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ABSTRACT 

We investigate non-reducible О (3J symmetric meron solutions 
to classical SÜ(N+I) Yang-Mills theory in four dimensional 
Euclidean space. For even N the solutions have topological charge 
densities equal to a sum of delta-functions with integer 
coefficients while for odd N /N>1/ these coefficients can be 
both integer and half-integer. In all cases they correspond to 
solutions of a system of N coupled singular elliptic equations. 
He discuss the existence of two meron solutions of this system 
and for N»3,4 give some numerical solutions too. 



I. Introduction 

Particular solutions to classical gauge theories have been 
the focus of many recent investigations. Part of these solutions 
- called merons - are infinite action solutions of Euclidean 
Yang-Mills equations with topological charge density concentrated 
at points. The interest in merons stems from the fact that they 

(1 2^ can be used in models for quark confinement ' . The first meron 
(3) solution was obtained in SU(2) , later it was generalized to 

multiple merons on a line* . These SU^2) configurations of 
course can always be embedded into any SÜ(M) theory believed to 
describe the interaction among quarks. /The general belief is 
that for the physical world M«3, however, with integer charged 
quarks it may be 4 as well* '. The Su(5) merons may play a role 
in a so called grand-unification scheme However, in these 
cases there is a possibility that genuine SU(M) configurations 
exist which cannot be obtained from an su(2) embedding. He call 
these non-reducible. It is our intention in this paper to 
exhibit the existence and discuss the properties of such non­
reducible merons in an SU(N+1) gauge theory. 

So far this kind of merons has been discussed only for 
There it was shown that non-reducible 8и(з) merons 

have their topological charge quantized in integers instead of 
in halfintegere, as in the case for su(2) merons. Here we derive 
the generalization of this fact for any N /Sect.III./. 

To obtain non-reducible me rone in SÜ(N+1) we use an 0(Л 
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symmetric ansatz of ref.' used to obtain non-reducible 
instantons. In terms of this ansatz the original four dimensional 
gauge theory gets replaced by N mutually coupled, two dimensional 
Abelian Higgs models with a residual u(l)x x u(l} /N times/ 
gauge group. In the case N > 2 we find a novel thing: the 
possible meron charges in some different u(l) components are 
different. For even N they all are integers while for odd N they 
can be both integers and half-integers. 

We reduce the problem of finding SÜ(N+1) merons to obtaining 
solutions with appropriate boundary conditions to a coupled system 
of elliptic differential equations for N real functions. We 
outline a general proof of existence /for any N/ of two meron 
solutions of this system using upper and lower bounds, that we 
give explicitely for N«3 /SU(4)/ and N«4 /SU(5>/. In these cases 
we also give numerical solutions for all possible two merone. 

The paper is organised as follows. In sect. II. we describe 
the 0(3") symmetric ansatz and derive the SU(N+Í) gauge field 
equations in terms of this ansatz. In sect. III. we look for 
solutions to these equations that have topological charge density 
appropriate to merons and derive the possible values of meron 
charges. Sect. IV. contains the discussion of two meron 
solutions together with the proof of their existence and the 
numerical solutions for SU(4) and SU(5), while in sect. V. we 
discuss some general properties of our two merons. 
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II. 0(3) Symmetric Ansatz for Su(,N+l) Gauge Theory 

To find О (3) symmetric merons in an SU (N+l) gauge theory we 
use the ansatz of ref. ' exhibiting in a manifest way the symmetry 
under the mixed angular momentum operator 

~* -ъ -* — * 

where T is a matrix representation of SO (з). The ansatz which 
is a generalisation for SU (N+I) of the expressions used in 
refs. for cylindrically symmetric merons in SU(2) and Su(3) 
respectively takes the form 

(2-, 

Here H is a vector and n 0 , ^ are scalers under (l) and T is 
the radial unit vector. Using the most recent results for 
constructing gauge fields with given symmetry properties one 
can prove in a straightforward way that the expressions above 
are really the most general S0(3) symmetric ones for an SU(N+1) 
gauge theory. 

