CtffiS>.- C PT- *3* 9*1 fLJ 0* 2? *5*

J

EXTENDED FEYNMAN FORMULA FOR HARMONIC OSCILLATOR

P.A. HORVATHY x •

ABSTRACT : A slight modification of Feynman's original method leads to the Maslov correction in the path integral formula of a harmonic oscillator Caustics are treated in a direct geometric way.

• • ' . • •> . *******• "** \mathbf{d}

JANUARY 1979 (Corrected Version)

79/P.1083

fc $\frac{f}{\sqrt{2\pi}}$

^x Centre de Physique Théorique , CNRS, Marseille (France)

⁺ On leave from Veszprem University of Chemical Engineering (Hungary)

POSTAI A00RESS : CNRS - Luminy - Case 907 Centre de Physique Théorique F-13238 MARSEILLE CEDEX 2 (France)

1. INTRODUCTION

As pointed out by Souriau [2] , Feynman's formula for a harmonic **oscillator ([l] . p. 63)**

$$
K(x_{2}, t_{1} | x_{1}, t_{2}) =
$$
\n(1)
\n
$$
\left(\frac{m\omega}{2\pi i t_{2} \omega_{1} \omega (t_{2} - t_{1})}\right)^{\frac{1}{2}} \cdot \exp\left\{\frac{i m \omega}{2 \hbar \omega_{1} \omega (t_{2} + t_{1})}\left[(x_{1}^{3} + x_{2}^{3}) \omega_{2} \omega (t_{2} + t_{1}) - 2x_{1}x_{1}\right]\right\}
$$

is valid only for $|d_{\lambda}-d_{\lambda}| < T/2$, a half period. The general **expression is obtained [2] by introducing the Haslov correction** *[z"j* **. [3] , Kl and given as**

(2) for
$$
t_2 + t_1 + t_2
$$
 ... *n* integer
\n
$$
K(x_{2,t-1}x_{2,t-2}) = \left(\frac{m\omega}{2\pi t + 1\omega n \omega(t_{2}-t_1)}\right)^{\frac{1}{2}}
$$
\n
$$
x_{2} = \frac{\omega n}{2} \left[-\frac{\omega n}{2} \left[\frac{1}{2} + \text{Ent}\frac{\omega(t_{2}-t_1)}{\omega t}\right]\right].
$$
\n
$$
x_{2} = \left\{\frac{2m\omega}{2t_{1} + \omega n} \frac{\omega(t_{2}-t_{2})}{\omega(t_{2}-t_{2})}\right\}.
$$

and for l ⁴ * t»* *«f • , k integer (caustics) (3) $K \in X_{1}, \{x_{1}, t_{1}\} = \exp\{-\frac{\ell \pi}{2}k\} - \frac{\ell}{2}(X_{1} - (-i)^{k}X_{2})$

The effect of the correction factor exp i is in the linear of $\frac{1}{2}$ **. is a jump in phase at every half-period, observed by Gouy** *[T * **in classical optics and having the consequence of reversing the interference pattern**

(see fè] for details). A similar phenomenon is observed in electron optics [s] as well as in molecular [12] and nuclear [is] scattering. (2) is more or loss well-known {[4] , [13]) ; it is generally derived by Morse's Theory $[14]$. At caustics, i.e. for $\mathbf{t}_4 = \mathbf{t}_1 + \mathbf{k}_2^T$ **1< integer, most of the authors are contended to observe that (2) diverges-» they study then the corrections due to higher order perturbation. Sourlau [2] derives (3) by an indirect way, noting the relation to metaplectic representation.**

The aim of this paper is to show how the above results may be obtained by slightly modifying Feynman's original method.

