point of view, it is still a mystery 
why for symmetric f Q, the local growth terms ?ri always overpowered 
by the shear damping terms. 

ACKNOWLEDGMENTS 

we appreciate discussions with E. J. Valeo, R, B. White, 
and C. R. Oberman. 



-9-
This work was supported by United States Department of Energy 

Contract No. EY-76-C-02-3073, and by United States Air Force 
Office of Scientific Research Contract No. F 44620-75-C-0037. 

t 



-10-
TABLE I 

L S/L N = 100, m/M = 1/1837, v c/v e = 0, R = 1/(7) J/ 2 

k|p| 0.01 0.05 0.1 0.5 ] 

•(/"'•* 0.014 0.031 0.041 0.014 0.009 

TABLE II 
L S/L N = 100, m/M = 1/1837, J = 0, k 2 = 0.1 

v 0/v e 0.01 0.03 

0.057 

0.08 0.1 

Y/"* 0.046 

0.03 

0.057 0.081 0.091 

^ , 
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TABLE CAPTIONS 

.....•; I. Variation of normalized growth rate Y/<<'* with k^ P~ for 
a current-free asymmetric f 0 [giver, by Eq. (5) J with 

peak at v = 0. I I 

Table II. Variation of Y/w* with v 0/v e for a current-free 
asymmetric distribution peaked at v =* v . 