-* 
Though M , ц and n 0 do depend on the spherical angles via 

а» л 

t the field strengths 

depend only on derlvatáves with respect to T and t because the 
angular derivatives in 

i 
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combine with the t X \ in (2) to yield commutators with t X l 
that are determined by the S O ^ symmetry alone . Therefore 
from now on we shall evaluate all fields on the z axis. The SO(3) 
symmetry then enables us to evaluate them along any other axi»• \ 

As we want to have non-reducible SUÍN+l) merons we shall consider 
the case when \ is the maximal embedding of So(3) in SUÍN+1) 
with 

lb*«*̂ ^ U ) 1 V" ) Л X> \> 0a> 
Finally our an eat z for ft, , 4. , W* /along the z axis/ is 

r i 

•K 
/ о 

IV 
»-I 

where we introduced a two dimensional notation with * • * , / • f 
and the functions are real and У^И»*/complex with 
И -(f\v^ . /Note that the matrices are N+l dimensional but each 
contains N functions only./ This ansatz is invariant with 
respect to Abelian gauge transformations from a residual 
u(l) x u(l) ...x u(l) /N times/ subgroup. To display this we 
define 

о/?.,-Vf.*{«£4 (*> 



where Я = « 9 0. The (5) equations can be inverted using 
\ r 

the £**«K matrix 

with С « 2 f a C M > ' — ^ for * é m an* С " Л 
« *2líü±Ür I b i for кЪ m. C 4 k satisfy two 
important Identities that the we shall frequently uset 

The SÜ(N+I) field strengths evaluated on the z axis take the 
following form in terms of Q and ̂ t at 

and ^ 0 « \b̂ "=. 0. These field strengths transform covariantly 
under the Abelian gauge transformation 

• л * » 

for any real function /\ l^x). 

Now it is easy to express the action of the SU (jJ+1) gauge 
theory in terms of Q* 4 (Ч" t) and Ц (^t); after integrating 



over the angular variables we obtain an effective Lagrangian 

for the C\* and ^ i n the ^ * \ S ' r ^ * y 0 \ half plane: 
WV4 

This is the Lagrangian for N Abelian Higgs fields V ^ 

interacting with each other as well as the N abelian gauge 

fields CL* of the residual u(j) x u(l)x x u(l) group in the 

curved two dimensional half plane *^ with metric OL**** -f̂  é>"^ 

The Higgs potential is of the symmetry breaking type with 

several minima. A particular feature of L is the coupling 

between the field strengths of the different Ü(L) components 

of the direct product group. 

The field equations of the SüÍN+l) gauge theory expressed 

in terms of c\* and «̂  •« ̂ .^i- *^0 are simply given by the 

variations of I, with respect to these functions. For o£ we 

find 

WC"*?*)-г r{ 

^c"U\>-2~f 
00 

о «м*д. 

Here we introduced the vector X * = 4jj V,^"©"" ФоЧ* ̂ 7 where 
the new covariant derivative >£, of the two component vector 
Ф ^ is defined as 

The (i> equations can be written in a more compact, coordinate 
free form 



9a 

where X * 1 ^ eta'* stands for the external derivative and x 
denotes the Hodge adjoint. We note the appearence of the тг 

terms in the equ.(9) as a direct consequence of the curved 
structure of К 4 » 

£"» For the scalars V we obtain 

where ( ^ l \ ( ^ ) % ^ 

Egu.s fe) and (j.o) are the field equations for a general 
SO (3) symmetric SU(N+1) gauge theory. In what follows we shall 
find solutions to these equations with topological charge 
density concentrated in different points on the r«*0 line. 