2. FEYNHAWS METHOD

First, we resume briefly Feynman's original method (\iiint , **pp. 58-73) in computing the quantum mechanical kernel for a harmonic •oscillator.**

Suppose $[t_1 - t_1]$ < $T/2$, the half period (assumed implicitly by Fe_./nman). Then, for any pair of points x_i , x_j , $\in \mathbb{R}$ there is a unique classical path $\overline{y} : t \rightarrow \overline{\overline{y}}(t) \in \mathbb{R}$ between (x_1, t_1) and (x_1, t_1) It is useful to write then any path γ in the form $\gamma \circ \overline{\gamma} + \gamma$, where **the "varied curves"** γ vanish at the end points : γ $(t_1) = \gamma(t_1) \in \mathbb{Q}$

The quantum mechanical kernel, being expressed in terms of a gaussian integral, is a product of two factors Q.] :

(4)
$$
K(x_2,t_1|x_1,t_1) = \exp\{\frac{1}{\xi_1} S(\bar{\gamma})\} \cdot F(t_1-t_1)
$$

S(7) is here the hamiltonian action along the classical path **For a harmonic oscillator**

$$
(5) \quad S(\bar{y}) = \frac{m \omega}{2 \sin \omega (t_1 t_1)} \left[(X_t^* * \lambda_t^*) \cos \omega (t_1 t_1) - 2 X_t X_t \right]
$$

79/P.1083

The second factor in (4) depends only on $t_1 - t_1$ and is a result of **integration over all paths** ** **vanishing at the end points**

4

$$
(6) \quad \mathsf{T}(\mathfrak{t}_{\mathfrak{L}}\cdot\mathfrak{t}_{\mathfrak{q}})=\int e^{\mathfrak{L}}\varphi\left\{\frac{i}{\mathfrak{h}}\int\limits_{\mathfrak{t}_{\mathfrak{q}}}\prod_{i=1}^{n}\left[(\dot{\gamma}(t))^2-\omega^2\gamma^2(t)\right]dt\right\}\mathscr{L}\gamma
$$

In order to assign a precise mathematical meaning and compute (6), Feynman expands the ** **'s in Fourier series**

(7)
$$
\gamma(t) = \sum_{j=1}^{t} a_j \sin \frac{j\pi}{t_{k} - t_1} (t - t_k)
$$

and, instead of Integrating over the *£ 's, integrates over the space of Fourier coefficients (a_{d,}a_d,....)

$$
(8) \quad \mathcal{F}(t_2-t_4) = \lim_{m \to \infty} \mathcal{J} \int \cdots \int \exp\left\{\sum_{j=1}^m \frac{cm}{f_1}\left(\frac{f(t_1)}{f_2}t_2\right)^{t_1} \cdots \int a_j^2\right\} \frac{da_j}{\lambda} d\alpha_j.
$$

The difficulty introduced by the infinite-valued Jacobian 3 is removed by a suitable choice of the normalizing factors A , which symbolize tie measure of integration in the space of Fourier coefficients.

Carrying out the integration and fitting the results to the case W \bullet O , a free particle, Feynman gets (1) . The ambiguity caused by **in (1) is physically unimportant, for it gives only an overall phase factor.**

3. BEYOND CAUSTICS

Note that beyond Caustics, i.e. for |t*-*il> *^r/t ,* **but l';t*txl^** $\neq k \frac{T}{k}$ **he have again a well-defined classical path between** (X_1, ℓ_k) **and** $\mathbf{X}_{\epsilon},\mathbf{t}_{\epsilon}$ and our formulas (4) - (7) are valid. A change to integration **over Fourier coefficients is again possible. As to the factors** *1 , A* **and integration order, note that they are essentially the same, as in (8) : they** depend only on the transformation $\gamma \rightarrow (\alpha_k, \alpha_k, \dots)$ and are completely **independent of "physics", i.e. of the function to be integrated. Thus (8)**

このことの のこと

79/P.1083

will be perfectly meaningful as soon as we arrive to remove the ambiguity dtie to the

(9)
$$
k = Ent \frac{\omega(t_1 - t_1)}{\pi t} = Ent \frac{t_1 - t_1}{T/2}
$$

number of negative terras in the sum of (8) . This is achieved by an analytic extension of the classical Fresnel integral, possible for $\text{Im}\ 2\text{ to }$ **,** $2\neq 0$ $[5]$. $[6]$

