EXPERIMENTAL EVIDENCE FOR LOW LYING INTRUDER STATES IN ⁵⁴Mn

M.TOULEMONDE, F.A. BECK, C.GEHRINGER, B.HAAS, J.C.MERDINGER, N.SCHULZ and J.P.VIVIEN

Centre de Recherches Nucléaires et Université Louis Pasteur,

Strasbourg, France.

Abstract :

High spin states in ⁵⁴Mn were populated in the ⁵²Cr(α , pn γ) reaction. Using angular distribution, linear polarization and γ - γ coincidence measurements, the following unambiguous spin and parity assignements were obtained : E_x , J^{π} ; 1073 keV, 6^+ ; 1784 keV, 7^+ ; 1925 keV, 7^+ ; 2857 keV, 8^+ and 3244, (9)⁺. In addition a new level was observed at an excitation energy of 3939 keV. The experimental data show evidence for low lying intruder states as predicted by a recent shell model calculation.

NUCLEAR REACTIONS 52 Cr(α , pn γ) 54 Mn, E_{α} = 33 MeV; measured $\nu\gamma(\theta)$ coin, angular distributions, linear polarizations. 54 Mn; deduced J, π , δ , γ branching ratios. Enriched targets. Comparison with shell model calculations.

1. Introduction

The configurations of low lying high spin states in nuclei near closed shells are expected to be rather pure. Several attempts have been made to observe such states in 54 Mn (Poletti et al 1974, Alenius et al 1975, Beale et al 1976 and Nathan et al 1977), but until now no unambiguous spin-parities higher than 5⁺ have been assigned to excited levels. This fact hampers a straightforward comparison between experiment and a recent calculation made by Johnstone and Benson (1977). These authors calculated excitation energies of states belonging to various n₁ particule-n₂ hole (n₁ p-n₂h) configurations relative to the 56 Ni core. In particular they predicted that the first 6⁺ state which they associated with the 1073 keV level, is an intruder state having a 2p-4h configuration. The present work was initiated in order to identify unambiguously the high spin states and to determine their decay properties. The results confirmed the classification of states given by Johnstone and Benson (1977).

2. Experimental method and data analysis

A 33 MeV α -beam, delivered by the Strasbourg MP tandem Van de Graa^{ff}, struck the target and was stopped in a Faraday cup three meters away. The target consisted of a 10 mg/cm² pellet of Cr_2O_3 (enriched to 95 % in ⁵²Cr) sandwiched between two thin mylar foils. Several γ -ray techniques were used for studying the ⁵⁴Mn levels. Angular distributions were performed by detecting γ -rays at 5 angles (90°, 70°, 55°, 45° and 30° relative to the beam direction) with a 100 cm³ Ge(Li) detector placed at 20 cm from the target. The relative efficiency curve of the detector was obtained using the lines from ⁵⁶Co and ¹⁵²Eu radioactive sources. Its resolution (FWHM) was 2.3 keV for a 1.33 MeV γ -ray. The γ -ray

- 2 -

linear polarization (F. Beck et al. 1976) was simultaneously measured with a three Ge(Li) Compton polarimeter positioned at - 90°. The polarisation sensitivity was determinated by comparing calculated and measured polarizations of y-rays emitted in (p, p') reactions on ${}^{12}C, {}^{19}F,$ ²⁴Mg. ²⁸Si, ⁵⁶Fe and ^{107,109}Ag at the 7 MV Van de Graaff accelerator as well as known E2 transitions observed in the (α , 2n) reactions on 50 Ti. 52 Cr and 54 Fe at the MP tandem accelerator (Haas et al. 1978). In order to establish the level scheme and to obtain the directional correlation of v-rays emitted from the oriented nuclear states (D.C.O. method ; J.A. Grau et al (1974))a v-v coincidence measurement was also performed. The two Ge(Li) counters were positioned at 35° and 90° in the reaction plane and placed at 9 cm from the target. D.C.O. ratios were deduced from the data by using the relative y-y coincidence efficiencies measured in a 90°-90° configuration of the Ge(Li) detectors. Known lines from the 48 Ca(α , 2n)⁵⁰Ti reaction (Haas et al. 1978) and from a 152 Eu source were used to cover the whole energy range of interest.