III. System of Equations for Non-reducible SU fy+1^ Nerons 

The topological charge /or Pontryagin/ density of the four 
dimensional SU (j*+l) gauge theory after some algebraic manipulation 

tat tot 
can be expressed in terms of a^ and 4\ as 

where V. is the curl of the vector T ** • t ** ж Q J*» - Q т*4 

i.e. V * » d l l m . Note that in (ll) in contrast to (8} there is 
no coupling between the different u(l) .actors. Integrating 

over the angular variables we obtain the charge density 



in R h : 

Now as we want to obtain So(3) synunetric merons, i.e. merons 
located on the line r=0 at different t. we look for solutions 
to equ.s (9-I0) such that 

This means that in K v we must have 

Using the fact that KCA» (o\ I*"*) and that the field equations 
{9) imply 

we find that the requirement (l2) is equivalent to 

Because of the t in i»-o\*• £ a solution to (l3) and (9) is 
given by 

implying T = 0 and <*: -» Z ^'t .in what follows we take 
this solution and reduce the remaining gauge field equations 
(lo) to N coupled elliptic equations for N real functions of 
r and t. It will also turn out that - within a claos of gauge 
transformations - ty\ must be an integer multiple of у ц^| 

i i — lHWIWfllli »III« 
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*ш 

In order for vvL be regular away from the locations of merons. 

Following refs *' 7' we find an Q * such that ^ - С ^ - Э ^ 
where f y is given by 0-4): 

«С-ЭГ 3"-? ±ßo^t-UtiH4> И V > 

With the aid of these V we carry out a rotation on the Ф 
vectors 

V7- u7. ̂ . 

These U rotate the covarlant derivatives V», into ordinary 
ones as ̂  U?-* c£ *itU^and U f fe (^T)"4» fc so that 

Therefore equ.s \L0) , the second set of the gauge field 
equations, become 

И 
<*0,4 

•t b2lf?,Vj(lí r'-l*-U ;f-\ 1 ,-i\* M %\ x-A)-0 fee) 
As a consequence of 4т) t n e circulation density of d"^ 

therefore Y** maintains a constant direction in those connected 
domains where t ^ ^ ö ; i.e. by U we rotated ^**into a 
single direction. If Ч(щ solves Q.8), it can, at worst, change 
direction by T across curves where ^ - 0. This means that 
Cl8) is equivalent to the following system 



«ЧГ 
S^#:W$fЧр» Е** •- ъ ъ 
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where У( is the component of ^ / V n along a fixed direction which 
is one of the two possible directions of V̂"*. This is the system 
of coupled elliptic differential equations we mentioned above, 
these equations are the equivalents in SU fy+l) of the equations 
describing non reducible roerons in SU (2) and SU (ß) in refs^ ' ̂  
respectively. Of course only those solutions of (19) can describe 
SÜ(N+I) merone that meet some boundary conditions. 

We require for merons that the SU (N+I) gauge field strengths 
be regular at r=0 /away from the merons, i.e. for all tftW. 
This requirement implies that 

и*, i^u u (и:?* «w'* ̂  w-v ^ (2o) 
as in this case - possibily after a gauge transformation -
Uw> M . ~ T • N o t e t h a t Ц*Л-1*»СГ constitute the minima of 
the scalar potential in (в). As long as (20) is satisfied there 
is always a gauge transformation such that applying this 

for 
Therefore when we move across t, at 

transformation we obtain Ciw, Ф * <!*»* . Uw» &\ш О 
Т - 0

1 Л > T-TO * 
* c < w i U 4 en,... 
r-0 from (l5,16) we see that ^f*1 changes direction by 2 P? *•/*,;;. 
On the other hand as we have shown above *V* c a n change direction 
at worst by ir . Hence we conclude that fi\ must be an integer 
multiple of £**>**» . 

However, \b"| can be changed by any amount by a gauge 
transformation unless we restrict our attention to a class of 

-¥«-
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gauge transformations that are continuous across t. at r=0. The 
gauge transformation changing ib- has the form: 

Clearly under this transformation Ь ••-* &*J ^^V. and 
о}-. _ Ф «>. + 1 ̂ \ V , while <y -s undergo a rotation by 

This u CO 
is continuous for all m at r=0 across t. if Л.тг * 

*2v>; T with integer Щ . This means that §>* is defined 
/i.e. is gauge invariant/ mod mm. 

In conclusion to find SUUl+l) meron solutions with 
topological charge density Q ^ ? , * ) - " ! {\fr[ ) £^Ч*)оЧ+"^/8 
reduced to solving П-9) w i t n boundary conditions 

where \->i are integer multiples of J M K , . 