(10)
$$
F(x) = \int exp \left(\frac{i}{2} \frac{3}{2} x^{2} \right) dx
$$
 = $\int \frac{\pi}{2} \arctan 12x \frac{\sqrt{2\pi}}{2} \cdot e^{-\frac{i2\pi}{4}}$

Thus, Feynman's formula has to be modified only by taking absolute value in i and multiplying by **i** and multiplying by

(11)
$$
\exp\left(-\frac{i\pi}{2}k\right) = \exp\left(-\frac{i\pi}{2}\cdot \text{Ent } \frac{\omega\left(\frac{1}{2}+i\right)}{\pi}\right)
$$

in accordance with (2).

4. AT CAUSTICS

For i ⁴ « i ^t + ^k £ , W integer, the situation 1s radically changed : all classical paths starting from X_4 coalesce to $(-1)^k X_4$ **Thui, for any arbitrary pair of points X ^t , K ^t , we have either no classical** path at all or an infinity of classical paths between them. Feynman's method **breaks down even in this latter case, because the coefficient of** \mathbf{a}_{μ}^* **in (8) vanishc. and the Fresnel integral diverges. In terms of "infinite dimen**sional manifolds" [8], [10], [14], (4) is valid if the hamiltonian action, **considered as a function defined on the set of all paths between * ⁴ and X ⁴ , has only one "critical point", i.e. classical path. At caustics this ' condition is not satisfied and one has to evaluate the Feynman Integral by other means.**

The easiest way is to work with operators, rather than with kernels

5

merely. Remember that the time evolution of a system is given as

$$
\psi_{t_k}(x_k) = \left[\mathcal{U}_{t_k - t_k} \psi_{t_k}\right](x_k) =
$$
\n(12)\n
$$
\int_{\mathcal{R}} K(\mathbf{X}_1, t_k | x_1, t_k) \psi_{t_k}(x_k) dx_k
$$

y the multiplication law one has

$$
(13) \qquad \mathcal{U}_{i\epsilon_{\lambda}^{\mathbf{T}}} = \left[\mathcal{U}_{\frac{\mathbf{T}}{i\lambda}} \right]^{2k}
$$

By (1) and (12)

$$
(14)\left[\begin{matrix}U_{\frac{r}{4}}\psi_{\epsilon_4}\end{matrix}\right](x_4) = \int_{R} \left(\frac{m\omega}{2\pi\,\hbar}\right)^{\frac{1}{2}} \cdot e^{-\frac{\epsilon\pi}{4}} \cdot e^{-\frac{\epsilon_{\max}\omega}{\hbar}} \cdot e^{\frac{\epsilon_{\max}\omega}{\hbar}} \psi_{\epsilon_4}(x_4) dx_4
$$

essentially a **Fourier-transform and thus, noting that if the Fouriertransform of a function is once more Fourier-transformed, then one obtains the original function reflected with respect to X » O , one gets**

 (15) $\psi_1^{\prime}(X_1)$ **.** e $\mathcal{I}^{\prime\prime}$ **.** ψ_i^{\prime} (c-o" \mathcal{U}_i)

which is just (3).

Note that (13) could be interpreted as

$$
(16) \qquad K(x_{a_1}t_{a_1})x_{a_2}t_{a_2}) = \int K^{d}(x_{a_1}t_{a_1})x_{a_1}t_{a_2} d\alpha
$$

where 0(is a continuous parameter characterizing the "critical points" (i.e. classical paths) of S . The partial amplitudes J£ are composed of the contributions of the corresponding classical path $\tilde{\gamma}^*$ multiplied **by the correction factor due to paths "oscillating around f" ". These** "oscillating paths" are exactly those which pass through $\tilde{r}^{\prime\prime}$ (t_{i} + \tilde{r}), $\bar{\gamma}^{\kappa}(\iota_1, \iota_2, \iota_3, \ldots, \iota_{\bar{\gamma}}^{\kappa}(\iota_1, \iota_2, \ldots, \iota_{\bar{\gamma}}^{\kappa}))$