- 3 -

A simultaneous χ^2 fit was made to the angular distribution coefficients A_2 and A_4 , the linear polarization $p = \left[(N_1 - N_{//}) \right] / \left[(N_1 + N_{//}) Q \right]$ and D.C.O. ratios R (35°, 90°). It determines, on the basis of the 0.1 % confidence level the angular momentum change Δ J, the mixing ratio S(Rose and Brink 1967), the electric and/or magnetic character of each transition and the attenuation parameter α_2 for the nuclear alignement. The α_2 and α_4 coefficients are related since in the present analysis a gaussian distribution has been assumed for the magnetic substate population (G.A.P. Engelbertink et al 1977). The estimates of errors associated with the mixing ratios δ were obtained at a χ^2 value corresponding to one standard deviation from the normalised χ^2_{min} . Due to the target structure no attempt has been made to determine lifetime values. However Doppler shifts have been observed for γ -rays corresponding to the 2857 \rightarrow 1073, 3244 \rightarrow 1784 and 3939 $- \rightarrow \pm$ 157 keV transitions. Consequently an upper limit of 10 ps can be set for each initial level. This limit as well as lifetime values for other levels (see table 3) exclude the presence of M2, E3 or M3 transitions on the basis of unrealistic enhancement.

3. Results

Excited levels and their decay modes, deduced from the present experiment, are shown in fig. 1. Apart from the 3939 keV level which has not been reported prior to this work, the present decay scheme is in agreement with the one proposed by Alenius et al (1975). A summary of the present experimental data is given in table 1. The spin, parity and mixing ratio values deduced from the χ^2 analysis are presented in table 2. Since spin and parity for the 156 and 368 keV levels have already been determined in previous work, the analysis was limited to the determination of the mixing ratio for the 156 and 212 keV transitions. The present value for the 156 keV transition $\delta = 0.12 \pm 0.05$ is to be compared with the one determined by Ogawa and Taketani (1972) $|\delta| < 0.1$ who assumed a compound nucleus reaction mechanism to analyse their angular distributions.

The properties of all the other observed levels for which no rigourous spin-parity assignments have previously be en reported, will be given in detail below.

3.1. The 1073 keV level As shown in fig.2, the χ^2 analysis yields a unique J^{π} value, namely 6⁺.

- 4 -

This is in agreement with the $\ell_n = 3$ transfer to this level observed in the (d, t) reaction on ⁵⁵Mn, $J^{\pi} = 5/2^{-}$ (Taylor and Cameron 1976). 3.2. The 1784 keV level

The existence of a doublet at this excitation energy has been shown by Alenius et al (1975). The decay of the level observed in the present work indicates that it is the same level as the one excited in the ${}^{51}V({}^{6}Li, p2n), {}^{51}V(\alpha, n)$ and ${}^{48}Ca({}^{11}B, 5n)$ reactions (Poletti et al 1974, Alenius et al 1975, Nathan et al 1977). Both realistic transition strengths for the γ -ray issued from this level and the χ^2 analysis limit J^{π} to 5^+ or 7^+ . As it will be seen later the 7^+ value is the only one compatible with the γ -decay of the 2857 keV level to this level.

3.3. The 1925 keV level

As in the case of the 1784 keV level the analysis of the γ decaying the 1925 keV level leaves only the possibility 5⁺ and 7⁺ and the γ -decay of the 2857 keV level excludes 5⁺.

3.4. The 2857 keV level

This level was found to decay $48 \pm 10\%$ to the 1073 keV level, $22 \pm 6\%$ to the 1784 keV level and $30 \pm 5\%$ to the 1925 keV level. The angular distribution and the linear polarization for the $2857 \longrightarrow 1073$ keV transition associated with several D.C.O. ratios (see table 1) reject all possible spin-parities except $J^{\pi} = 8^{+}$. As a $\Delta J = 3$ solution would yield unrealistic transition strengths for the other γ branches, $J^{\pi} = 5^{+}$ is excluded for both the 1784 and 1925 keV level.

3.5. The 3244 keV level

The branching ratios for this level could not be obtained since the 3244 \longrightarrow 1784 keV transition is obscured by a background transition corresponding to the β decay of 40 K. The analysis of the 3244 \longrightarrow 2857 keV

- 5 -

 γ -transition limits J^{π} to 7^{+} or 9^{+} . The γ -ray excitation function measured by Alenius et al (1975), along with the arguments outlined by Taras and Haas (1975), support 9^{+} . However such an assignment could depend on the details of the reaction mechanism involved, therefore the spin value 9 is indicated in parenthesis in fig.1.

3.6. The 3939 keV level

This level, which decays to the 2857 keV and 1925 keV levels, was weakly excited in the present reaction and no branching ratios could be measured. In accordance with usual transition strengths the spin parity assignments for the 3939 keV level are limited to 6^+ , 7^{\pm} , 8^{\pm} , 9^+ .