Let us now discuss the emerging structure of topological 
charges of SuÍN+l) merons supposing for the moment that the 
appropriate solutio: s to a9,2.у exist. We say that a meron 
configuration is elementary and is entirely in the k-th U u) 
sector if \ъ

 t " 0 for mfk /wc recall that m-s index the 
different ü (j.)sectors (4-6 V . For all values of m the smallest 
/non-zero/ value of Ы^ is i v*,*7 . As m ranges from 1 to N 
there are N types of possible elementary meron charges and of 
them -£ are different for odd N and * are different tor 

A 
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even N /because (vn)» w. /. Thus for N=1 /SUÍ2)/ or N«2 /Su(3)/ 
we obtain the results of refsv ' ' ' : the elementary mer on 
charges are x and \ respectively, in the latter case this value 
is valid for the elementary merons in both u(l) sectors. However, 
as we go beyond Sü(3) i.e. as N exceeds 2 an unexpected thing 
happens: there are elementary merons in the different u(l) 
sectors with different charges! /e.g. for N=3 and N«4 the possible 
values are -s /m=l,3/ and 2 /m«2/ and 2 /m=l,4/ and 3 /m=2,3/ 
respectively/. It is clear that for even N all ̂ >- will be integer 
while for odd N the \>i -s can be both integer /for even m/ and 
half integer /for odd m/. In a similar way as <<• » Z &\ for 
non-elementary merons the total topological charge at t. is 
integer for N even and can be both integer and halfinteger for 
N odd / >1/. 

It is also obvious that for all N the minimal elementary 
meron charge at t. is obtained for m-1 /m»N/ and is given by 

>̂. = 1 . This value is exactly the half of the minimal 
topological charge for non-reducible su(jl+l) instantons found 
in ref* within the ansatz (2,3). This fact gives support us 
to retain the name "merőn" - that originated from fractional 
charges - even when -i is integer. 

Mm 

Finally, we would like to mention that these new values 
for the topological charge for merons are not artifacts of 
normalization. Rather they are the consequence of the form of 
the maximal representation of the о(з) generátort; allowed by 
the SÜ(N+1) generators. 

i 
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IV. Existence and Numerical Solutions for Non-reducible 
Elementary SU \N+l) Mer on Pairs 

The У functions contain a hidden dependence on the index 
m via the boundary conditions (zi) . We find it convenie.it to 
make this hidden dependence explicite by introducing У*1* fj~^ X^Wfc) 
as for % the field equations (j.9) take the form: 

v a r - x " 1 ( « * x*x- ^N-O(—)х-Л jUH)(—) X""'x- -D-O (22> 
w»-» A.... Kl 

while boundary conditions (2l) change to 

i.e. 1С are t-i on the r=0 line independently of m. Note that -
as a consequence of the elementary identities m~l*m+T, m+l"in-T -
the system (22) has a nice symmetry under the change X «r-̂  X*"1 

*n*\. .|yj If *fb; are such that the boundary conditions 
(23) respect this symmetry we can reduce the number of equations 
in (22). 

If jb?« i w,"̂  /mod mm/ for all values of m and i then 
the substitution X T » X reduces (22,23) to a single equation -
to the equation for merons in su(2) -

i-Mx-xCx^'O^c ( 2 4 ) 

with appropriate boundary conditions for multiple merons. A proof 
of existence of solutions to (24) with these boundary conditions 
was given in ref ̂ V , А в f o r X"* »X m-1,. N M £ ̂ Xeverywhere 

http://convenie.it
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in K, these solutions describe the trivial embedding of the 
SU(2) /multiple/ merons into the maximal БО^з) subgroup of 
SU (N+1) . 

In establishing the existence of the general solutions to 
^4) a central role was played by the closed form two-meron 
solution. As we expect that in the general case of \22,23) the 
two meron solutions can play an equally important role we turn 
now to the discussion of existence of elementary two meron 
solutions to (22,23), though no analytic /closed form/ solution 
to (22,23) is known for any choice of ^ different from the 
previous one. 

