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EXTENDED FEYNMAN FORMULA FOR HARMONIC OSCILLATOR 

P.A. HORVATHY x • 

ABSTRACT : A slight modification of Feynman's original method leads 
to the Maslov correction in the path integral formula of 
a harmonic oscillator Caustics are treated in a direct 
geometric way. 
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1. INTRODUCTION 

As pointed out by Souri au fzj , Feynraan's formu'.a for a harmonie 
oscillator ([ l] . p. 63) 

(i) 

is valid only for H*-M < T / £ , a half period. The general 
expression is obtained [2] by introducing the Haslov correction [z"j . [3] , 
Kl and given as 

(2) for W l i * k i . * integer 
1 

and for l 4* t»* *«f • , k integer (caustics) 

The effect of the correction factor **p t, X" ~ c c J 

is a jump in phase at every half-period, observed by Gouy [ T \ in classical 
optics and having the consequence of reversing the interference pattern 
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(see fè] for details). A similar phenomenon is observed in electron 
optics [s] as well as in molecular [12] and nuclear [is] scattering. 
(2) is more or loss well-known {[4] , [13] ) ; it is generally derived 
by Morse's Theory [l«J . At caustics, i.e. for i t » t , » k | , 
1< integer, most of the authors are contended to observe that (2) diverges-» 
they study then the corrections due to higher order perturbation. Sourlau [2] 
derives (3) by an indirect way, noting the relation to metaplectic repre
sentation. 

The aim of this paper is to show how the above results may be 

obtained by slightly modifying Feynman's original method. 

2. FEYNHAWS METHOD 

First, we resume briefly Feyronan's original method ( £l"J , 
pp. 58-73) in computing the quantum mechanical kernel for a harmonic 
•oscillator. 

Suppose It^-t,! <. T/2, _, the half period (assumed impli
citly by Fe./nman). Then, for any pair of points *i , X, e R there 
is a unique classical path y : t -» y (t) t IR, between 0 ^ , 1 ^ and (.X^tA 
It is useful to write then any path / In the form y o p 4-w , where 
the "varied curves" *j vanish at the end points : 1 t*t) =^i«j « O 

The quantum mechanical kernel, being expressed in terms of a 
gaussian integral, is a product of two factors Q.] : 

(4) Kl^JJ^-l,)- *«*»{ ç S(ï)J . TC^-t,) 

S(y) is here the hamiltonian action along the classical path r 
For a harmonic oscillator 

( 5 ) «sJ- i^f^W^*-^*^ : A *»*0 
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The second factor in (4) depends only on t^-tj and is a result of 
integration over all paths \ vanishing at the end points 

•' *» 

In order to assign a precise mathematical meaning and compute 
(6), Feynman expands the \ 's in Fourier series 

(7) T<*;- IT a; ' * w ^ 5 M * w 

and, instead of Integrating over the *£ 's, integrates over the space of 
Fourier coefficients (ci^C^,..,. ) 

• i 

The difficulty introduced by the infinite-valued Jacobian 3 is removed 
by a suitable choice of the normalizing factors A , which symbolize tie 
measure of integration in the space of Fourier coefficients. 

Carrying out the integration and fitting the results to the case 
<*>« O , a free particle, Feynman gets (1) . The ambiguity caused by 
in (1) is physically unimportant, for it gives only an overall phase factor. 

3. BEYOND CAUSTICS 

Note that beyond Caustics, i.e. for |t*-*il> r/t , but l';t*txl^ 
^ k £ he have again'a well-defined classical path between C xi,' t) and 
t *i,ii) and our formulas (4) - [J) are valid. A change to integration 
over Fourier coefficients is again possible. As to the factors 1 , A and 
integration order, note that they are essentially the same, as in (8) : they 
depend only on the transformation 1 -* (<ikta.„...) and are completely 
independent of "physics", i.e. of the function to be integrated. Thus (8) 

79/P.1083 



5 

will be perfectly meaningful as soon as we arrive to remove the ambiguity 
dtie to the 

(9) * « <rt T/2 

number of negative terras in the sum of (8) . This is achieved by an analytic 
extension of the classical Fresnel integral, possible for ImO^o» > + 0 

Thus, Feynman's formula has to be modified only by taking absolute value in 
l ^ u i t W , ) ! and multiplying by 

in accordance with (2). 

4. AT CAUSTICS 

For i 4 « i t + k £ , W integer, the situation 1s radically 
changed •. aJJ_ classical paths starting from X-L coalesce to t- t) k X.t 

Thui, for any arbitrary pair of points X t , K t , we have either no classical 
patK at all or an infinity of classical paths between them. Feynman's method 
breaks down even in this latter case, because the coefficient of a.*k in 
(8) vanishc. and the Fresnel integral diverges. In terms of "infinite dimen
sional manifolds" [s] , fjo], [u] , (4) is valid if the hamiltonian action, 
considered as a function defined on the set of all paths between * 4 and 
X 4 , has only one "critical point", i.e. classical path. At caustics this ' 

condition is not satisfied and one has to evaluate the Feynman Integral by 
other means. 

The easiest way is to work with operators, rather than with kernels 
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merely. Remember that the time evolution of a system is given as 

y the multiplication law one has 

(is) U k j - fUjl 

(12) 

[ui^l"« . j<£r> • t 
« 

/ W W N » " <t fc ~ i ~ > ' 

essentially a ̂ Fourier-transform and thus, noting that if the Fourier-
transform of a function is once more Fourier-transformed, then one obtains 
the original function reflected with respect to X » O , one gets 

(is) ^ ' t X i j . e"^ u • <v[̂  (c-o"^) 

which is just (3). 

Note that (13) could be interpreted as 

(16) K ( x i ( t j y t ) ^ . j l<"fX„lJX É,-t t) d* 

where 0( is a continuous parameter characterizing the "critical points" 
(i.e. classical paths) of S . The partial amplitudes J£ are composed 
of the contributions of the corresponding classical path V multiplied 
by the correction factor due to paths "oscillating around f" ". These 
"oscillating paths" are exactly those which pass through fC^j,*?^, 
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(17) K ' W i j j L ^ . ^ î â(if>-T0'(tA-4t) 
. ̂\ 

It Is easy to see that the dividing points could be substituted by any 
ordered set V ' , i^] ...i ( 1 satisfying 

mit< bM>< v j ^.... < {L^.q < -fcm'°< v k j 

(16)-(]7) 1s the substitute to (4) valid for coalescing paths. 

5. CONCLUDING REMARKS 

In describing the propagator near caustics, one studies generally 
L 31 • t9J >D?I <[ 1 3] t n e e f f e c t of higher order corrections due to anhar-
monicity, which change our o to a more realistic function. We conjecture 
however, that the phase of the wave-function will he determined essentially by 
the pure quadratic part, which we have studied. This would be observable in 
interference-experiments, supposed we have a kind of structural stability 
fill in phase. This problem will be studied elsewhere. 
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