4. Conclusion

숺

Unambiguous spin assignements for a number of levels in ⁵⁴Mn have been obtained in the present work. Several of these levels have already been associated by Johnstone and Benson (1977) with 1p-3h states $(1784 \text{ keV}, 7^+; 3244 \text{ keV}, 9^+)$ or with 2p-4h states $(1073 \text{ keV}, 6^+;$ 1925 keV, $7^+)$. Their classification was based on spectroscopic factors and on γ -decay branches (calculated M1 and E2 transition strengths between states of different configurations being hindered). This identification is corroborate by the experimental transition strengths reported in table 3 and furthermore confirm the configurational purety foreseen by Johnstone and Benson (1977). Note for example for the 1784 keV level, the predicted lifetime of 1.2 ps is in good agreement with the experimental result (Kudoyarov et al. 1976). However opposed to those levels, a rather strong mixing of both kind of configurations seems to happen in the wave function of the 2857 keV 8⁺ level. Theoretically, the 8⁺

- 6 -

the same excitation energy and therefore configurational mixing for the 2857 keV level is not surprising. This mixing could also explain the gamma branch from the 3244 keV to the 2857 keV level. Finally, the 3939 keV level could be the 9⁺ member of the 2p-4h K^{π} = 6⁺ band since it decays mainly to the 7⁺₂ 2p-4h state and its excitation energy corresponds to the one predicted by the J(J + 1) rule.

7 -

References

the second of

Alenius N G, Arnell S E, Seän E and Stankiewicz O 1975 Nuov.Cim. 27 A 249-76

Beale D J, Poletti A R and Southon J R 1976 Nucl. Phys. A261 238-52

Beck F A, Byrski T, Knipper A and Vivien J P 1976 Phys ReV C13 1792-800

BuhlS, Gerner J, Kampp W D, Nagel A and Nikutta W P 1977 Heidelberg Annual Report

Engelbertink G A P, Ekström L P, Scherpenzeel D E C, Eggenhuisen H H 1977 Nucl. Instr. and Meth. 143, 161-70

Grau J A, Grabowski Z W, Rickey F A, Simons PC and Steffen R M 1974 Phys.Rev.Lett. 32 677-80

Haas B, Beck F A, Gehringer C, Merdinger J C, Schulz N, Taras P, Toulemonde M, Vivien J P, Styczen J, Bozek E, Ztachura Zb, Pawlat T, Müller-Arnke A 1978 Phys.Rev.Lett. 40 1313-16

Johnstone I P and Benson H G 1977 J. Phys. G: Nucl. Phys. 3, L69-73

Kudoyarov M F, Lemberg I Kh and Pasternak A A 1976, Izv. Akad. Seria Fiz. 40 2103-13

Nathan A M, Olness J W, Warburton E K and Mc Grory J B 1977, Phys.Rev.C16, 192-214

Ogawa M and Taketani H 1972 Nucl. Phys. A194, 259-91

Poletti A P, Brown B A, Fossan D B and Warburton E K 1974, Phys.Rev. C10 2329-39

Rose H J and Brink D M 1967 Rev. Mod. Phys. 39 306-47

Taras P and Haas B 1975 Nucl. Instr. Meth. 123 73-82

Taylor T, Cameron J A 1976 Nucl. Phys. A257 427-37

Table 1 : Experimental data

E _i (keV)	E _f (keV)	A ₂ ^{a)}	A ₄ ^{a)}	р	Transitions ^{b)} used to determine D.C.O. ratios	R ^{d)}
156.3 ^{c)}	0	-0.357(8)	0.000(20)			
368.3 ^{c)}	156	-0.253(8)	0.000(40)	-0.33(2)	368	1.17 (5)
1073.2 ^{c)}	368	-0.269(10)	0.010(30)	-0.29(3)	1073	1.00 (3) 1.13 (3)
1 783.5 ^{c)}	368	0.36(4)	-0.10(6)	0.55(9)	1 784	1.84 (12) 2.18 (17)
1925.2 ^{c)}	1 073	-0.64 (6)	-0.03(5)	-0.03(5)	1925	0.46(7) 0.66(10) 0.56(9)
2856.5 (3)	1073	0.41 (6)	-0.24(8)	0.63 (16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.49 (15) 2.03 (18) 2.24 (18)
	l 784 l 925	-0.56 (20)	0.00(20)	-0.03(18) 0.01 (8)		2.24(10)
3244.2 (5)	1784	-	-	-	$3244 \longrightarrow 1784 \longrightarrow 368$ $3244 \longrightarrow 1784 (\longrightarrow 368 \longrightarrow 156$ $3244 \longrightarrow 368 \longrightarrow 156$	1.26 (17) 2.23 (19) 2.35 (23)
	2857	-0,23 (4)	0.00 (6)	-0.51(16)	$3244 \longrightarrow 2857 \longrightarrow 1073$ $3244 \longrightarrow 2857 \longrightarrow 1925$	0.69 (15)
3938 9 (6)	2857 1925	-0.6(3)	-	-0.13(18)	3939	2.50 (80