In what follows we consider only such elementary two meron 
configurations when one of the merons is sitting at the origin 
and the other is shifted to infinity. /The case when the two 
merons are at a finite distance from each other can be obtained 
from this configuration by a conformal transformation./ For the 
X^functions describing such an elementary two meron configuration 

in the k-th U щsector the (23) boundary conditions read as 

Г(о,*:м w,*k «u-t, %No;i><i *<o хЧо»*м ( 2 5 ) 

X* 0 
because for such an elementary meron at t-0 >̂ » 0 *»4l< ^"»^(Л 
Further we assume that for these two merons X"* depend on r and 
t only via the combination Qs. &m^ (.-*••<*) ' X̂ i-Tyfc) * Х**Ч0) This 
assumption changes (22) into a system of ordinary differential 
equations / Tf} я cAJLr» / 

> ¥> 



- t£ _ 

(26) 

while (25) become 
v»*Ar.. N 

U Г. ICH, X-. * - + L ; U, XW- U (-^)* J C27^ 
We also express the action density ^8) in terms of \ [$) 

/recall that "^ o l«0 at r>0 as a consequence of (14)/: 

- (i«M-»,))% v.- U l J ^ 
where (̂  * тЧт, . Note that (26̂  are the variational equations 
to Í28) and that (27) are necessary to ensure the finitness of 
L . In fact Х - Ч © ) - ^ constitute the minima of the / © 
dependent/ "potential" in фв) , for this case L a 0 ; for any 
other X.*, 19) L ^ O . Therefore it is not obvious that a 
minimum of )Let0 -corresponding to a solution to (26,27)-exists, 

e and we must look for an alternative proof. On the other hand 
from (28) it is clear that - for finite L " these SU(N+1) two 
merons have the same kind of logarithmic interaction - i.e. are 
just as singular - as the original su(2) ones because the total 
action of the two meron is obtained by integrating L over K.V *. 
ft» \Ы% ( ciQ L • Therefore the integral of a- L over 0 
just measures the coupling constant of this interaction. 

The alternative proof that we shall now sketch is the 
adaptation tc our problem of the proof given in ref * ' for the 
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N=2 case. The proof also establishes that X lO)*X ("«Ô O ц,«.!. (J 

First, we note that it is sufficient to work in the ( O ^ l 
interval with boundary conditions X '(f.)mO X ^ C ? ) s O „.^ 
because setting Х , Д » в ) — X w ( l - © ) ) * „ i \ ^ ) ^ T ^ { \ - в ) *,*k 
will extend the solution to a continuous function on (Oj"tt) • 

The general strategy is to give upper and lower bounds 
for X ^ l 9 ) , i.e. to give 2N functions Í,w,l3)«£ U^ 19) that 

satisfy both the boundary conditions at zero and at "/2.: 

u,l°)» t„ lo)- -l oi, lo) - tl, (о) »г [,.. Ы 

and the following differential inequalities: 

(29) 

* » . V I 

and to prove that the solution satisfies f.̂  I©) <• XJ;8)<£ U^lö) 

This proof goes as follows: With the aid of 

O®) and uje) we 
define a domain M in ( 0 Д ^ х £ М : ̂ » K^yt^ \ tjQ) <L X ^ U j « ^ 
0<^©<Д\ and denote by S the boundary of M. As the equations 
(26) are sufficiently well behaved for any в in ( £ Д | S^O 
there is a unique solution to (2б) in (сГД) with the initial 
conditionsxk(D*с,!,!;)-«, 1и*к- хи!)*о»д!Л)-о~* 
The solution is a curve in (0.\")*U '• 

í ie)« (e.X^fc) »»\r..ti) 
The T 16) curve starts in M if the a_ /m-l,N/ initial values 
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are between the boundaries set by (29), i.e. if (̂ Q4... Q^ ) б Х 

where X » V - ** w i t h I w H ^ U ^ ; ^ ^ ^ ( ^ ( D ^ J D ) 
For each (av-q^)fcX there is a unique point \ ц where ^, 
first intersects S. In the case 3 a (Q)fcM for all 0 fc (0> ?] 
we define T ^ •* t a lO) • ( 0;1.~ 4) . As long as ^ l«) €• M we 
can divide (26^ by sin 6 to obtain a uniform bound on (.%*,) 
of order unity. Since U^lO) » k.̂  lO) » Q such a bound implies 
that lim Х„, ж С . Therefore V l©)is a solution to our problem 
l f Т«,-СО,1...о 

