RECORE

2. International Conference on Meson - nuclear Physics. Houston, USA, March 5 - C_1 1979. CEA - CONF 4570

MEASUREMENT OF "" PHOTOPRODUCTION MEAR THRESHOLD ON LIGHT MUCLEI

P. Argan, G. Audit, <u>N. de Botton</u>, J.L. Faure, C. Schuhl, G. Tamas, C. Tzara, E. Vincent DFn-N, CEN Saclay, BP 2, 91100 Gif-sur-Evette, France

J. Deutsch, D. Favart, R. Prieels, B. V an Oystaeyen Institut de Physique Corpusculaire, Université Catholique de Louvain E-1348 Louvain-la-Neuve, Felgium

ABSTRACT

 π° photoproduction on ¹H, ²H, ³He and ⁴He has been measured in the region of 1 to 10 MeV above threshold. Our measurement confirms the importance of pion rescattering for the reactions on ²H and ³He, and yields information on the threshold amplitudes on the nucleons.

The basic motivations of π° photoproduction measurements near threshold on light nuclei are twofold : i) obtain information on the so far poorly determined π° production amplitudes on the nucleons ; ii) learn about photoproduction mechanism in nuclei, especially in the case of deuterium¹ and helium-3 where large contributions of pion rescattering terms dominate the one-body amplitude, whereas they affect weakly the reaction on ⁴He.

The experiment consists in the comparison of the π° photoproduction yields on ¹H, ²H, ³He and ⁴He. Measurements are made for several end-point energies E_{e} of the bremsstrahlung spectrum ranging up to approximately 10 MeV above threshold. The two gammas from the π° decay (emitted almost back to back) are converted in a lead foil and subsequently detected in two Čerenkov telescopes placed symmetrically at 90° about the photon beam direction. The measured yields are related to the π° photoproduction cross section d $\sigma/d\Omega$ by the relation

 $Y(E) = \int_{E_0}^{E_e} \int_{\Omega_d} B(E, E_e) C_{\varepsilon}(E, \theta) \frac{d\sigma}{d\Omega} dEd\Omega,$

where $B(E,E_e)$ is the photon spectrum, $z(E,\theta)$ the geometrical detection efficiency for photon energy E and π° emission angle θ , E_{\odot} the threshold energy and Ω_d the solid angle of the detection system; the constant factor C accounts for the efficiency of the Cerenkov detectors.

In a preliminary analysis we have compared our data to the predictions of a simple PWIA theoretical model allowing, in addition, for pion rescattering effects in the s-wave.

We have restricted the elementary nucleonic amplitudes to the dominant E_{0+} and M_{1+} multipoles; the rescattering effects were estimated in a very simple model² involving only - production amplitu-

des and scattering lengths on the nucleons, and the average value of the inverse nucleon separation in ²H and ⁵He. The resulting crosssections were folded with the Jabbur and Pratt bremsstrahlung shape and the Monte Carlo simulated detection efficiency ε . For each reac-

tion the ratio of s wave (including rescattering) to p wave production amplitude was left as a free plrameter to be adjusted on the data. Assuming the values in units $m_{\pi} = h = c = 1$, $M_{1+}(\pi^{\circ}p) = 0.0085$ qk and $M_{1+}(\pi^{\circ}n) = 0.0077$ qk deduced of the multipolar analysis³ of photoproduction at higher energies, we obtained from the general fit (see fig.) of all data points up to 6 MeV above threshold the following dipole amplitudes :

 $E_{0^{+}}(\pi^{\circ}p) = -0.0020 \pm 0.0002$ $E_{0^{+}}(\pi^{\circ}n) = 0.0021 \pm 0.0004$

the $E_0+(\pi^{\circ}p)$ value is in agreement with existing data⁴. As for the $E_0+(\pi^{\circ}n)$ determination, it depends critically on the calculated values of the rescattering amplitudes for ²H and ³He ; the quoted error does not include the large theoretical uncertainty. Our preliminary analysis illustrates that using a very simple model we have an overall understanding of the four studied reactions. A

more thourough theoretical treatment is now needed to extract from our data a reliable $E_{0+}(\pi^{\circ}n)$ value.

REFERENCES

- 1. P. Argan et al., Phys. Rev. Lett. 41, 629 (1978).
- 2. N. de Botton and C. Tzara, Rapport interne DPh-N/HE/78-06.
- 3. P. Noelle, W. Pfeil and D. Schwela, Nucl. Phys. B31, 1 (1971).
- 4. B.B. Govorkov et al., Proceedings (Trudy) of the P.N. Lebedev Physics Institute 54, 1 (1974).