(17)
$$
K^{a}(x_{a},t_{a}|x_{a},t_{a}) = \exp \frac{i}{\hbar} S(\frac{\pi}{6}a) \cdot \vec{\tau}^{a}(t_{a}-t_{a})
$$

It Is easy to see that the dividing points could be substituted by any ordered set V' , *i^]* **...i(¹ satisfying**

 $\frac{1}{2}$ (18) $t_1 < t^{(1)} < t_1$, $\frac{1}{2} < ...$ $< t_1 + (k-1)^{\frac{1}{2}} < t^{(2k-1)} < t_1 \cdot k \frac{1}{2}$

(16)-(]7) 1s the substitute to (4) valid for coalescing paths.

5. CONCLUDING REMARKS

In describing the propagator near caustics, one studies generally L ³ 1 • t9J >D?I <[1 3] tn e effec ^t of higher order corrections due to anharmonicity, which change our δ to a more realistic function. We conjecture **however, that the phase of the wave-function will he determined essentially by the pure quadratic part, which we have studied. This would be observable in interference-experiments, supposed we have a kind of structural stability fill in phase. This problem will be studied elsewhere.**

ACKNOWLEDGEMENTS ?

I express my Indebtedness to Jean-Marie Souria» for kind hospitality, constant interest and help at Marseille. Also, enlightening discussions at the C.P.T.Marseille and KFKI-Budapest (especially with Peter Hrask6) are gratefully acknowledged.

79/P.1083

REFERENCES -

[I] R.P. FEYNMAN, A.R. HIBBS, Quantum Mechanics and Path Integrals, McGraw-Hill Book Co., N.ï. (i965). [2] J.M. SOUR I All. Construction explicite de l'Indice de Maslov. Applications.in "Group Theoretical Methods in Physics, IVth Int. Colloq., . N'ijmegen (1975)", • edited by A. Oanner, Springer Lecture Notes in Physics, 50 (1976). * * """ [3] V.. ARNOLD, J. Funct. Anal. 1, (1967). [4] Ph. COMBE, G. RIDEAU, R. RODRIGUEZ, M. SIRUGUE-COLLIN, Rep. Math. Phys. U, Z (1978). [5] J.M. S0UR1AU, • Private Communication (1978). He also conjectures that the fact

i that FCA) has an analytic extension only for Impresor and the seams to have also has an analytic extension only for $I - \lambda \ge 0$ **. seems to be related to the non-existence of negative temperature ' for a thermodynamical system composed of harmonic oscillators. [6] V. GUILLEMIN, S. STERNBERG, Geometrical Asymptoties, Math. Surveys .14, A.M.S. Providence (1977). [7] GOUY, . . C.R. Acad. Sc , 1^0, p. 1251 (1890). [8] *C. JEUrri-MORETTE, Ann. Phys. 97, 2 (1976). [9] L.S. SCHULMANN, . in, "Funct. Int. and its Appl.", ed. Oxford (1975). [lO] P. HORVATHY, L. ÙRY, . Acta Phys. Hung. 42 (3) (1977). [II] J.M. SOURIAU, Séminaire de l'Université de Rome (1977).** [12] **W.H. MILLER, J. Chém. Phys. S3 (1970) 1949, 3578. R.A. .MARCUS, *• ."" J. Chem. Phys. 54 (1971) 3965.**

79/P.1083

 $\boldsymbol{\cdot}$

fl3l S. LEVIT. U. SHILANSKY, D. PELTE, 1 J Phys. Lett. B53 (1974), 39.

 $\mathcal{O}(\mathcal{O}(n))$

H. MASSMAN, J.O. RASMUSSEN, Nucl. Phys. <u>A233</u> (2975) 155.

[14] J. MILNOR, , • *,* ,,.", ^L Horse Theory, Ann. **Math. Studies 51, Princeton (1963).**

79/P.1083