One can conclude that there must be an such 
that }ц lO)*(,O^A- Kj by proving that the map T: I-*S is continuous 
and that there is a curve С in I such that т(с) surrounds the 
point in question in S. The proofs of these statements for N=2 

ft} were given in ref v ' , and by trivial modifications they apply 
in the general case too. Therefore we conclude that we can 
prove the existence of the solution to our problem if we can 
give the Х.щ to), U«,10) functions with the necessary properties 
(29-З1) . 

In what follows we give some (. and U M functions that -
according to the previous discussion - ensure the existence of 
all kinds of elementary two merone for N»3,4 /SU(4), SU(5)/. 
Although at present we have no upper and lower bounds for the 
general case we still expect that even in the cases not considered 
here they can be established. 

For all of our two merone we take for tvw^/ the following 

L 
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They obviously satisfy (29) and a straightforward substitution 
shows that they satisfy (зо) for all m provided kk<iO /The 
restriction comes from the (k+l)-th and(k-l)-th inequalities, 
the others are satisfied for all values of k/. Note that the 
lower bound for the function going through 0 at V|j_is nothing 
but the closed form two mer on solution for Su(2). 

The determination of upper bounds is more tedious and less 
systematic. Finally, for N=3 /su(4)/ and k=l / £ * \ j f ' f ' O / 
we obtained 

With these functions it is easy to check the validity of the 
third inequality in (3l), but we had to из. a pocket calculator 
to establish the validity of the first and the second ones. /The 
k»3 case is obtained from this one by interchanging all quantities 
with indices 1 and 3/. For N«3 /su(4)/ and k=2 / f>A>f»«0^ y?*2 / 
when the boundary conditions allow the 'X.^Xx substitution and 
we have only two equations in (2б) we found the following upper 
bounds: 

For N-4 /SU(5)/ and k-1 / ̂ »1, ̂ « £'£» n»0 / we found 

while for N-4 and k»2 ( $?* i£« ̂ ц» О Г?» Ъ) 

^ 

u s-M 
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The SU(5) two merons in the third or fourth u(l) sectors are 

obtained from the k=2 and k=l cases respectively by interchanging 

all quantities with indices 1,4 and 2,3. 

Having established the existence of all possible types of 

elementary two merons in Su(4) and SU^S) we display on figs 1-4. 

the numerical solutions of the equations describing them. From 

the figures we see that - as a consequence of the rather similar 

upper and lower bounds - the function going through zero at ̂ /2. 

is almost the same in all cases. It is also clear that the farther 

is a function in (26) from this particular one the better it 

approaches the constant - identically one - function. These 

numerical solutions also enable us to compare the coupling 

constant of the interaction of the different elementary two 

merons in SU (4) and SU(J5): 

SÜ (4) SU(5) 

topological charge 

at t - 0 

3 

2 
2 2 

, — 

¥ { USniQ 
4.75 6.54 6.99 

These values of the coupling essentially determine /up to a 

factor of 4тгг/ the action for our two merons in Minkowski space 
obtained by bringing back the other nv»-cn at finite distance 
via a conformal transformation and continuing in t analytically 
to ix as in ref* ' . 
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Finally, we note that for the existence of non-elementary 
merons at present we have no rigorous proof, however, the 
existence of two meron solutions - though not in a closed form -
gives support to the expectation that even in the general case 
a proof could be given along the lines of the argument of re 
In this case a search for numerical solutions can be carried out 
in a way similar to the determination of multiple merons in 
SU(2) И . 