a) the finite solid angle attenuation factors are negligeable

b) unobserved transitions are in parenthesis

c) energy values from Nathan et al (1977)
d) These values do not include correction for the finite solid angle $\left[Q_2(90^{\circ}) = 0.93 ; Q_4(90^{\circ}) = 0.78 ; Q_2(35^{\circ}) = 0.95 \right]$ $Q_4(35^\circ) = 0.84$]. The solid angle corrections are however taken into account in the χ^2 analysis.

E _i (keV)	E _f (keV)	J ^π i	J [¶] f	S	χ^2_{min}	degrees of freedom
156	0	4	3 ⁺	0,12 (5)	0,5	1
3 68	156	5+	4 ⁺	0.00(2)	0,5	1
1073	3 68	6 ⁺	5 ⁺	0.02(2)	0.6	2
1784	368	3+	5 ⁺	0,12 (5)	8.0	2
		5 ⁺	5 ⁺	- 0.18 (27)	8.1	2
		7 ⁺	5 ⁺	0.00 (5)	0.4	2
		4	5 ⁺	0.40 (12)	8.4	2
		7	5 ⁺	> ! !	9.6	Z
1925	1073	5+	6 ⁺	0.40(18)	4.8	2
		7 ⁺	6 ⁺	0.40 (15)	2.4	2
		5 -	6 ⁺	0.6(3)	2.0	2
		7 -	6+	0.47 (25)	4.0	2
2857	1073	8 ⁺	6 ⁺	0.02 (5)	1.4	2
3244	2857	7+	8+	0.00(10)	9.0	2
		9 ⁺	8 ⁺	0.00(10)	5.2	2

Table 2: Results of unnormalized χ^2 fits

E _i (keV)	E _f (keV)	J ^π	J ^π _f	BR (%) ^{a)}	<u> (ps)</u>	B(E2)	B(M1)
156	0	4+	3+	0.1	227 (63) ^{b)}	45 (40)	0.037 (11)
368	156	5+	4	99	10,4(16) ^{c)}	< 5.2	0.32 (7)
	0	5 ⁺	3+	∠1		<10	
1073	368	6 ⁺	5+	99	292 (50) ^{c)}	< 2.6 10 ⁻³	3.1 (5) 10 ⁻⁴
	156	6+	4^{+}	4 1		$< 4.3 \ 10^{-3}$	
1784	1073	7 ⁺	6 ⁺	< 5	1.2 + 1.3		∠6.3 10 ⁻³
	368	7 ⁺	5+	95	- 0, 1	9.4 + 6.6	
1925	1073	7 ⁺	6+	95	1.18 + 1.36 = 0.44	$16.6 + \frac{28.1}{13.3}$	0.36 + 0.26 - 0.21
	368	7+	5+	[5]		[0.32 ± 0.18]	_
2857	1925	8 ⁺	7 ⁺	25	$z^{\alpha} < \alpha < 10^{1}$	< 12	$< 5 \times 10^{-3}$
	1784	8+	7+	16		∠ 3.8	$< 2 \times 10^{-3}$
	1073	8+	6+	59		0.2< B(E2)<1.1	

Table 3 : Transition strengths in 54 Mn (W.u.)

a) Branching ratios from Alenius et al. (1975)

b) from Nathan et al. 1977

c)_{from Poletti et al.} 1974

d) from Kudoyarov et al. 1976

e)_{from} Buhl et al. 1977

f) present work 1

- Fig.1: Comparison between the experimental levels and the results of shell model calculations. Only the v-branches observed in the present work ar s indicated.
- Fig. 2: The χ^2 analysis of the angular distribution, linear polarization, D.C.O. ratio, R = 1.00 ± 0.03, for the 1073—368 keV transition. Triangles and squares indicate the minimum of the χ^2 function for the corresponding spin and parity hypotheses. The angular distribution is shown in the insert.

·· ·

-

Imprimé au Centre de Recherches Nucléaires Strasbourg 1979

.