V. Conclusion and Outlook 

Let us now turn to the discussion of some further properties 
of the elementary two merons in SU( N + I ) . First, we note that for 
the merons with all of their JC -a /m»l,N/ different /e.g. for 
all N the meron with smallest charge /one can establish whether 
they represent a genuine non-reducible SU(N+I) configuration by 
looking at a component of the field strength /e.g. В./ which is 
is diagonal on the z axis. The fact that all the diagonal elements 
are different and non-zero /for all z/ implies that there exist 
no other linear relation between them /expect the tracelessness 
condition/ and guarantees that our solutions are not contained 
in any subgroup of SU^N+l) . 

As we mentioned earlier for all N the smallest elementary 
meron charge is just the half of the topological charge of the 
smallest non-reducible instanton^. For N-l /SU(2)/ the relation 
between the two meron and one instanton solutions is even more 
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Intriguing: there exist a family of elliptic solutions - indexed 
by a continuous parameter к - interpolating between them ̂ 3'/the 
k»0 solution yields the two meron, the k-1 the one instanton/. 
This family may describe the dissociation of an instanton into 
two merons^ '. Naturally emerges the question: does the family 
of the same kind of solutions exist for the general non-reducible 
SU(N+I) instantons and two merone? He know of no definite answer 
to this question but we note a striking difference between the 
N<*1 and the N>1 elementary two merons that may answer the 
question in the negative: the N-l two meron has a higher 
symmetry, it is 0\4) symmetric while for N>1 it is not. 
/Remember that we consider only such two merons when one of them 
is shifted to infinity/. To see we note that using the recent 
results for constructing gauge fields with given symmetry 
properties one can show that the most general o(4) symmetric 
ansatz for an Sufa+l) gauge theory has the form: 

where v£* (Vvt1) A«(X* О * *nd X, y are some representations 
of the 0(4) generators constructed from mahrices of the Lie 
algebra of SU(N+1): Z ^ S L"TÍ,TJ1 Z 4 > T; 
where T; (i* 4 ... S_) i o r m a n SO(3)/SU(2/)/ subgroup of SÜ(N+1) . 
(32) implies in our ansatz that % * \ f o r a 1 1 m« Therefore 
the field equations reduce to (24) that really allows the o(4) 
symmetric two meron solution %* uy»@ . /The О(4) symmetry can 
be made manifest by a gauge transformation/. 
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However, as we mentioned earlier in this case we have №"* £**• 
Mt&Ay-t^ therefore only for N=1 is this an elementary two meron. 

Let us finally mention the possible physical application of 
the SU(N+1) /SU(4) and Su(5)/ mer one in the mechanisms^1'2 * 
suggested so far to explain the confinement of quarks. According 
to the first^ ' in a non-abelian gauge theory of quarks and 
gluons the contribution of instantons to the functional integral 
determines the vacuum structure of the theory while the 
contribution of merons gives rise to the confinement of quarks 
via the dissociation of instantons into merons. The critical 
value of the coupling constant where this dissociation - and 
the transition to confinement phase - begins depends crucially 
on the value of the coupling in the two meron interaction. If 
we apply this picture to an SU(N+1) theory then the existence 
of non-reducible two merons with different couplings may signal 
the existence of several such phase transition points. 
/Provided the assumptions of the model are valid even after the 
first phase transition./ 

In the alternative mechanism - that assumes no meron pair 
dissociation 

(2) 
- the meron pairs at high density behave like a 

dense fluid thus changing the exponent of Wilson loop from 
perimeter to area behaviour V2', Perhaps the best wty to clarify 
the role of non-reducible Su(N+l) merons in this scheme would 
be to obtain o(2) symmetric ones. For 0(2) symmetric me rone in 
su(2) it was shown that they have 1/2 topological charge 
concentrated in points in a plane ̂ * ' . It needs further 
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clarification whether the generalization of this for SU(N+1) 
holds or not. 
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Figure Captions 

Fig. 1. The functions describing SU(4) two meron with ^**2..£»£ я0 

i» ̂ . л ,Л_ Fig. 2. The functions describing SU (4) two ineron with^>«^*Oj ^»1 

Fig. 3. The functions describing Su(j5) two roeron with ̂ »Z ^*^>^.<) 

Fig. 4. The functions describing Su(5) two roeron with ̂ » f'f*% f*^ s 
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